Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (13,141)

Search Parameters:
Keywords = Pb-212

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 1624 KiB  
Article
Preparation of EDTA-2Na-Fe3O4-Activated Carbon Composite and Its Adsorption Performance for Typical Heavy Metals
by Yannan Lv, Shenrui Han, Wenqing Wen, Xinzhu Bai, Qiao Sun, Li Chen, Haonan Zhang, Fansong Mu and Meng Luo
Separations 2025, 12(8), 205; https://doi.org/10.3390/separations12080205 - 6 Aug 2025
Abstract
This study developed a new magnetic adsorbent from waste coconut shells using high-temperature carbonization, EDTA-2Na chelation, and Fe3O4 magnetic loading. Response surface methodology optimized the preparation conditions to a mass ratio of activated carbon: EDTA-2Na:Fe3O4 = 2:0.6:0.2. [...] Read more.
This study developed a new magnetic adsorbent from waste coconut shells using high-temperature carbonization, EDTA-2Na chelation, and Fe3O4 magnetic loading. Response surface methodology optimized the preparation conditions to a mass ratio of activated carbon: EDTA-2Na:Fe3O4 = 2:0.6:0.2. Characterization (SEM, XRD, FT-IR, and EDS) showed that EDTA-2Na increased the surface carboxyl and amino group density, while Fe3O4 loading (Fe concentration 6.83%) provided superior magnetic separation performance. The optimal adsorption conditions of Cu2+ by EDTA-2Na-Fe3O4-activated carbon composite material are as follows: when pH = 5.0 and the initial concentration is 180 mg/L, the equilibrium adsorption capacity reaches 174.96 mg/g, and the removal rate reaches 97.2%. The optimal adsorption conditions for Pb2+ are as follows: when pH = 6.0 and the initial concentration is 160 mg/L, the equilibrium adsorption capacity reaches 157.60 mg/g, and the removal rate reaches 98.5%. The optimal adsorption conditions for Cd2+ are pH = 8.0 and an initial concentration of 20 mg/L. The equilibrium adsorption capacity reaches 18.76 mg/g, and the removal rate reaches 93.8%. The adsorption followed the pseudo-second-order kinetics (R2 > 0.95) and Langmuir/Freundlich isotherm models, indicating chemisorption dominance. Desorption experiments using 0.1 mol/L HCl and EDTA-2Na achieved efficient desorption (>85%), and the material retained over 80% of its adsorption capacity after five cycles. This cost-effective and sustainable adsorbent offers a promising solution for heavy metal wastewater treatment. Full article
20 pages, 2614 KiB  
Article
Porphyrin-Modified Polyethersulfone Ultrafiltration Membranes for Enhanced Bacterial Inactivation and Filtration Performance
by Funeka Matebese, Nonkululeko Malomane, Meladi L. Motloutsi, Richard M. Moutloali and Muthumuni Managa
Membranes 2025, 15(8), 239; https://doi.org/10.3390/membranes15080239 - 6 Aug 2025
Abstract
Municipal wastewaters pose a severe risk to the environment and human health when discharged untreated. This is due to their high content of pathogens, such as viruses and bacteria, which can cause diseases like cholera. Herein, the research and development of porphyrin-modified polyethersulfone [...] Read more.
Municipal wastewaters pose a severe risk to the environment and human health when discharged untreated. This is due to their high content of pathogens, such as viruses and bacteria, which can cause diseases like cholera. Herein, the research and development of porphyrin-modified polyethersulfone (PES) ultrafiltration (UF) membranes was conducted to improve bacterial inactivation in complex municipal wastewater and enhance the fouling resistance and filtration performance. The synthesis and fabrication of porphyrin nanofillers and the resultant membrane characteristics were studied. The incorporation of porphyrin-based nanofillers improved the membrane’s hydrophilicity, morphology, and flux (247 Lm−2 h−1), with the membrane contact angle (CA) decreasing from 90° to ranging between 58° and 50°. The membrane performance was monitored for its flux, antifouling properties, reusability potential, municipal wastewater, and humic acid. The modified membranes demonstrated an effective application in wastewater treatment, achieving notable antibacterial activity, particularly under light exposure. The In-BP@SW/PES membrane demonstrated effective antimicrobial photodynamic effects against both Gram-positive S. aureus and Gram-negative E. coli. It achieved at least a 3-log reduction in bacterial viability, meeting Food and Drug Administration (FDA) standards for efficient antimicrobial materials. Among the variants tested, membranes modified with In-PB@SW nanofillers exhibited superior antifouling properties with flux recovery ratios (FRRs) of 78.9% for the humic acid (HA) solution and 85% for the municipal wastewater (MWW), suggesting a strong potential for long-term filtration use. These results highlight the promise of porphyrin-functionalized membranes as multifunctional tools in advanced water treatment technologies. Full article
Show Figures

