An Improved General Five-Component Scattering Power Decomposition Method
Abstract
1. Introduction
2. Polarimetric Angle Compensations
2.1. Orientation Angle Compensation
2.2. A Special Unitary Transform Matrix
3. Methodology
3.1. Extended Basic Scattering Models
- (1)
- Surface scattering
- (2)
- Double-bounce scattering
- (3)
- Helix scattering
- (4)
- Oriented dipole scattering
3.2. Extended Volume Scattering Models
- (1)
- Sinusoidal distribution
- (2)
- Cosine distribution
- (3)
- Uniform distribution
- (4)
- Volume scattering caused by oriented dihedral scatter
3.3. Model Inversion
- (1)
- Cosine distribution:
- (2)
- Uniform distribution:
- (3)
- Volume scattering caused by oriented dihedral scatter:
3.4. Branch Condition
3.5. Branch Condition
4. Experimental Results
4.1. GF-3 Data Collected over San Francisco, USA
4.2. Urban High-Density Building Research Area
4.3. Research Sites for Distributed Buildings
4.4. Radarsat-2 Data Collected over San Francisco, USA
4.5. L-Band ESAR Data
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Xiang, D.; Tang, T.; Ban, Y.; Su, Y.; Kuang, G. Unsupervised Polarimetric SAR Urban Area Classification Based on Model-Based Decomposition with cross scattering. ISPRS J. Photogramm. Remote Sens. 2016, 116, 86–100. [Google Scholar] [CrossRef]
- Xi, Y.; Lang, H.; Tao, Y.; Huang, L.; Pei, Z. Four-Component Model-Based Decomposition for Ship Targets Using PolSAR Data. Remote Sens. 2016, 9, 621–638. [Google Scholar] [CrossRef]
- Zhu, Y.; Ai, J.; Wu, L.; Guo, D.; Jia, W.; Hong, R. An Active Multi-Target Domain Adaptation Strategy: Progressive Class Prototype Rectification. IEEE Trans. Multimed. 2025, 27, 1874–1886. [Google Scholar] [CrossRef]
- Wang, Y.; Yu, W.; Wang, R.; Wang, L.; Ge, D.; Liu, X.; Wang, C.; Liu, B. An Improved Urban Area Extraction Method for PolSAR Data Using Eigenvalues and Optimal Roll-Invariant Features. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2024, 17, 6455–6467. [Google Scholar] [CrossRef]
- Anconitano, G.; Lavalle, M.; Acuna, M.A.; Pierdicca, N. Sensitivity of Polarimetric SAR Decompositions to Soil Moisture and Vegetation Over Three Agricultural Sites Across a Latitudinal Gradient. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2024, 17, 3615–3634. [Google Scholar] [CrossRef]
- Lee, J.; Pottier, E. Polarimetric Radar Imaging: From Basics to Applications; CRC Press: Boca Raton, FL, USA, 2009; pp. 3–9. [Google Scholar]
- Cloude, S.R.; Pottier, E. A Review of Target Decomposition Theorems in Radar Polarimetry. IEEE Trans. Geosci. Remote Sens. 1996, 34, 498–518. [Google Scholar] [CrossRef]
- Freeman, A.; Durden, S.L. A Three-Component Scattering Model for Polarimetric SAR Data. IEEE Trans. Geosci. Remote Sens. 1998, 36, 963–973. [Google Scholar] [CrossRef]
- Yamaguchi, Y.; Moriyama, T.; Ishido, M.; Yamada, H. Four-Component Scattering Model for Polarimetric SAR Image Decomposition. IEEE Trans. Geosci. Remote Sens. 2005, 43, 1699–1706. [Google Scholar] [CrossRef]
- Zhang, L.; Zou, B.; Zhang, Y. Multiple-Component Scattering Model for Polarimetric SAR Image Decomposition. IEEE Geosci. Remote Sens. Lett. 2008, 5, 603–607. [Google Scholar] [CrossRef]
- Xiang, D.; Ban, Y.; Su, Y. Model-Based Decomposition with Cross Scattering for Polarimetric SAR Urban Areas. IEEE Geosci. Remote Sens. Lett. 2015, 12, 2496–2500. [Google Scholar] [CrossRef]
- Singh, G.; Yamaguchi, Y. Model-Based Six-Component Scattering Matrix Power Decomposition. IEEE Trans. Geosci. Remote Sens. 2018, 56, 5687–5704. [Google Scholar] [CrossRef]
- Singh, G.; Malik, R.; Mohanty, S.; Rathore, V.S.; Yamada, K.; Umemura, M.; Yamaguchi, Y. Seven-Component Scattering Power Decomposition of PolSAR Coherency Matrix. IEEE Trans. Geosci. Remote Sens. 2019, 57, 8371–8382. [Google Scholar] [CrossRef]
- Yamaguchi, Y.; Sato, A.; Boerner, W.M.; Sato, R.; Yamada, H. Four-Component Scattering Power Decomposition with Rotation of Coherency Matrix. IEEE Trans. Geosci. Remote Sens. 2011, 49, 2251–2258. [Google Scholar] [CrossRef]
- Li, H.; Chen, J.; Li, Q.; Wu, G.; Chen, J. Mitigation of Reflection Symmetry Assumption and Negative Power Problems for the Model-Based Decomposition. IEEE Trans. Geosci. Remote Sens. 2016, 54, 7261–7271. [Google Scholar] [CrossRef]
