Mineralogical and Geochemical Features of Soil Developed on Rhyolites in the Dry Tropical Area of Cameroon
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Soil Description and Sampling
- -
- The C5 horizon (MB1) (0.70 m) has a whitish colour (7.5YR 8/1), a massive structure, and a silty texture. It is compact and has few small spots which show effervescence with hydrochloric acid, characteristic of the presence of calcite. It is cracked into undifferentiated blocks, clogged with dark red materials, mostly iron oxides, and/or secondary, manganese precipitations. Broken blocks show yellow to reddish-yellow surfaces with hard and rounded dark red ferruginous domains (about 3%). The transition is gradual and irregular.
- -
- The C4 horizon (MB2) (10YR 7/8) is compact, characterized by massive structure and silty texture. About 0.50 m thick, it shows no internal differentiation. As in the lower horizon, there are cracks clogged by iron oxides and manganese precipitations. The transition is distinct and irregular.
- -
- The C3 horizon (MB3) (7.5YR 8/1) is compact and very dense, characterized by a massive structure and a silty texture. Its thickness is about 1.80 m. The transition is diffuse and irregular.
- -
- The C2 horizon (MB4) (10R4/4) is similar to the underlying horizon except that it is less dense and less compact, characterized by the presence of dark red ferruginous indurations and blackish spots. Its thickness is about 3 m. The transition is diffuse and irregular.
- -
- The C1 horizon (MB5) (10YR 7/8) in its upper part of ~1.2 thick. It is less compact. Ferruginous indurations and iron oxides and manganese precipitations are more important upwards. The transition is gradual and irregular.
2.3. Analytical Technics
2.3.1. Mineralogical Analysis
2.3.2. Geochemical Analysis, Mass Balance and Chemical Indices
3. Results
3.1. Petrology and Geochemical Composition of the Rhyolite
3.2. Mineralogical Characteristics of Soils
3.3. Geochemical Characteristics and Relative Soil Elements Mobility
3.3.1. Characteristics and Mobility of Major Elements
3.3.2. Characteristics and Mobility of Trace Elements
3.3.3. Characteristics and Mobility of Rare Earth Elements
3.4. Chemical Indices
3.5. Soil Pedogenic Indices Based on Trace Elements and REE
4. Discussion
4.1. Mineralogical Characteristics of Weathering Products
4.2. Weathering Indices and Pedogenic Processes
4.3. Behaviour of Chemical Elements and Weathering Trends
4.3.1. Major Elements
4.3.2. Trace Elements
4.3.3. Rare Earth Elements
5. Conclusions
- -
- In situ weathering of the rhyolite parent rock in the dry tropical zone of Cameroon led to the differentiation of seven horizons which are C5, C4, C3, C2, C1, Bw and Ah from bottom to top.
- -
- This differentiation leads to chemical weathering of primary minerals into smectite, kaolinite, illite, calcite, lepidocrocite, goethite, sepiolite and interstratified clay minerals. The presence of both 2:1 (smectite, illite, sepiolite, and interstratified clay minerals) and 1:1 clay minerals (kaolinite) underlines the contribution of both bisiallitization and monosiallitization, together with oxidation and carbonation processes.
- -
- This result in a high mobilization of major elements with strong leaching of Si (−27%), Ca (−87%), Na (−46%) and Mn (−37%), and the accumulation of Al (34%), Fe (148%), K (86%), Mg (15%) and P (194%) along the soil profile.
- -
- Concerning trace elements, Sr is the most depleted element (−44%), followed by W (−28%%), Ta (−15%) and U (−6%). All the other elements (i.e., Sc, V, Co, Ni, Cu, Zn, Ga, Ge, Rb, Y, Zr, Nb, Cs, Ba, Hf, Pb and Th) accumulated in the soil profile result from exclusion/inclusion, sorption and complexation processes which occur alternatively along the soil profile depending on the soil pH.
- -
- The REE contents and their mobility in soils are linked to weathering intensity of parent materials, the storage capacity of authigenic soil phases and fluctuations of redox conditions. Average concentrations of the LREE and HREE in the studied soil are 124 and 35 mg kg−1 respectively. LREE are most depleted (except Eu) while HREE are most imported (except Gd and Lu), along the soil profile. Ce/Ce and Eu/Eu ratios values vary from 1.08 to 1.21 and 0.58 to 1.24 respectively.
