PolSAR Image Modulation Using a Flexible Metasurface with Independently Controllable Polarizations
Abstract
1. Introduction
2. Materials and Methods
2.1. Working Principle of the FM-ICP
2.2. Modulation Signal Model Based on FM-ICP
2.3. Time-Varying Modulation Model for PolSAR Imaging
3. Results
3.1. Metrics and Parameter Settings
3.2. Simulation Experiment Results
3.2.1. Joint Control
- 1.
- Modulation periods (TsH and TsV)
- 2.
- Modulation duty cycles (αH and αV)
- 3.
- Amplitude coefficients in the low scattering state (xH and xV)
3.2.2. Independent Control
- 1.
- Modulation periods (TsH and TsV)
- 2.
- Modulation duty cycles (αH and αV)
- 3.
- Amplitude coefficients in the low scattering state (xH and xV)
3.3. Quantitative Analysis of Features
4. Discussion
4.1. Analysis of the Transformation Pattern of Polarimetric Features
4.2. Analysis of the Clutter Interference Effect
4.3. Analysis of the Impact of FM-ICP Performance
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tang, W.; Chen, M.Z.; Chen, X.; Dai, J.Y.; Han, Y.; Di Renzo, M.; Zeng, Y.; Jin, S.; Cheng, Q.; Cui, T.J. Wireless communications with reconfigurable intelligent surface: Path loss modeling and experimental measurement. IEEE Trans. Wirel. Commun. 2020, 20, 421–439. [Google Scholar] [CrossRef]
- Li, B.; Wang, Y.; Wang, C.; Liu, S. Electrically Tunable Metasurface for Multi-Polarized Reflection. Remote Sens. 2025, 17, 700. [Google Scholar] [CrossRef]
- Chen, G.; Su, X.; He, L.; Guan, D.; Liu, Z. Coherent Signal DOA Estimation Method Based on Space–Time–Coding Metasurface. Remote Sens. 2025, 17, 218. [Google Scholar] [CrossRef]
- Chen, L.; Weng, Q.; Chen, J.; Gu, J.-F. A novel amplitude modulation architecture via time-varying programmable metasurface for wireless communication systems. IEEE Access 2020, 8, 75127–75134. [Google Scholar] [CrossRef]
- Rao, J.; Zhang, Y.; Tang, S.; Li, Z.; Chiu, C.-Y.; Murch, R. An active reconfigurable intelligent surface utilizing phase-reconfigurable reflection amplifiers. IEEE Trans. Microw. Theory Tech. 2023, 71, 3189–3202. [Google Scholar] [CrossRef]
- Jiao, Y.; Shi, H.; Chen, X.; Yi, J.; Chen, J.; Zhang, A.; Xu, Z.; Liu, H. Polarization-Correlation-Based Metasurface for Full-space Independent Amplitude and Phase Modulation. IEEE Trans. Antennas Propag. 2024, 72, 4670–4675. [Google Scholar] [CrossRef]
- Guo, M.; Wang, W.; Hao, F.; Huang, P.; Gong, L.; Song, X. Low RCS, broadband polarization conversion metasurface antenna based on reactance loading. IEEE Trans. Antennas Propag. 2022, 70, 11361–11374. [Google Scholar] [CrossRef]
- Wu, Z.; Grbic, A. Serrodyne frequency translation using time-modulated metasurfaces. IEEE Trans. Antennas Propag. 2019, 68, 1599–1606. [Google Scholar] [CrossRef]
- Ramaccia, D.; Sounas, D.L.; Alu, A.; Toscano, A.; Bilotti, F. Phase-induced frequency conversion and Doppler effect with time-modulated metasurfaces. IEEE Trans. Antennas Propag. 2019, 68, 1607–1617. [Google Scholar] [CrossRef]
- Nadi, M.; Cheldavi, A.; Sedighy, S.H. Beam Steering toward Multi-Beam Radiation by Time-Coding Metasurface Antennas. IEEE Trans. Antennas Propag. 2024, 72, 4829–4838. [Google Scholar] [CrossRef]
- Yu, J.; Jiang, W.; Gong, S. Low-RCS beam-steering antenna based on reconfigurable phase gradient metasurface. IEEE Antennas Wirel. Propag. Lett. 2019, 18, 2016–2020. [Google Scholar] [CrossRef]
- Fang, X.; Li, M.; Lai, Z.; Ramaccia, D.; Toscano, A.; Bilotti, F.; Ding, D. Multifunctional space–time-modulated metasurface for direction of arrival estimation and RCS manipulation in a single system. IEEE Trans. Microw. Theory Tech. 2023, 72, 3797–3808. [Google Scholar] [CrossRef]