Figure 1

18 pages, 4635 KiB  
Article
Nylon Affinity Networks Capture and Sequester Two Model Bacteria Spiked in Human Plasma
by Fatema Hashemi, Silvia Cachaco, Rocio Prisby, Weidong Zhou, Gregory Petruncio, Elsa Ronzier, Remi Veneziano, Barbara Birkaya, Alessandra Luchini and Luisa Gregori
Pathogens 2025, 14(8), 778; https://doi.org/10.3390/pathogens14080778 - 6 Aug 2025
Abstract
Ensuring bacterial safety of blood transfusions remains a critical focus in medicine. We investigated a novel pathogen reduction technology utilizing nylon functionalized with synthetic dyes (nylon affinity networks) to capture and remove bacteria from plasma. In the initial screening process, we spiked phosphate [...] Read more.
Ensuring bacterial safety of blood transfusions remains a critical focus in medicine. We investigated a novel pathogen reduction technology utilizing nylon functionalized with synthetic dyes (nylon affinity networks) to capture and remove bacteria from plasma. In the initial screening process, we spiked phosphate buffer solution (PBS) and human plasma (1 mL each) with 10 or 100 colony forming units (cfu) of either Escherichia coli or Staphylococcus epidermidis, exposed the suspensions to affinity networks and assessed the extent of bacterial reduction using agar plate cultures as the assay output. Nineteen synthetic dyes were tested. Among these, Alcian Blue exhibited the best performance with both bacterial strains in both PBS and plasma. Next, bacterial suspensions of approximately 1 and 2 cfu/mL in 10 and 50 mL, respectively, were treated with Alcian Blue affinity networks in three sequential capture steps. This procedure resulted in complete bacterial depletion, as demonstrated by the lack of bacterial growth in the remaining fraction. The viability of the captured bacteria was confirmed by plating the post-treatment affinity networks on agar. Alcian Blue affinity networks captured and sequestered a few plasma proteins identified by liquid chromatography tandem mass spectrometry. These findings support the potential applicability of nylon affinity networks to enhance transfusion safety, although additional investigations are needed. Full article
(This article belongs to the Section Bacterial Pathogens)
Show Figures

Figure 1

20 pages, 11251 KiB  
Article
Bioactive Extracts of Spirulina platensis Inhibit Colletotrichum orchidearum and Fusarium nirenbergiae: A Green Approach to Hydroponic Lettuce Protection
by Leticia Eduarda Bender, Emily da Luz Monteiro, José Luís Trevizan Chiomento and Luciane Maria Colla
Processes 2025, 13(8), 2483; https://doi.org/10.3390/pr13082483 - 6 Aug 2025
Abstract
The growing demand for food and the environmental impact of conventional agriculture have prompted the search for sustainable alternatives. Phycocyanin (PC) and total phenolic compounds (TPC) extracted from Spirulina platensis have shown potential for the biological control of phytopathogens. The extraction method directly [...] Read more.
The growing demand for food and the environmental impact of conventional agriculture have prompted the search for sustainable alternatives. Phycocyanin (PC) and total phenolic compounds (TPC) extracted from Spirulina platensis have shown potential for the biological control of phytopathogens. The extraction method directly influences the yield and stability of these compounds. This study aimed to establish an efficient extraction protocol for PC and TPC and to evaluate their antimicrobial efficacy in vitro against Colletotrichum orchidearum, Fusarium nirenbergiae, and Alternaria sp. isolated from hydroponically grown lettuce. The phytopathogens were identified based on phylogenetic analyses using sequences from the ITS, EF1-α, GAPDH, and RPB2 gene regions. This is the first report of C. orchidearum in hydroponic lettuce culture in Brazil, expanding its known host range. Extracts were obtained using hydroalcoholic solvents and phosphate buffer (PB), combined with ultrasound-assisted extraction (bath and probe). The extracts were tested for in vitro antifungal activity. Data were analyzed by ANOVA (p < 0.05), followed by Tukey’s test. The combination of the PB and ultrasound probe resulted in the highest PC (95.6 mg·g−1 biomass) and TPC (21.9 mg GAE·g−1) yields, using 10% (w/v) biomass. After UV sterilization, the extract retained its PC and TPC content. The extract inhibited C. orchidearum by up to 53.52% after three days and F. nirenbergiae by 54.17% on the first day. However, it promoted the growth of Alternaria sp. These findings indicate that S. platensis extracts are a promising alternative for the biological control of C. orchidearum and F. nirenbergiae in hydroponic systems. Full article
Show Figures