- -
- The understanding of the vertical variation of the mineralogical composition and elemental distribution might play an important role in shaping soil organic matter composition during soil weathering across large timescales through its stabilization and protection. Further studies are recommended to assess this link in order to gain a better understanding of how mineral matrix and geochemical composition affect soil organic matter composition across study area. This will lead to the development of strategies for soil management and conservation in the Sudano-Sahelian zone.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Regassa, A.; Van Daele, K.; De Paepe, P.; Dumon, M.; Deckers, J.; Asrat, A.; Van Ranst, E. Characterizing weathering intensity and trends of geological materials in the Gilgel Gibe catchment, southwestern Ethiopia. J. Afr. Earth Sci. 2014, 99, 568–582. [Google Scholar] [CrossRef]
- Palumbo, B.; Angelone, M.; Bellanca, A.; Dazzo, C.; Hauser, S.; Neri, R.; Wilson, J. Influence of inheritance and pedogenesis on heavy metal distribution in soils of Sicily, Italy. Geoderma 2000, 95, 247–266. [Google Scholar] [CrossRef]
- Driese, S.G.; Jacobs, J.R.; Nordt, L.C. Comparison of modern and ancient Vertisols developed on limestone in terms of their geochemistry and parent material. Sediment. Geol. 2003, 157, 49–69. [Google Scholar] [CrossRef]
- Schaetzl, R.J.; Anderson, S. Soil Genesis and Geomorphology; Cambridge University Press: Cambridge, UK, 2005. [Google Scholar]
- Tunçay, T.; Dengiz, O. Chemical weathering rates and geochemical-mineralogical characteristics of soils developed on heterogenous parent material and toposequence. Carpathian J. Earth Environ. Sci. 2016, 11, 583–598. [Google Scholar]
- da Silva, R.J.A.B.; da Silva, Y.J.A.B.; Straaten, V.P.; do Nascimento, C.W.A.; Biondi, C.M.; da Silva, Y.J.A.B.; Filho, J.C.D.A. Influence of parent material on soil chemical characteristics in a semi-arid tropical region of Northeast Brazil. Environ. Monit. Assess. 2022, 194, 331. [Google Scholar] [CrossRef]
- Costa, E.U.C.; Santos, J.C.B.; Azevedo, A.C.; Araujo Filho, J.C.; Correa, M.M.; Neves, L.V.M.W.; Vidal-Torrado, P.; Souza Junior, V.S. Mineral alteration and genesis of Al-rich soils derived from conglomerate deposits in Cabo Basin, NE Brazil. Catena 2018, 167, 198–211. [Google Scholar] [CrossRef]
- Niu, S.; Gao, L.; Wang, X. Characterization of contamination levels of heavy metals in agricultural soils using geochemical baseline concentrations. J. Soils Sediments 2019, 19, 1697–1707. [Google Scholar] [CrossRef]
- Thiombane, M.; Di Bonito, M.; Albanese, S.; Zuzolo, D.; Lima, A.; De Vivo, B. Geogenic versus anthropogenic behaviour and geochemical footprint of Al, Na, K and P in the Campania region (Southern Italy) soils through compositional data analysis and enrichment factor. Geoderma 2019, 335, 12–26. [Google Scholar] [CrossRef]
- Zinn, Y.L.; Faria, J.A.; Araujo, M.A.; Skorupa, A.L.A. Soil parent material is the main control on heavy metal concentrations in tropical highlands of Brazil. Catena 2020, 185, 104319. [Google Scholar] [CrossRef]
- Heckman, K.; Welty, B.A.; Rasmussen, C.; Schwartz, E. Geologic controls of soil carbon cycling and microbial dynamics in temperate conifer forests. Chem. Geol. 2009, 267, 12–23. [Google Scholar] [CrossRef]
- Heckman, K.; Rasmussen, C. Lithologic controls on regolith weathering and mass flux in forested ecosystems of the southwestern USA. Geoderma 2011, 164, 99–111. [Google Scholar] [CrossRef]
- Brilhante, S.A.; Santos, J.C.B.; Souza Júnior, V.S.; Araújo, J.K.S.; Ribeiro Filho, M.R.; Corrêa, M.M. Weathering of rhyolites and soil formation in an Atlantic Forest fragment in northeastern Brazil. Rev. Bras. Ciência Solo 2017, 41, e0160558. [Google Scholar] [CrossRef]
- Raj, J.K. Physical characterization of a deep weathering profile over rhyolite in humid tropical peninsular Malaysia. Geotech. Geol. Eng. 2018, 36, 3793–3809. [Google Scholar] [CrossRef]
- Gountié, D.M.; Asobo, N.E.; Fozing, E.M.; Tchamabé, B.C.; Zangmo, T.G.; Nguihdama, D.; Tchokona, S.D.; Kamgang, P.; Aka, T.F.; Ohbak, T. Petrology and geochemistry of lavas from Gawar, Minawao and Zamay volcanoes of the northern segment of the Cameroon volcanic line (Central Africa): Constraints on mantle source and geochemical evolution. J. Afr. Earth Sci. 2019, 153, 3–41. [Google Scholar] [CrossRef]
- Dubroeucq, D.; Geissert, D.; Quantin, P. Weathering and soil forming processes under semi-arid conditions in two Mexican volcanic ash soils. Geoderma 1998, 86, 99–122. [Google Scholar] [CrossRef]