- Yamada, H.; Suzuki, Y.; Kawada, M.; Sato, R. Five-Component Scattering Power Decomposition of PolSAR Data Without Polarization Rotation. In Proceedings of the IGARSS 2023—2023 IEEE International Geoscience and Remote Sensing Symposium, Pasadena, CA, USA, 16–21 July 2023; pp. 1614–1617. [Google Scholar]
- Malik, R.; Singh, G.; Dikshit, O.; Yamaguchi, Y. Model-Based Nine-Component Scattering Matrix Power Decomposition. IEEE Geosci. Remote Sens. Lett. 2024, 21, 1–5. [Google Scholar] [CrossRef]
- Singh, G.; Yamaguchi, Y.; Park, S.E. General Four-Component Scattering Power Decomposition with Unitary Transformation of Coherency Matrix. IEEE Trans. Geosci. Remote Sens. 2013, 51, 3014–3022. [Google Scholar] [CrossRef]
- Bhattacharya, A.; Singh, G.; Manickam, S.; Yamaguchi, Y. An Adaptive General Four-Component Scattering Power Decomposition with Unitary Transformation of Coherency Matrix (AG4U). IEEE Geosci. Remote Sens. Lett. 2015, 12, 2110–2114. [Google Scholar] [CrossRef]
- Quan, S.; Xiang, D.; Xiong, B.; Canbin, H.; Gangyao, K. A Hierarchical Extension of General Four-Component Scattering Power Decomposition. Remote Sens. 2017, 9, 856. [Google Scholar] [CrossRef]
- Wang, Y.; Yu, W.; Liu, X.; Wang, C.; Kuijper, A.; Guthe, S. Demonstration and Analysis of an Extended Adaptive General Four-Component Decomposition. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 2573–2586. [Google Scholar] [CrossRef]
- Malik, R.; Singh, G.; Dikshit, O.; Yamaguchi, Y. General Five-Component Scattering Power Decomposition with Unitary Transformation (G5U) of Coherency Matrix. Remote Sens. 2023, 15, 1332. [Google Scholar] [CrossRef]
- Sato, A.; Yamaguchi, Y.; Singh, G.; Park, S. Four-Component Scattering Power Decomposition with Extended Volume Scattering Model. IEEE Geosci. Remote Sens. Lett. 2012, 9, 166–170. [Google Scholar] [CrossRef]
- Antropov, O.; Rauste, Y.; Hame, T. Volume Scattering Modeling in PolSAR Decompositions: Study of Alos PolSAR Data over Boreal Forest. IEEE Trans. Geosci. Remote Sens. 2011, 49, 3838–3848. [Google Scholar] [CrossRef]
- Wang, Y.; Yu, W.; Wang, C.; Liu, X. A Modified Four-Component Decomposition Method with Refined Volume Scattering Models. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 1946–1958. [Google Scholar] [CrossRef]
- Wang, Y.; Yu, W.; Liu, X.; Wang, C. Seven-Component Decomposition Using Refined Volume Scattering Models and New Configurations of Mixed Dipoles. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 4339–4351. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, L.; Mallorqui, J.J.; Zou, B. Modified Oriented Dihedral Model for Scattering Characteristic Description with PolSAR Data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2024, 17, 4829–4844. [Google Scholar] [CrossRef]
- Lee, J.S.; Grunes, M.R.; Pottier, E.; Ferro-Famil, L. Unsupervised Terrain Classification Preserving Polarimetric Scattering Characteristics. IEEE Trans. Geosci. Remote Sens. 2004, 42, 722–731. [Google Scholar]
Methods | ||||||
---|---|---|---|---|---|---|
FDD | 27.5 | 20.4 | 52.1 | - | - | - |
Y4R | 28.1 | 22.7 | 46.1 | 3.1 | - | - |
G4U | 28.5 | 23.6 | 44.8 | 3.1 | - | - |
AG4U | 27.7 | 22.1 | 47.1 | 3.1 | - | - |
G5U | 29.4 | 24.2 | 40.6 | - | 2.8 | 3 |
ExG5U | 31.1 | 26.8 | 36.4 | 3.1 | 2.6 | - |
Methods | FDD | Y4R | G4U | AG4U | G5U | ExG5U |
---|---|---|---|---|---|---|
Percentage of negative scattering powers (%) | 35.21 | 29.38 | 21.47 | 20.88 | 18.43 | 18.09 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Ge, D.; Liu, B.; Yu, W.; Wang, C. An Improved General Five-Component Scattering Power Decomposition Method. Remote Sens. 2025, 17, 2583. https://doi.org/10.3390/rs17152583
Wang Y, Ge D, Liu B, Yu W, Wang C. An Improved General Five-Component Scattering Power Decomposition Method. Remote Sensing. 2025; 17(15):2583. https://doi.org/10.3390/rs17152583
Chicago/Turabian StyleWang, Yu, Daqing Ge, Bin Liu, Weidong Yu, and Chunle Wang. 2025. "An Improved General Five-Component Scattering Power Decomposition Method" Remote Sensing 17, no. 15: 2583. https://doi.org/10.3390/rs17152583
APA StyleWang, Y., Ge, D., Liu, B., Yu, W., & Wang, C. (2025). An Improved General Five-Component Scattering Power Decomposition Method. Remote Sensing, 17(15), 2583. https://doi.org/10.3390/rs17152583