- Zhang, B.; Yang, F.; Xu, S.; Li, M.; Jin, C. RCS Reconfiguration of an Antenna Array Based on the 1-Bit Reconfigurable Load Impedance. IEEE Trans. Antennas Propag. 2025, 73, 2918–2926. [Google Scholar] [CrossRef]
- Xu, L.; Feng, D.; Zhang, R.; Wang, X. High-resolution range profile deception method based on phase-switched screen. IEEE Antennas Wirel. Propag. Lett. 2016, 15, 1665–1668. [Google Scholar] [CrossRef]
- Zhu, Y.; Fang, X.; Li, M.; Ramaccia, D.; Toscano, A.; Bilotti, F.; Ding, D. Time–Frequency-Modulated Metasurface for False Target Generation in Symmetrical Triangular LFM Continuous-Wave Radars. IEEE Trans. Microw. Theory Tech. 2024, 73, 2531–2543. [Google Scholar] [CrossRef]
- Sui, R.; Wang, J.; Sun, G.; Xu, Z.; Feng, D. A dual-polarimetric high range resolution profile modulation method based on time-modulated APCM. IEEE Trans. Antennas Propag. 2025, 73, 1007–1017. [Google Scholar] [CrossRef]
- Chen, L.; Wang, J.; Liu, X.; Feng, D.; Sun, G. A Flexible Range-Doppler Modulation Method for Pulse-Doppler Radar Using Phase-Switched Screen. IEEE Trans. Antennas Propag. 2025. [Google Scholar] [CrossRef]
- Wang, J.; Feng, D.; Xu, Z.; Wu, Q.; Hu, W. Time-domain digital-coding active frequency selective surface absorber/reflector and its imaging characteristics. IEEE Trans. Antennas Propag. 2020, 69, 3322–3331. [Google Scholar] [CrossRef]
- Fang, X.; Li, M.; Wang, S.; Ai, X.; Wang, W.; Liu, J.; Ding, D. EM scattering center model-guided passive SAR deception using diverse frequency time-modulation. IEEE Trans. Geosci. Remote Sens. 2024, 62, 1–13. [Google Scholar] [CrossRef]
- Sun, G.; Zhu, L.; Xing, S.; Wang, J.; Feng, D.; Wang, X. SAR imaging modulation based on time-modulated corner reflector with wide-angle domain control. IEEE Antennas Wirel. Propag. Lett. 2023, 22, 3157–3161. [Google Scholar] [CrossRef]
- Li, H.; Li, Z.; Liu, K.; Xu, K.; Luo, C.; Lv, Y.; Deng, Y. A Broadband Information Metasurface-Assisted Target Jamming System for Synthetic Aperture Radar. Remote Sens. 2024, 16, 1499. [Google Scholar] [CrossRef]
- Zhu, L.; Wang, J.; Feng, D. An Approach for SAR feature reconfiguring based on periodic phase modulation with inter-pulse time bias. Remote Sens. 2025, 17, 991. [Google Scholar] [CrossRef]
- Ding, C.; Mu, H.; Meng, Y.; Zhao, M.; Zhang, Y.; Cai, T.; Meng, F.; Wang, J. Time-Modulated Metasurface-Assisted Moving Target Jamming for Synthetic Aperture Radar. IEEE Trans. Microw. Theory Tech. 2025, 73, 4191–4203. [Google Scholar] [CrossRef]
- Ding, C.; Mu, H.; Shi, Y.; Wu, Z.; Fu, X.; Zhu, R.; Cai, T.; Meng, F.; Wang, J. Dual-polarized and Conformal Time-Modulated Metasurface Based Two-Dimensional Jamming Against SAR Imaging System. IEEE Trans. Antennas Propag. 2025. [Google Scholar] [CrossRef]
- Zhang, L.; Chen, Y.; Wang, N.; Zou, B.; Liu, S. Scattering mechanism analysis of man-made targets via polarimetric SAR observation simulation. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 15, 919–929. [Google Scholar] [CrossRef]
- Wang, J.; Quan, S.; Xing, S.; Li, Y.; Wu, H.; Meng, W. PSO-based fine polarimetric decomposition for ship scattering characterization. ISPRS J. Photogramm. Remote Sens. 2025, 220, 18–31. [Google Scholar] [CrossRef]
- Liang, J.; Cao, Q.; Wang, Y.; Wan, Z. A multifunctional and miniaturized flexible active frequency selective surface. IEEE Antennas Wirel. Propag. Lett. 2021, 20, 2549–2553. [Google Scholar] [CrossRef]