- Candra, I.N.; Gerzabek, M.H.; Ottner, F.; Tintner, J.; Wriessnig, K.; Zehetner, F. Weathering and soil formation in rhyolitic tephra along a moisture gradient on Alcedo Volcano, Galapagos. Geoderma 2019, 343, 215–225. [Google Scholar] [CrossRef]
- Tardy, Y. Petrology of Laterites and Tropical Soils; Balkema: Leiden, Amsterdam, 1997. [Google Scholar]
- Bitom, D.; Volkoff, B.; Abossolo-Angue, M. Evolution and alteration in situ of a massive iron duricrust in Central Africa. J. Afr. Earth Sci. 2003, 37, 89–101. [Google Scholar] [CrossRef]
- Bitom, D.; Volkoff, B.; Beauvais, A.; Seyler, F.; Ndjigui, P.D. Rôle des héritages latéritiques et du niveau des nappes dans l’évolution des modelés et des sols en zone intertropicale forestière humide. Comptes Rendus Géoscience 2004, 336, 1161–1170. [Google Scholar] [CrossRef]
- Beauvais, A. Ferricrete biochemical degradation on the rainforest-savannas boundary of central african republic. Geoderma 2009, 150, 379–388. [Google Scholar] [CrossRef]
- Oyelami, C.A.; Van Rooy, J.L. A review of the use of lateritic soils in the construction/development of sustainable housing in Africa: A geological perspective. J. Afr. Earth Sci. 2016, 119, 226–237. [Google Scholar] [CrossRef]
- Nouazi, M.M.; Beauvais, A.; Tematio, P.; Ambrosi, J.-P.; Yemefack, M.; Palmer, K.Y.B.; Yongue-Fouateu, R. Lateritic weathering of trachyte, and bauxite formation in West Cameroon: Morphological and geochemical evolution. J. Geochem. Explor. 2019, 205, 106324. [Google Scholar] [CrossRef]
- Azinwi, T.P.; Kouankap, N.D.G.; Wotchokoa, P.; Tchagnian, M.B.; Tene, D.J.F.; Kamgang, K.V.; Bitom, D. Geochemistry of a lateritic mantle developed on basalt in the Cameroon Western Highlands (Cameroon Volcanic Line). Geoderma 2020, 376, 114569. [Google Scholar] [CrossRef]
- Onana, L.V.; Ndome, E.E.; Noa Tang, D.S.; Kamgang, K.V.; Ekodeck, E.G. Chemical weathering intensity and rare earth elements release from a chlorite schist profile in a humid tropical area, Bengbis, Southern Cameroon. J. Cameroon Acad. Sci. 2020, 16, 123–145. [Google Scholar] [CrossRef]
- Kessoum, A.J.-M.; Noa Tang, S.D.; Sababa, E.; Onana, V.L. Weathering profiles developed on gneisses from Batchenga and Doua areas, central Cameroon: Climate and topography controls. J. Afr. Earth Sci. 2021, 184, 104367. [Google Scholar] [CrossRef]
- Nguetnkam, J.P.; Kamga, R.; Villiéras, F.; Ekodeck, G.E.; Yvon, J. Variable weathering response of granite in tropical zones. Example of two sequences studied in Cameroon (Central Africa). Comptes Rendus Geosci. 2008, 340, 451–461. [Google Scholar] [CrossRef]
- Nguetnkam, J.-P.; Villieras, F.; Kamga, R.; Ekodeck, G.E.; Yvon, J. Mineralogy and geochemical behaviour during weathering of greenstone belt under tropical dry conditions in the extreme North Cameroon (Central Africa). Chem. Erde 2014, 74, 185–193. [Google Scholar] [CrossRef]
- Temga, J.P.; Maché, J.R.; Balo, M.A.; Nguetnkam, J.P.; Bitom, D.L. Ceramics applications of clay in Lake Chad Basin, Central Africa. Appl. Clay Sci. 2019, 171, 118–132. [Google Scholar] [CrossRef]
- Ngounou Ngatcha, B.; Mudry, J.; Sigha Nkamdjou, L.; Njitchoua, R.; Naah, E. Climate variability and impacts on an alluvial aquifer in a semi-arid climate, the Logone-Chari plain (South of Lake Chad). Int. Assoc. Hydrol. Sci. 2005, 295, 94–100. [Google Scholar]
- Eze, P.N.; Molwalefhe, L.N.; Kebonye, N.M. Geochemistry of soils of a deep pedon in the Okavango Delta, NW Botswana: Implications for pedogenesis in semi-arid regions. Geoderma Reg. 2021, 24, e00352. [Google Scholar] [CrossRef]
- Fu, W.; Li, X.; Feng, Y.; Feng, M.; Peng, Z.; Yu, H.; Lin, H. Chemical weathering of S-type granite and formation of Rare Earth Element (REE)-rich regolith in South China: Critical control of lithology. Chem. Geol. 2019, 520, 33–51. [Google Scholar] [CrossRef]
- Ma, Y.; Huo, R.; Liu, C. Speciation and fractionation of rare earth elements in a lateritic profile from southern China; identification of the carriers of Ce anomalies. Geochim. Cosmochim. Acta 2002, 66, 471. [Google Scholar]
- Laveuf, C.; Cornu, S. A review on the potentiality of rare earth elements to trace pedogenetic processes. Geoderma 2009, 154, 1–12. [Google Scholar] [CrossRef]
- Panahi, A.; Young, G.M.; Rainbird, R.H. Behaviour of major and trace elements (including REE) during Paleoproterozoic pedogenesis and diagenetic alteration of an archaean granite near Ville Marie, Québec, Canada. Geochim. Cosmochim. Acta 2000, 64, 2199–2220. [Google Scholar] [CrossRef]