Figure 1

28 pages, 4848 KiB  
Article
Mineralogical and Geochemical Features of Soil Developed on Rhyolites in the Dry Tropical Area of Cameroon
by Aubin Nzeugang Nzeukou, Désiré Tsozué, Estelle Lionelle Tamto Mamdem, Merlin Gountié Dedzo and Nathalie Fagel
Standards 2025, 5(3), 20; https://doi.org/10.3390/standards5030020 - 6 Aug 2025
Abstract
Petrological knowledge on weathering processes controlling the mobility of chemical elements is still limited in the dry tropical zone of Cameroon. This study aims to investigate the mobility of major and trace elements during rhyolite weathering and soil formation in Mobono by understanding [...] Read more.
Petrological knowledge on weathering processes controlling the mobility of chemical elements is still limited in the dry tropical zone of Cameroon. This study aims to investigate the mobility of major and trace elements during rhyolite weathering and soil formation in Mobono by understanding the mineralogical and elemental vertical variation. The studied soil was classified as Cambisols containing mainly quartz, K-feldspar, plagioclase, smectite, kaolinite, illite, calcite, lepidocrocite, goethite, sepiolite, and interstratified clay minerals. pH values ranging between 6.11 and 8.77 indicated that hydrolysis, superimposed on oxidation and carbonation, is the main process responsible for the formation of secondary minerals, leading to the formation of iron oxides and calcite. The bedrock was mainly constituted of SiO2, Al2O3, Na2O, Fe2O3, Ba, Zr, Sr, Y, Ga, and Rb. Ce and Eu anomalies, and chondrite-normalized La/Yb ratios were 0.98, 0.67, and 2.86, respectively. SiO2, Al2O3, Fe2O3, Na2O, and K2O were major elements in soil horizons. Trace elements revealed high levels of Ba (385 to 1320 mg kg−1), Zr (158 to 429 mg kg−1), Zn (61 to 151 mg kg−1), Sr (62 to 243 mg kg−1), Y (55 to 81 mg kg−1), Rb (1102 to 58 mg kg−1), and Ga (17.70 to 35 mg kg−1). LREEs were more abundant than HREEs, with LREE/HREE ratio ranging between 2.60 and 6.24. Ce and Eu anomalies ranged from 1.08 to 1.21 and 0.58 to 1.24 respectively. The rhyolite-normalized La/Yb ratios varied between 0.56 and 0.96. Mass balance revealed the depletion of Si, Ca, Na, Mn, Sr, Ta, W, U, La, Ce, Pr, Nd, Sm, Gd and Lu, and the accumulation of Al, Fe, K, Mg, P, Sc, V, Co, Ni, Cu, Zn, Ga, Ge, Rb, Y, Zr, Nb, Cs, Ba, Hf, Pb, Th, Eu, Tb, Dy, Ho, Er, Tm and Yb during weathering along the soil profile. Full article
Show Figures

Figure 1

10 pages, 1346 KiB  
Article
Scintillation Properties of CsPbBr3 Quantum Dot Film-Enhanced Ga:ZnO Wafer and Its Applications
by Shiyi He, Silong Zhang, Liang Chen, Yang Li, Fangbao Wang, Nan Zhang, Naizhe Zhao and Xiaoping Ouyang
Materials 2025, 18(15), 3691; https://doi.org/10.3390/ma18153691 - 6 Aug 2025
Abstract
In high energy density physics, the demand for precise detection of nanosecond-level fast physical processes is high. Ga:ZnO (GZO), GaN, and other fast scintillators are widely used in pulsed signal detection. However, many of them, especially wide-bandgap materials, still face issues of low [...] Read more.
In high energy density physics, the demand for precise detection of nanosecond-level fast physical processes is high. Ga:ZnO (GZO), GaN, and other fast scintillators are widely used in pulsed signal detection. However, many of them, especially wide-bandgap materials, still face issues of low luminous intensity and significant self-absorption. Therefore, an enhanced method was proposed to tune the wavelength of materials via coating perovskite quantum dot (QD) films. Three-layer samples based on GZO were primarily investigated and characterized. Radioluminescence (RL) spectra from each face of the samples, as well as their decay times, were obtained. Lower temperatures further enhanced the luminous intensity of the samples. Its overall luminous intensity increased by 2.7 times at 60 K compared to room temperature. The changes in the RL processes caused by perovskite QD and low temperatures were discussed using the light tuning and transporting model. In addition, an experiment under a pico-second electron beam was conducted to verify their pulse response and decay time. Accordingly, the samples were successfully applied in beam state monitoring of nanosecond pulsed proton beams, which indicates that GZO wafer coating with perovskite QD films has broad application prospects in pulsed radiation detection. Full article
(This article belongs to the Section Quantum Materials)
Show Figures