- Feng, T.-X.; Zhu, L.; Wei, T.; Li, B. Planar pattern manipulation surfaces using dual-polarized pin-loaded patch resonating elements. IEEE Trans. Antennas Propag. 2022, 70, 8748–8756. [Google Scholar] [CrossRef]
- Tian, T.; Huang, X.; Cheng, K.; Liang, Y.; Hu, S.; Yao, L.; Guan, D.; Xu, Y.; Liu, P. Flexible and reconfigurable frequency selective surface with wide angular stability fabricated with additive manufacturing procedure. IEEE Antennas Wirel. Propag. Lett. 2020, 19, 2428–2432. [Google Scholar] [CrossRef]
- Zhang, X.; Gao, Y.; Hu, W.; Hong, T. Directional Modulation of Scattering Patterns Based on Conformal Holographic Metasurface. IEEE Antennas Wirel. Propag. Lett. 2024, 23, 3857–3861. [Google Scholar] [CrossRef]
- Luo, X.-Y.; Guo, W.-L.; Chen, K.; Zhao, J.; Jiang, T.; Liu, Y.; Feng, Y. Active cylindrical metasurface with spatial reconfigurability for tunable backward scattering reduction. IEEE Trans. Antennas Propag. 2020, 69, 3332–3340. [Google Scholar] [CrossRef]
- Sun, G.; Wang, J.; Xing, S.; Huang, D.; Feng, D.; Wang, X. A flexible conformal multifunctional time-modulated metasurface for radar characteristics manipulation. IEEE Trans. Microw. Theory Tech. 2023, 72, 4294–4308. [Google Scholar] [CrossRef]
- Chen, H.; Zhen, Q.; Chen, J.; Sun, H.; Li, H.; Chernogor, L.F.; Sun, Z.; Zheng, Y.; Liu, T.; Jin, Z. X-Band and Low-RCS Flexible Wideband Antenna Array Based on Metasurface. IEEE Antennas Wirel. Propag. Lett. 2024, 24, 567–571. [Google Scholar] [CrossRef]
- Yang, H.; Zheng, S.; Zhang, H.; He, T.; Li, N.; Yang, Z.; Lyu, Z.; He, Y.; Zhang, L.; Yu, X. A Reflective Metasurface for OAM and Polarization Multiplexing Communication in the W-band. IEEE Antennas Wirel. Propag. Lett. 2023, 23, 1124–1128. [Google Scholar] [CrossRef]
Operating State | OFF in y-Polarization Direction | ON in y-Polarization Direction |
---|---|---|
OFF in x-Polarization Direction | ||
ON in x-Polarization Direction |
Typical Scatterers | Scattering Matrix | Typical Scatterers | Scattering Matrix |
---|---|---|---|
trihedral reflectors | cylindrical scatterers | ||
dihedral reflectors | narrow dihedral reflectors | ||
dipole scatterers | left-handed helices |
Parameters | Value | Parameters | Value |
---|---|---|---|
squint angle | 0° | signal bandwidth | 150 MHz |
nadir angle | 45° | signal pulse width | 2 us |
platform altitude | 1 km | oversampling factor | 1.4 |
platform velocity | 200 m/s | pulse repetition frequency (PRF) | 350 Hz |
center frequency | 3 GHz | beamwidth | 0.03 rad |
Parameter Conditions | Scattering Matrix | Cameron | |
---|---|---|---|
cylindrical scatterers TsH = TsV = 0.4 us | zero-order peak | cylindrical scatterers | |
first-order peak | cylindrical scatterers | ||
second-order peak | cylindrical scatterers | ||
cylindrical scatterers TsH = TsV = 0.2 us | zero-order peak | cylindrical scatterers | |
first-order peak | cylindrical scatterers | ||
second-order peak | cylindrical scatterers | ||
trihedral scatterers TsH = TsV = 0.4 us | zero-order peak | trihedral scatterers | |
first-order peak | trihedral scatterers | ||
second-order peak | trihedral scatterers |
Parameter Conditions | Scattering Matrix | Cameron | |
---|---|---|---|
cylindrical scatterers αH = αV = 0.3 | zero-order peak | cylindrical scatterers | |
first-order peak | cylindrical scatterers | ||
second-order peak | cylindrical scatterers | ||
cylindrical scatterers αH = αV = 0.5 | zero-order peak | cylindrical scatterers | |
first-order peak | cylindrical scatterers | ||