- Cao, Y.-W.; Liu, X.-M.; Wang, C.; Bai, E.; Wu, N. Rare earth element geochemistry in soils along arid and semiarid grasslands in northern China. Ecol. Process. 2022, 11, 29. [Google Scholar] [CrossRef]
- Van der zon APM. Graminées du Cameroun Volume I, Phytogéographie et Pâturages; Wageningen Agricultural University Papers; Wageningen University and Research: Wageningen, The Netherlands, 1992. [Google Scholar]
- Tamen, J.; Nkoumbou, C.; Reusser, E.; Tchoua, F. Petrology and geochemistry of mantle xenoliths from the Kapsiki plateau (Cameroon volcanic line): Implications for lithospheric upwelling. J. Afr. Earth Sci. 2015, 101, 119–134. [Google Scholar] [CrossRef]
- Brabant, P.; Gavaud, M. Les Sols et Les Ressources en Terres du Nord Cameroun; Collection Notice Explicative N° 103; Editions de l’ORSTOM: Marseille, France, 1985. [Google Scholar]
- IUSS Working Group. World Reference Base for Soil Resources. International Soil Classification System for Naming Soils and Creating Legends for Soil Maps, 4th ed.; International Union of Soil Sciences (IUSS): Vienna, Austria, 2022. [Google Scholar]
- Nesbitt, Y.W.; Young, G.M. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature 1982, 299, 715–717. [Google Scholar] [CrossRef]
- Ruxton, pp. Measures of the degree of chemical weathering of rock. J. Geol. 1968, 76, 518–527. [Google Scholar] [CrossRef]
- Voicu, G.; Bardoux, M.; Jebrak, M.; Voicu, D. Normative mineralogical calculations for tropical weathering profiles. Geol. Assoc. Can. Miner. Assoc. Can. Program Abstr. 1996, 21, A-69. [Google Scholar]
- Vogt, T. Sulitjelmafeltets geologiog petrografi. Nor. Geol. Unders. 1927, 121, 1–560. [Google Scholar]
- Irfan, T.Y. Mineralogy, fabric properties and classification of weathered granite in Hong Kong. Q. J. Eng. Geol. 1996, 29, 5–35. [Google Scholar] [CrossRef]
- Sueoka, T.; Lee, I.K.; Muramatsu, M.; Imamura, S. Geomechanical properties and engineering classification for decomposed granite soils in Kaduna district, Nigeria. In Proceedings of the First International Conference Geomechanical in Tropical Lateritic and Saprolitic Soils, Brasilia, Brazil, 11–14 February 1985; Volume 1, pp. 175–186. [Google Scholar]
- Rodier, J. L’analyse de L’eau: Eaux Naturelles, Eaux Résiduaires et Eaux de mer: Chimie, Physico-Chimie, Microbiologie, Biologie, Interprétation des Résultats, 8th ed.; Dunod: Malakoff, France, 1996. [Google Scholar]
- Brimhall, G.H.; Alpers, C.N.; Cunningham, A.B. Analysis of supergene ore–forming processes and grand-Water solute transport using mass balance principles. Econ. Geol. 1985, 80, 1227–1256. [Google Scholar] [CrossRef]
- Brimhall, G.H.; Dietrich, W.E. Constitutive mass balance relations between chemical composition, volume, density, porosity and strain in metasomatic hydrochemical systems: Results on weathering and pedogenesis. Geochim. Cosmochim. Acta 1987, 51, 567–587. [Google Scholar] [CrossRef]
- McDonough, W.F.; Sun, S.S. The composition of the earth. Chem. Geol. 1995, 120, 223–253. [Google Scholar] [CrossRef]
- Thorez, J. Pratical Identification of Clay Minerals; Lelotte, G., Ed.; Dison: Singapore, 1976. [Google Scholar]
- Baran, B.; Ertürk, T.; Sarikaya, Y.; Alemdaroglu, T. Workability test method for metals applied to examine a workability measure (plastic limit) for clays. Appl. Clay Sci. 2001, 20, 53–63. [Google Scholar] [CrossRef]
- Srasra, E. Caractérisation Minéralogiques, Propriétés Physico-Chimiques et Application des Argiles du Gisement Haidoudi. Ph.D. Thesis, Université de Tunis: Tunis, Tunisia, 1987. [Google Scholar]
- Wolters, F.; Emmerich, K. Thermal reactions of smectites-relation of dehydroxylation temperature to octahedral structure. Thermochim. Acta 2007, 462, 80–88. [Google Scholar] [CrossRef]
- Ayari, F.; Srasra, E.; Trabelsi-Ayadi, M. Characterization of bentonitic clays and their use as adsorbent. Desalination 2005, 185, 391–397. [Google Scholar] [CrossRef]
- Nzeukou, N.A. Minéralogie, Géochimie et Propriétés Céramiques des Argiles Alluviales de la Sanaga Entre Nanga-Eboko et Ebebda (Région du Centre-Cameroun). Ph.D. Thesis, University of Yaoundé I, Yaoundé, Cameroon, 2014; 154p. [Google Scholar]
- Aristizabal, E.; Roser, B.; Yokota, S. Tropical chemical weathering of hillslope deposits and bedrock source in the Aburra Valley, northern Colombian Andes. Eng. Geol. 2005, 81, 389–406. [Google Scholar] [CrossRef]