Figure 1

20 pages, 1722 KiB  
Article
Andean Pistacia vera L. Crops: Phytochemical Update and Influence of Soil-Growing Elemental Composition on Nutritional Properties of Nuts
by Daniela Zalazar-García, Mario J. Simirgiotis, Jessica Gómez, Alejandro Tapia and María Paula Fabani
Horticulturae 2025, 11(8), 925; https://doi.org/10.3390/horticulturae11080925 (registering DOI) - 5 Aug 2025
Abstract
Pistachio nuts are among the 50 best foods with the highest antioxidant potential. They have a balanced content of mono- (~70%) and polyunsaturated (~20%) fatty acids, minerals, and bioactive compounds such as tocopherols, phytosterols, and phenolic compounds, which have shown rapid accessibility in [...] Read more.
Pistachio nuts are among the 50 best foods with the highest antioxidant potential. They have a balanced content of mono- (~70%) and polyunsaturated (~20%) fatty acids, minerals, and bioactive compounds such as tocopherols, phytosterols, and phenolic compounds, which have shown rapid accessibility in the stomach. Pistachio consumption provides several health benefits, primarily due to its antioxidant properties and high content of essential nutrients. In this study, we analyzed the mineral composition, total phenolic content (TP), antioxidant activity (AA), and UHPLC/MS-MS polyphenolic profile of three Argentinian pistachio crops. Additionally, the physicochemical parameters and the elemental profiles of the growing soils were determined, as they influence mineral uptake and the synthesis of bioactive compounds in pistachio kernels. The TP was not significantly modified by the growing soils, with Crop3 presenting the highest TP content (276 ± 14 mg GA/100 g DW). Crop3 exhibited 18% higher TP content compared to Crop2. Similarly, FRAP values ranged from 28.0 to 36.5 mmol TE/100 g DW, with Crop1 showing a 30% increase compared to Crop2. DPPH values varied from 19.0 to 24.3 mmol TE/100 g DW, with Crop1 displaying 28% higher activity than Crop2. However, the polyphenolic profile was similar for all crops analyzed. Thirty compounds were identified; only Crop 1 contained the flavanone eriodyctiol and the isoflavone genistein, while the flavanone naringenin and the flavone luteolin were identified in Crop1 and Crop3. Regarding mineral content, the pistachio kernels mainly contained K, Ca, and Mg. Multivariate analyses revealed distinct elemental and antioxidant profiles among crops. LDA achieved classification accuracies of 77.7% for soils and 74.4% for kernels, with Pb, Zn, Cu, Rb, Sr, and Mn as key discriminants. CCA confirmed strong soil–kernel mineral correlations (r = 1), while GPA showed higher congruence between antioxidant traits and kernel composition than with soil geochemistry. These findings underscore the importance of soil composition in determining the nutritional quality of pistachio kernels, thereby supporting the beneficial health effects associated with pistachio consumption. Full article
Show Figures