second-order peak | disappear | disappear | |
trihedral scatterers αH = αV = 0.3 | zero-order peak | trihedral scatterers | |
first-order peak | trihedral scatterers | ||
second-order peak | trihedral scatterers |
Parameter Conditions | Scattering Matrix | Cameron | |
---|---|---|---|
cylindrical scatterers xH = xV = 0.3 | zero-order peak | cylindrical scatterers | |
first-order peak | cylindrical scatterers | ||
second-order peak | cylindrical scatterers | ||
cylindrical scatterers xH = xV = 0.6 | zero-order peak | cylindrical scatterers | |
first-order peak | cylindrical scatterers | ||
second-order peak | cylindrical scatterers | ||
trihedral scatterers xH = xV = 0.3 | zero-order peak | trihedral scatterers | |
first-order peak | trihedral scatterers | ||
second-order peak | trihedral scatterers |
Parameter Conditions | Scattering Matrix | Cameron | |
---|---|---|---|
cylindrical scatterers TsH = 0.4 us, TsV = 0.2 us, H-channel | zero-order peak | cylindrical scatterers | |
first-order peak | dipole scatterers | ||
second-order peak | symmetric scatterers | ||
cylindrical scatterers TsH = 0.4 us, TsV = 0.2 us, V-channel | zero-order peak | cylindrical scatterers | |
first-order peak | cylindrical scatterers | ||
second-order peak | narrow dihedral scatterers |
Parameter Conditions | Scattering Matrix | Cameron | |
---|---|---|---|
cylindrical scatterers αH = 0.3, αV = 0.7 | zero-order peak | trihedral scatterers | |
first-order peak | cylindrical scatterers | ||
second-order peak | narrow dihedral scatterers | ||
trihedral scatterers αH = 0.7, αV = 0.3 | zero-order peak | cylindrical scatterers | |
first-order peak | trihedral scatterers | ||
second-order peak | dihedral scatterers |
Parameter Conditions | Scattering Matrix | Cameron | |
---|---|---|---|
cylindrical scatterers xH = 0.2, xV = 0.8 | zero-order peak | trihedral scatterers | |
first-order peak | dipole scatterers | ||
second-order peak | dipole scatterers | ||
trihedral scatterers xH = 0.8, xV = 0.2 | zero-order peak | cylindrical scatterers | |
first-order peak | symmetric scatterers | ||
second-order peak | symmetric scatterers |
Parameter Conditions | Theoretical Distance (m) | Actual Distance (m) | Relative Error | |
---|---|---|---|---|
Ts = 0.4 us | first-order peak | 5.00 | 5.60 | 0.12 |
second-order peak | 10.00 | 12.67 | 0.27 | |
Ts = 0.2 us | first-order peak | 10.00 | 11.20 | 0.12 |
second-order peak | 20.00 | 24.33 | 0.22 |
Dipole | Trihedral | Cylindrical | Dihedral | Narrow Dihedral | |
---|---|---|---|---|---|
Coherence coefficient | 0.9941 | 0.9975 | 0.9982 | 0.9973 | 0.9906 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, Y.; Wang, J.; Wu, J.; Sun, G.; Feng, D. PolSAR Image Modulation Using a Flexible Metasurface with Independently Controllable Polarizations. Remote Sens. 2025, 17, 2870. https://doi.org/10.3390/rs17162870
Wu Y, Wang J, Wu J, Sun G, Feng D. PolSAR Image Modulation Using a Flexible Metasurface with Independently Controllable Polarizations. Remote Sensing. 2025; 17(16):2870. https://doi.org/10.3390/rs17162870
Chicago/Turabian StyleWu, Yuehan, Junjie Wang, Jiong Wu, Guang Sun, and Dejun Feng. 2025. "PolSAR Image Modulation Using a Flexible Metasurface with Independently Controllable Polarizations" Remote Sensing 17, no. 16: 2870. https://doi.org/10.3390/rs17162870
APA StyleWu, Y., Wang, J., Wu, J., Sun, G., & Feng, D. (2025). PolSAR Image Modulation Using a Flexible Metasurface with Independently Controllable Polarizations. Remote Sensing, 17(16), 2870. https://doi.org/10.3390/rs17162870