- Basga, S.D.; Temga, J.P.; Tsozué, D.; Danbé, D.; Nguetnkam, J.P. Morphological, mineralogical and geochemical features of topomorphic vertisols used for sorghum production in North Cameroon. Eurasian J. Soil Sci. 2018, 7, 346–354. [Google Scholar] [CrossRef]
- Tsozué, D.; Bitom, D.; Yongue-Fouateu, R. morphology, mineralogy and geochemistry of a lateritic soil sequence developed on micaschist in the abong-mbang region, southeast Cameroon. S. Afr. J. Geol. 2012, 115, 103–116. [Google Scholar] [CrossRef]
- Francis, M.L.; Fey, M.V.; Ellis, F.; Poch, R.M. Petroduric and petrosepiolitic horizons in soils of Namaqual and, South Africa. Span. J. Soil Sci. 2012, 2, 8–25. [Google Scholar]
- Goldich, S.S. A study in rock-weathering. J. Geol. 1938, 46, 17–58. [Google Scholar] [CrossRef]
- Amouric, M.; Olives, J. Transformation mechanisms and interstratifications in conversion of smectite to kaolinite: An HRTEM study. Clays Clay Miner. 1998, 46, 521–527. [Google Scholar] [CrossRef]
- Tsozué, D.; Basga, S.D.; Nzeukou, N.A. Spatial variation of soil weathering processes in the tropical high reliefs of Cameroon (Central Africa). Eurasian J. Soil Sci. 2020, 9, 92–104. [Google Scholar] [CrossRef]
- Tsozué, D.; Nzeukou, N.A.; Azinwi, T.P. Genesis and classification of soils developed on gabbro in the high reliefs of Maroua region, North Cameroon. Eurasian J. Soil Sci. 2017, 6, 168–177. [Google Scholar] [CrossRef]
- Van Breemen, N. Long-term chemical, mineralogical and morphological effects of iron-redox processes in periodically flooded soils. In Iron in Soils and Clay Minerals; Stucki, J., Goodman, B., Schwertmann, U., Eds.; NATO ASI Series; D. Reidel Publishing: Dordrecht, The Netherlands, 1988. [Google Scholar]
- Jordanova, N. Magnetism of materials occurring in the environment—Basic overview. In Soil Magnetism: Applications in Pedology, Environmental Science and Agriculture, 1st ed.; Kindle Edition; Academic Press: San Diego, CA, USA, 2016; pp. 1–28. [Google Scholar]
- Cornell, R.; Schwertmann, U. The Iron Oxides: Structure, Properties, Reactions, Occurrence and Uses; Wiley: Weinheim, Germany; New York, NY, USA, 2003. [Google Scholar]
- Singer, A. Pedogenic palygorskite in the arid environment. In Palygorskite-Sepiolite. Occurrences, Genesis and Uses; Singer, A., Galán, E., Eds.; Developments in Sedimentology 37; Elsevier: Amsterdam, The Netherlands, 1984. [Google Scholar]
- Jones, B.F.; Galán, E. Sepiolite and palygorskite. In Hydrous Phyllosilicates (Exclusive of Micas); Bailey, S.W., Ed.; Reviews in Mineralogy 19; Mineralogical Society of America: Washington, DC, USA, 1988. [Google Scholar]
- Tunçay, T.; Dengiz, O.; Bayramin, I.; Kilic, S.; Baskan, O. Chemical weathering indices applied to soils developed on old lake sediments in a semi-arid region of Turkey. Eurasian J. Soil Sci. 2019, 8, 60–72. [Google Scholar] [CrossRef]
- Fedo, C.M.; Nesbitt, H.W.; Young, G.M. Unraveling the effects of potassium metasomatism in sedimentary rocks and paleosols with implications for paleoweathering conditions and provenance. Geology 1995, 23, 921–924. [Google Scholar] [CrossRef]
- Ao, H.; Deng, C.; Dekkers, M.J.; Sun, Y.; Liu, Q.; Zhu, R. Pleistocene environmental evolution in the Nihewan Basin and implication for early human colonization of North China. Quat. Int. 2010, 223–224, 472–478. [Google Scholar] [CrossRef]
- Özaytekin, H.H.; Mutlu, H.H.; Dedeoglu, M. Soil formation on a calcic chronosequence of ancient Lake Konya in Central Anatolia, Turkey. J. Afr. Earth Sci. 2012, 76, 66–74. [Google Scholar] [CrossRef]
- Voicu, G.; Bardoux, M. Geochemical behaviour under tropical weathering of the Barama-Mazaruni greenstone belt at Omai gold mine. Guiana Shield. Appl. Geochem. 2002, 17, 321–336. [Google Scholar] [CrossRef]
- Ng, C.W.W.; Guan, P.; Shang, Y.J. Weathering mechanisms and indices of the igneous rocks of Hong Kong. Q. J. Eng. Geol. Hydrogeol. 2001, 34, 133–151. [Google Scholar] [CrossRef]
- Thamdrup, B.; Fossing, H.; Jørgensen, B.B. Manganese, iron, and sulfur cycle in a coastal marine sediment, Aahus Bay, Denmark. Geochim. Cosmochim. Acta 1994, 23, 5115–5129. [Google Scholar] [CrossRef]
- Marques, J.J.; Schulze, D.G.; Curi, N.; Mertzman, S.A. Trace element geochemistry in Brazilian Cerrado soils. Geoderma 2004, 121, 31–43. [Google Scholar] [CrossRef]
- Blanc, P.; Burnol, A.; Guyonnet, D. Atténuation des Métaux de la Liste de Substances Prioritaires Dans la Zone Non Saturée. Rapport BRGM/53096-FR. 2004. Available online: http://infoterre.brgm.fr/rapports/RP-53096-FR.pdf (accessed on 5 May 2025).