Figure 1

23 pages, 1714 KiB  
Article
Physicochemical and Biological Properties of Quercetin-Loaded Low-Molecular-Weight Chitosan Nanoparticles Derived from Hermetia illucens Larvae and Crustacean Sources: A Comparative Study
by Anna Guarnieri, Rosanna Mallamaci, Giuseppe Trapani, Dolores Ianniciello, Carmen Scieuzo, Francesco Iannielli, Luigi Capasso, Maria Chiara Sportelli, Alessandra Barbanente, Michela Marsico, Angela De Bonis, Stefano Castellani, Patrizia Falabella and Adriana Trapani
Pharmaceutics 2025, 17(8), 1016; https://doi.org/10.3390/pharmaceutics17081016 - 5 Aug 2025
Abstract
Introduction. Larvae of the insect Hermetia illucens can represent an alternative source for low-molecular-weight chitosan (CS) production compared with CS from crustaceans (CScrustac), making it appealing in terms of pharmaceutical applications. Hence, the performances of CSlarvae and CScrustac [...] Read more.
Introduction. Larvae of the insect Hermetia illucens can represent an alternative source for low-molecular-weight chitosan (CS) production compared with CS from crustaceans (CScrustac), making it appealing in terms of pharmaceutical applications. Hence, the performances of CSlarvae and CScrustac were compared herein by investigating the in vitro features of nanoparticles (NPs) made from each polysaccharide and administered with the antioxidant quercetin (QUE). Methods. X-ray diffraction and FT-IR spectroscopy enabled the identification of each type of CS. Following the ionic gelation technique and using sulfobutylether-β-cyclodextrin as a cross-linking agent, NPs were easily obtained. Results. Physicochemical data, release studies in PBS, and the evaluation of antioxidant effects via the 1,1-diphenyl-2-picrylhydrazyl (DPPH) test were studied for both CSlarvae and CScrustac. QUE-loaded NP sizes ranged from 180 to 547 nm, and zeta potential values were between +7.5 and +39.3 mV. In vitro QUE release in PBS was faster from QUE-CSlarvae NPs than from CScrustac, and high antioxidant activity—according to the DPPH test—was observed for all tested NP formulations. Discussion. The agar diffusion assay, referring to Escherichia coli and Micrococcus flavus, as well as the microdilution assay, showed the best performance as antimicrobial formulations in the case of QUE-CSlarvae NPs. QUE-CSlarvae NPs can represent a promising vehicle for QUE, releasing it in a sustained manner, and, relevantly, the synergism noticed between QUE and CSlarvae resulted in a final antimicrobial product. Conclusions. New perspectives for low-molecular-weight CS are disclosed by adopting renewable sources from insects instead of the commercial CScrustac. Full article
(This article belongs to the Section Biopharmaceutics)
Show Figures

Figure 1

25 pages, 816 KiB  
Article
Bioactive Compounds and Antioxidant Activity of Boletus edulis, Imleria badia, Leccinum scabrum in the Context of Environmental Conditions and Heavy Metals Bioaccumulation
by Zofia Sotek, Katarzyna Malinowska, Małgorzata Stasińska and Ireneusz Ochmian
Molecules 2025, 30(15), 3277; https://doi.org/10.3390/molecules30153277 - 5 Aug 2025
Abstract
Wild edible mushrooms are increasingly recognised for their nutritional and therapeutic potential, owing to their richness in bioactive compounds and antioxidant properties. This study assessed the chemical composition, antioxidant capacity, and bioaccumulation of heavy metals (Cd, Pb, Ni) in Boletus edulis, Imleria [...] Read more.
Wild edible mushrooms are increasingly recognised for their nutritional and therapeutic potential, owing to their richness in bioactive compounds and antioxidant properties. This study assessed the chemical composition, antioxidant capacity, and bioaccumulation of heavy metals (Cd, Pb, Ni) in Boletus edulis, Imleria badia, and Leccinum scabrum collected from two forested regions of north-western Poland differing in anthropogenic influence and soil characteristics. The analysis encompassed structural polysaccharides (β- and α-glucans, chitin), carotenoids, L-ascorbic acid, phenolic and organic acids. B. edulis exhibited the highest β-glucan and lycopene contents, but also the greatest cadmium accumulation. I. badia was distinguished by elevated ascorbic and citric acid levels and the strongest DPPH radical scavenging activity, while L. scabrum showed the highest ABTS and FRAP antioxidant capacities and accumulated quinic acid and catechin. Principal component analysis indicated strong correlations between antioxidant activity and phenolic acids, while cadmium levels were inversely associated with antioxidant potential and positively correlated with chitin. Although all metal concentrations remained within EU food safety limits, B. edulis showed consistent cadmium bioaccumulation. From a practical perspective, the results highlight the importance of species selection and sourcing location when considering wild mushrooms for consumption or processing, particularly in the context of nutritional value and contaminant load. Importantly, regular or excessive consumption of B. edulis may result in exceeding the tolerable weekly intake (TWI) levels for cadmium and nickel, which warrants particular attention from a food safety perspective. These findings underscore the influence of species-specific traits and environmental conditions on mushroom biochemical profiles and support their potential as functional foods, provided that metal contents are adequately monitored. Full article
Show Figures