- Morin, G.; Juillot, F.; Ildefonse, P.; Calas, G.; Samama, J.C.; Chevallier, P.; Brown, G.E. Mineralogy of lead in a soil developed on a Pb-mineralized sandstone (Largentière, France). Am. Mineral. 2001, 86, 92–104. [Google Scholar] [CrossRef]
- Gnandi, K.; Tobschall, H.J. Distribution patterns of rare-earth elements and uranium in tertiary sedimentary phosphorites of Hahotoé–Kpogamé, Togo. J. Afr. Earth Sci. 2003, 37, 1–10. [Google Scholar] [CrossRef]
- Temga, P.J.; Sababa, E.; Mamdem, L.E.; Ngo Bijeck, M.L.; Azinwi, T.P.; Tehna, N.; Zo’o Zame, P.; Onana, V.L.; Nguetnkam, J.P.; Bitom, L.D.; et al. Rare earth elements in tropical soils, Cameroon soils (Central Africa). Geoderma Reg. 2021, 25, e00369. [Google Scholar] [CrossRef]
- Alfaro, M.R.; Do Nascimento, C.W.A.; Biondi, C.M.; da Silva, Y.J.A.B.; de Aguiar Accioly, A.M.; Montero, A.; Muñiz Ugarte, O.; Estevez, J. Rare-earth-element geochemistry in soils developed in different geological settings of Cuba. Catena 2018, 162, 317–324. [Google Scholar] [CrossRef]
- Rudnick, R.L.; Gao, S. Composition of the Continental Crust. In The Crust; Rudnick, R.L., Ed.; Elsevier-Pergamon: Oxford, UK, 2003; pp. 1–64. [Google Scholar] [CrossRef]
- Hu, Z.; Haneklaus, S.; Sparovek, G.; Schnug, E. Rare earth elements in soils. Commun. Soil Sci. Plant Anal. 2006, 37, 1381–1420. [Google Scholar] [CrossRef]
- Ndjigui, P.-D.; Badinane, M.F.B.; Nyeck, B.; Nandjip, H.P.K.; Bilong, P. Mineralogical and geochemical features of the coarse saprolite developed on orthogneiss in the SW of Yaoundé, South Cameroon. J. Afr. Earth Sci. 2013, 79, 125–142. [Google Scholar] [CrossRef]
- Marsh, J.S. REE fractionation and Ce anomalies in weathered Karoo dolerite. Chem. Geol. 1990, 90, 189–194. [Google Scholar] [CrossRef]
- Wang, L.; Liang, T. Geochemical fractions of rare earth elements in soil around a mine tailing in Baotou, China. Sci. Rep. 2015, 5, 12483. [Google Scholar] [CrossRef]
- Alsalam, O.; Şeker, C.; Dedeoğlu, M. Quantifying the role of chemical weathering rates on soil developed along an altitudinal transect in the mountainous environments, Turkey. Eurasian J. Soil Sci. 2020, 9, 140–150. [Google Scholar] [CrossRef]
- Laveuf, C.; Cornu, S.; Guilerme, L.R.G.; Guerin, A.; Juillot, F. The impact of redox conditions on the rare earth element signature of redoximorphic features in a soil sequence developed from limestone. Geoderma 2012, 170, 25–38. [Google Scholar] [CrossRef]
- Karadaǧ, M.M.; Küpeli, S.; Arýk, F.; Ayhan, A.; Zedef, V.; Döyen, A. Rare earth element (REE) geochemistry and genetic implications of the Morta¸s-bauxite deposit (Seydi¸sehir/Konya-Southern Turkey). Chem. Erde Geochem. 2009, 69, 143–159. [Google Scholar] [CrossRef]
- Mihajlovic, J.; Bauriegel, A.; Stärkc, H.-J.; Roßkopf, N.; Zeitz, J.; Milbert, G.; Rinklebe, J. Rare earth elements in soil profiles of various ecosystems across Germany. Appl. Geochem. 2019, 102, 197–217. [Google Scholar] [CrossRef]
- Fleet, A.J. Aqueous and sedimentary geochemistry of the rare earth elements. In Rare Earth Element Geochemistry; Hendersonm, P., Ed.; Elsevier: Amsterdam, The Netherlands, 1984; pp. 343–373. [Google Scholar]
- Bouba, L.; Kémo, W.; Samba Assomo, p. Lithometeors and public health issue in the city of Maroua inthe Far North region of Cameroon (Central Africa). Nat. Hazards 2025, 121, 5901–5920. [Google Scholar] [CrossRef]
- Kodešová, R.; Vignozzi, N.; Rohošková, M.; Hájková, T.; Kočárek, M.; Pagliai, M.; Kozák, J.; Šimůnek, J. Impact of varying soil structure on transport processes in different diagnostic horizons of three soil types. J. Contam. Hydrol. 2009, 104, 107–125. [Google Scholar] [CrossRef]
Months | J | F | M | A | M | J | J | A | S | O | N | D | Total | Mean |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Precipitations (mm) | 0.00 | 0.00 | 0.87 | 19.77 | 60.54 | 105.77 | 192.77 | 232.41 | 118.20 | 28.79 | 0.49 | 0.31 | 759.92 | - |
Temperature (°C) | 24.12 | 27.32 | 30.92 | 32.87 | 31.43 | 28.98 | 26.74 | 25.82 | 26.89 | 28.23 | 27.50 | 25.16 | - | 28.00 |
Aridity index | 0.00 | 0.00 | 0.26 | 5.53 | 17.54 | 32.56 | 62.96 | 77.87 | 38.45 | 9.04 | 0.16 | 0.11 | - | - |
Standards | Parent Rock | Alteritic Sequence | Solum | |||||||
---|---|---|---|---|---|---|---|---|---|---|
C5 | C4 | C3 | C2 | C1 | Bw | Ah | ||||
Reference Code | / | / | MBr | MB1 | MB2 | MB3 | MB4 | MB5 | MB6 | MB7 |
Depth (m) | / | / | - | 0–0.70 | 0.70–1.20 | 1.20–3.00 | 3.00–6.00 | 6.00–7.20 | 7.20–7.70 | 7.70–8.00 |
Major elements (wt %) | ||||||||||
SiO2 | ME-ICP06 | 50.20 | 70.59 | 51.70 | 43.20 | 59.50 | 57.60 | 60.60 | 54.6 | 60.10 |
Al2O3 | ME-ICP06 | 20 | 13.73 | 25.29 | 20.49 | 18.74 | 18.86 | 17.72 | 24.12 | 19.85 |
Fe2O3 | ME-ICP06 | 6.02 | 4.12 | 13.53 | 24.96 | 8.86 | 11.77 | 8.86 | 11.79 | 9.89 |
TiO2 | ME-ICP06 | 0.28 | 0.30 | 0.30 | 1.01 | 0.26 | 0.25 | 0.22 | 0.40 | 0.55 |
MgO | ME-ICP06 | 0.52 | 0.39 | 0.45 | 0.64 | 0.35 | 0.63 | 0.52 | 0.59 | 0.37 |
CaO | ME-ICP06 | 7.98 | 1.74 | 0.54 | 0.46 | 0.24 | 0.21 | 0.18 | 0.10 | 0.20 |
Na2O | ME-ICP06 | 6.95 | 5.89 | 4.31 | 4.53 | 3.24 | 3.75 | 3.22 | 3.35 | 2.55 |
K2O | ME-ICP06 | 1.60 | 1.55 | 6.81 | 4.97 | 1.77 | 2.68 | 2.46 | 2.50 | 2.56 |
P2O5 | ME-ICP06 | 0.12 | 0.05 | 0.09 | 0.15 | 0.20 | 0.19 | 0.21 | 0.11 | 0.12 |
MnO | ME-ICP06 | 0.10 | 0.11 | 0.05 | 0.23 | 0.09 | 0.06 | 0.09 | 0.06 | 0.04 |
LOI | OA-GRA05 | 3.57 | 1.40 | 3.59 | 5.25 | 2.01 | 2.04 | 1.99 | 5.23 | 6.66 |
Trace elements (mg kg−1) | ||||||||||
Sc | ME-MS04 | 26 | 9 | 16.70 | 29 | 13.60 | 12.30 | 12.40 | 14.70 | 13.70 |