Figure 1

19 pages, 1976 KiB  
Article
Eudragit® S 100 Coating of Lipid Nanoparticles for Oral Delivery of RNA
by Md. Anamul Haque, Archana Shrestha and George Mattheolabakis
Processes 2025, 13(8), 2477; https://doi.org/10.3390/pr13082477 - 5 Aug 2025
Abstract
Lipid nanoparticle (LNP)-based delivery systems are promising tools for advancing RNA-based therapies. However, there are underlying challenges for the oral delivery of LNPs. In this study, we optimized an LNP formulation, which we encapsulated in a pH-sensitive Eudragit® S 100 (Eu) coating. [...] Read more.
Lipid nanoparticle (LNP)-based delivery systems are promising tools for advancing RNA-based therapies. However, there are underlying challenges for the oral delivery of LNPs. In this study, we optimized an LNP formulation, which we encapsulated in a pH-sensitive Eudragit® S 100 (Eu) coating. LNPs were prepared using the DLin-MC3-DMA ionizable lipid, cholesterol, DMG-PEG, and DSPC at a molar ratio of 50:38.5:10:1.5. LNPs were coated with 1% Eu solution via nanoprecipitation using 0.25% acetic acid to get Eu-coated LNPs (Eu-LNPs). Particle characteristics of LNPs were determined by using dynamic light scattering (DLS). Ribogreen and agarose gel retardation assays were used to evaluate nucleic acid entrapment and stability. LNPs and Eu-LNPs were ~120 nm and 4.5 μm in size, respectively. Eu-LNPs decrease to an average size of ~191 ± 22.9 nm at a pH of 8. Phosphate buffer (PB)-treated and untreated Eu-LNPs and uncoated LNPs were transfected in HEK-293 cells. PB-treated Eu-LNPs showed significant transfection capability compared to their non-PB-treated counterparts. Eu-LNPs protected their nucleic acid payloads in the presence of a simulated gastric fluid (SGF) with pepsin and maintained transfection capacity following SGF or simulated intestinal fluid. Hence, Eu coating is a potentially promising approach for the oral administration of LNPs. Full article
Show Figures

Figure 1

22 pages, 7171 KiB  
Article
Distribution Characteristics, Mobility, and Influencing Factors of Heavy Metals at the Sediment–Water Interface in South Dongting Lake
by Xiaohong Fang, Xiangyu Han, Chuanyong Tang, Bo Peng, Qing Peng, Linjie Hu, Yuru Zhong and Shana Shi
Water 2025, 17(15), 2331; https://doi.org/10.3390/w17152331 - 5 Aug 2025
Abstract
South Dongting Lake is an essential aquatic ecosystem that receives substantial water inflows from the Xiangjiang and Zishui Rivers. However, it is significantly impacted by human activities, including mining, smelting, and farming. These activities have led to serious contamination of the lake’s sediments [...] Read more.
South Dongting Lake is an essential aquatic ecosystem that receives substantial water inflows from the Xiangjiang and Zishui Rivers. However, it is significantly impacted by human activities, including mining, smelting, and farming. These activities have led to serious contamination of the lake’s sediments with heavy metals (HMs). This study investigated the distribution, mobility, and influencing factors of HMs at the sediment–water interface. To this end, sediment samples were analyzed from three key regions (Xiangjiang River estuary, Zishui River estuary, and northeastern South Dongting Lake) using traditional sampling methods and Diffusive Gradients in Thin Films (DGT) technology. Analysis of fifteen HMs (Pb, Bi, Ni, As, Se, Cd, Sb, Mn, Zn, V, Cr, Cu, Tl, Co, and Fe) revealed significant spatial heterogeneity. The results showed that Cr, Cu, Pb, Bi, Ni, As, Se, Cd, Sb, Mn, Zn, and Fe exhibited high variability (CV > 0.20), whereas V, Tl, and Co demonstrated stable concentrations (CV < 0.20). Concentrations were found to exceed background values of the upper continental crust of eastern China (UCC), Yangtze River sediments (YZ), and Dongting Lake sediments (DT), particularly at the Xiangjiang estuary (XE) and in the northeastern regions. Speciation analysis revealed that V, Cr, Cu, Ni, and As were predominantly found in the residual fraction (F4), while Pb and Co were concentrated in the oxidizable fraction (F3), Mn and Zn appeared primarily in the exchangeable fractions (F1 and F2), and Cd was notably dominant in the exchangeable fraction (F1), suggesting a high potential for mobility. Additionally, DGT results confirmed a significant potential for the release of Pb, Zn, and Cd. Contamination assessment using the Pollution Load Index (PLI) and Geoaccumulation Index (Igeo) identified Pb, Bi, Ni, As, Se, Cd, and Sb as major pollutants. Among these, Bi and Cd were found to pose the highest risks. Furthermore, the Risk Assessment Code (RAC) and the Potential Ecological Risk Index (PERI) highlighted Cd as the primary ecological risk contributor, especially in the XE. The study identified sediment grain size, pH, electrical conductivity, and nutrient levels as the primary influencing factors. The PMF modeling revealed HM sources as mixed smelting/natural inputs, agricultural activities, natural weathering, and mining/smelting operations, suggesting that remediation should prioritize Cd control in the XE with emphasis on external inputs. Full article
(This article belongs to the Section Water Quality and Contamination)
Show Figures

Figure 1

21 pages, 1245 KiB  
Article
Geochemical Behaviour of Trace Elements in Diesel Oil-Contaminated Soil During Remediation Assisted by Mineral and Organic Sorbents
by Mirosław Wyszkowski and Natalia Kordala
Appl. Sci. 2025, 15(15), 8650; https://doi.org/10.3390/app15158650 (registering DOI) - 5 Aug 2025
Abstract
The topic of environmental pollution by petroleum products is highly relevant due to rapid urbanisation, including industrial development, road infrastructure and fuel distribution. Potential threat areas include refineries, fuel stations, pipelines, warehouses and transshipment bases, as well as sites affected by accidents or [...] Read more.
The topic of environmental pollution by petroleum products is highly relevant due to rapid urbanisation, including industrial development, road infrastructure and fuel distribution. Potential threat areas include refineries, fuel stations, pipelines, warehouses and transshipment bases, as well as sites affected by accidents or fuel spills. This study aimed to determine whether organic and mineral materials could mitigate the effects of diesel oil pollution on the soil’s trace element content. The used materials were compost, bentonite and calcium oxide. Diesel oil pollution had the most pronounced effect on the levels of Cd, Ni, Fe and Co. The levels of the first three elements increased, while the level of Co decreased by 53%. Lower doses of diesel oil (2.5 and 5 cm3 per kg of soil) induced an increase in the levels of the other trace elements, while higher doses caused a reduction, especially in Cr. All materials applied to the soil (compost, bentonite and calcium oxide) reduced the content of Ni, Cr and Fe. Compost and calcium oxide also increased Co accumulation in the soil. Bentonite had the strongest reducing effect on the Ni and Cr contents of the soil, reducing them by 42% and 53%, respectively. Meanwhile, calcium oxide had the strongest reducing effect on Fe and Co accumulation, reducing it by 12% and 31%, respectively. Inverse relationships were recorded for Cd (mainly bentonite), Pb (especially compost), Cu (mainly compost), Mn (mainly bentonite) and Zn (only compost) content in the soil. At the most contaminated site, the application of bentonite reduced the accumulation of Pb, Zn and Mn in the soil, while the application of compost reduced the accumulation of Cd. Applying various materials, particularly bentonite and compost, limits the content of certain trace elements in the soil. This has a positive impact on reducing the effect of minor diesel oil pollution on soil properties and can promote the proper growth of plant biomass. Full article
Show Figures

Figure 1

16 pages, 4455 KiB  
Article
Effect of Alpha2-Plasmin Inhibitor C-Terminal Heterogeneity on Clot Lysis and Clot Structure
by Réka Bogáti, Barbara Baráth, Dóra Pituk, Rita Orbán-Kálmándi, Péter Szűcs, Zoltán Hegyi, Zsuzsanna Bereczky, Zsuzsa Bagoly and Éva Katona
Biomolecules 2025, 15(8), 1127; https://doi.org/10.3390/biom15081127 - 5 Aug 2025
Abstract
Alpha2-plasmin inhibitor (α2PI) has a heterogeneous structure due to proteolytic cleavages in the circulation. The C-terminally cleaved form loses the plasminogen binding site and is, therefore, a slow plasmin inhibitor (NPB-α2PI). As FXIII primarily crosslinks the plasminogen-binding intact form (PB-α2PI) to fibrin, the [...] Read more.
Alpha2-plasmin inhibitor (α2PI) has a heterogeneous structure due to proteolytic cleavages in the circulation. The C-terminally cleaved form loses the plasminogen binding site and is, therefore, a slow plasmin inhibitor (NPB-α2PI). As FXIII primarily crosslinks the plasminogen-binding intact form (PB-α2PI) to fibrin, the effect of NPB-α2PI on fibrinolysis has been less studied. Herein, we investigated the effect of C-terminal truncation. Total-, PB-, and NPB-α2PI antigen levels and α2PI incorporation were measured by ELISAs from samples of 80 healthy individuals. Clot lysis parameters of the same subjects were investigated using an in vitro clot lysis assay. α2PI incorporation into the clot was demonstrated by Western blotting. Clot lysis and clot structure were also analyzed using an α2PI-deficient plasma substituted with recombinant PB- and NPB-α2PI. Both plasma and clot-bound levels of total- and NPB-α2PI showed a significant positive correlation with clot lysis parameters. NPB-α2PI was detected in the clot due to non-covalent binding. Regardless of the type of binding, both forms affected the clot structure by increasing the thickness of the fibrin fibers and reducing the pore size. In conclusion, we found that NPB-α2PI can bind non-covalently to fibrin, and this binding contributes to changes in clot structure and inhibition of fibrinolysis. Full article
(This article belongs to the Section Biomacromolecules: Proteins, Nucleic Acids and Carbohydrates)
Show Figures

Figure 1

23 pages, 7821 KiB  
Article
The Multiple Stages of Regional Triassic Crustal Reworking in Eastern Tianshan, NW China: Evidence from the Xigebi Area
by Ming Wei, Haiquan Li, Wenxiao Zhou, Mahemuti Muredili, Ernest Chi Fru and Thomas Sheldrick
Minerals 2025, 15(8), 829; https://doi.org/10.3390/min15080829 - 4 Aug 2025
Abstract
The eastern Tianshan region in the Central Asian Orogenic Belt (CAOB) is characterized by multiple complex tectonic activity of uncertain historical contribution to the construction of the CAOB. This study utilizes a multi-proxy geochemical approach to characterize I-type monzogranite pluton rocks and their [...] Read more.
The eastern Tianshan region in the Central Asian Orogenic Belt (CAOB) is characterized by multiple complex tectonic activity of uncertain historical contribution to the construction of the CAOB. This study utilizes a multi-proxy geochemical approach to characterize I-type monzogranite pluton rocks and their associated hornblende-rich dioritic enclaves to decipher the tectonic and magmatic evolution of the Xigebi area, eastern Tianshan. Zircon geochronology indicates a Triassic and Permian crystallization age of ca. 224.2 ± 1.7 Ma and ca. 268.3 ± 3.0 Ma for the host monzogranites and the dioritic enclaves, respectively. Major, trace and rare earth element distribution, together with Hf isotope systematics displaying noticeable positive εHf(t) anomalies for both rock types, point to partial melting of meta-mafic rocks in an intraplate extensional setting. The diorite was formed by the melting of lower crustal meta-igneous rocks mixed with mantle melts, and the monzogranite, predominantly from deep crustal meta-basalts contaminated by shallow metasedimentary rocks, with some degree of mixing with deeply sourced mantle magma. While both the host monzogranites and their dioritic enclaves are the products of upwelling magma, the younger Triassic monzogranites captured and preserved fragments of the dioritic Permian lower continental crust during crystallization. These multiple stages of magmatic underplating and crustal reworking associated with vertical stratification of the juvenile paleo-continental crust suggest the monzogranites and diorites indicate a change from a post-collisional setting to a regional intraplate regime on the southern margin of the CAOB. Full article
(This article belongs to the Section Mineral Geochemistry and Geochronology)
Show Figures

Figure 1

19 pages, 3321 KiB  
Article
Assessing the Biodegradation Characteristics of Poly(Butylene Succinate) and Poly(Lactic Acid) Formulations Under Controlled Composting Conditions
by Pavlo Lyshtva, Viktoria Voronova, Argo Kuusik and Yaroslav Kobets
AppliedChem 2025, 5(3), 17; https://doi.org/10.3390/appliedchem5030017 - 4 Aug 2025
Viewed by 87
Abstract
Biopolymers and bio-based plastics, such as polylactic acid (PLA) and polybutylene succinate (PBS), are recognized as environmentally friendly materials and are widely used, especially in the packaging industry. The purpose of this study was to assess the degradation of PLA- and PBS-based formulations [...] Read more.
Biopolymers and bio-based plastics, such as polylactic acid (PLA) and polybutylene succinate (PBS), are recognized as environmentally friendly materials and are widely used, especially in the packaging industry. The purpose of this study was to assess the degradation of PLA- and PBS-based formulations in the forms of granules and films under controlled composting conditions at a laboratory scale. Biodegradation tests of bio-based materials were conducted under controlled aerobic conditions, following the standard EVS-EN ISO 14855-1:2012. Scanning electron microscopy (SEM) was performed using a high-resolution Zeiss Ultra 55 scanning electron microscope to analyze the samples. After the six-month laboratory-scale composting experiment, it was observed that the PLA-based materials degraded by 47.46–98.34%, while the PBS-based materials exhibited a final degradation degree of 34.15–80.36%. Additionally, the PLA-based compounds displayed a variable total organic carbon (TOC) content ranging from 38% to 56%. In contrast, the PBS-based compounds exhibited a more consistent TOC content, with a narrow range from 53% to 54%. These findings demonstrate that bioplastics can contribute to reducing plastic waste through controlled composting, but their degradation efficiency depends on the material composition and environmental conditions. Future efforts should optimize bioplastic formulations and composting systems while developing supportive policies for wider adoption. Full article
Show Figures

Figure 1

Back to TopTop