V | ME-MS04 | 0.76 | 8 | 24 | 194 | 1.50 | 0.70 | 0.50 | 22 | 22 |
Co | ME-MS04 | 0.932 | 1.50 | 2.10 | 21 | 0.70 | <0.50 | 0.90 | 4.60 | 4.90 |
Ni | ME-MS04 | 1.55 | <0.50 | <0.50 | 10.20 | 0.50 | 6.90 | <0.50 | 2.80 | 4.40 |
Cu | ME-MS04 | 2.73 | <0.50 | <0.50 | 25 | 2.50 | <0.50 | 16 | 3.20 | 6.50 |
Zn | ME-MS04 | 22.4 | <0.50 | 70 | 151 | 82 | 61 | 89 | 76 | 78 |
Ga | ME-MS04 | 0.09 | 17 | 35 | 21 | 20 | 24 | 17.70 | 21 | 18.80 |
Ge | ME-MS04 | <0.005 | <0.05 | 2 | 1.79 | 1.38 | 1.27 | 1.20 | 1.52 | 1.43 |
Rb | ME-MS04 | 0.584 | 14.90 | 58 | 46 | 11.20 | 18.60 | 13.20 | 25 | 31 |
Sr | ME-MS04 | 9.92 | 147.60 | 76 | 243 | 92 | 98 | 90 | 62 | 64 |
Y | ME-MS04 | 3.65 | 48 | 71 | 55 | 54 | 57 | 54 | 81 | 63 |
Zr | ME-MS04 | 0.741 | 259.30 | 414 | 158 | 307 | 325 | 268 | 349 | 429 |
Nb | ME-MS04 | 0.0107 | 8.70 | 22 | 10.40 | 12 | 10.60 | 8.60 | 11.80 | 13.80 |
Cs | ME-MS04 | 0.0562 | 0.10 | 0.90 | 1.76 | 0.23 | 0.26 | 0.17 | 0.62 | 0.77 |
Ba | ME-MS04 | 102.5 | 611 | 1093 | 1320 | 385 | 678 | 749 | 502 | 525 |
Hf | ME-MS04 | 0.0246 | 7.20 | 9.80 | 4.10 | 7.70 | 8.10 | 6.80 | 8.60 | 10.60 |
Ta | ME-MS04 | <0.001 | 0.70 | 0.76 | 0.31 | 0.61 | 0.63 | 0.53 | 0.76 | 0.99 |
W | ME-MS04 | 0.008 | 0.60 | 0.81 | 0.29 | <0.05 | <0.05 | 0.91 | 0.60 | 0.80 |
Pb | ME-MS04 | 6.55 | <0.05 | 9.10 | 8.60 | 5.40 | 8.80 | 26 | 16 | 17.40 |
Th | ME-MS04 | 0.5088 | 2.90 | 3.80 | 2.70 | 2.90 | 3.10 | 2.6 | 4.50 | 7 |
U | ME-MS04 | 3.51 | 1 | 1.10 | 0.98 | 0.93 | 0.88 | 0.83 | 1.36 | 1.71 |
Rare-earth elements (mg kg−1) | ||||||||||
La | ME-MS04 | 4.48 | 22.90 | 19.90 | 67 | 21 | 21 | 14.70 | 21 | 26 |
Ce | ME-MS04 | 6.39 | 48.50 | 47 | 67 | 33 | 50 | 32 | 56 | 60 |
Pr | ME-MS04 | 1.13 | 6.24 | 6.60 | 12 | 6.10 | 7 | 5.10 | 5.90 | 7.2 |
Nd | ME-MS04 | 4.87 | 26.70 | 30 | 55 | 27 | 30 | 23 | 26 | 30 |
Sm | ME-MS04 | 1.06 | 6.29 | 6.40 | 12 | 6.60 | 6.90 | 5.20 | 5.90 | 6.80 |
Eu | ME-MS04 | 0.168 | 1.50 | 1.70 | 3.20 | 1.66 | 1.67 | 1.48 | 1.78 | 1.76 |
Gd | ME-MS04 | 0.924 | 7.39 | 7.80 | 12 | 7 | 7.10 | 6.40 | 8.50 | 8 |
Tb | ME-MS04 | 0.112 | 1.25 | 1.65 | 1.55 | 1.69 | 1.69 | 1.62 | 1.66 | 1.64 |
Dy | ME-MS04 | 0.637 | 8.05 | 10.20 | 9.20 | 8.90 | 8.50 | 8.40 | 11.70 | 9.90 |
Ho | ME-MS04 | 0.12 | 1.76 | 2.30 | 1.80 | 1.89 | 1.85 | 1.87 | 2.60 | 2.10 |
Er | ME-MS04 | 0.323 | 5.37 | 7.50 | 4.60 | 5.50 | 5.70 | 5.30 | 7 | 6.20 |
Tm | ME-MS04 | 0.0364 | 0.83 | 1.03 | 0.98 | 1.04 | 1.06 | 1.04 | 1.01 | 1.05 |
Yb | ME-MS04 | 0.246 | 5.43 | 8.40 | 3.90 | 6.20 | 6.70 | 5.80 | 7.30 | 6.40 |
Lu | ME-MS04 | 0.0351 | 0.85 | 1.16 | 0.61 | 0.87 | 0.97 | 0.85 | 1.02 | 0.92 |
ΣREE | - | - | 143.06 | 151.64 | 250.84 | 128.45 | 150.14 | 112.76 | 157.37 | 167.97 |
LREE | - | - | 112.13 | 111.60 | 216.20 | 95.36 | 116.57 | 81.48 | 116.58 | 131.76 |
HREE | - | - | 30.93 | 40.04 | 34.64 | 33.09 | 33.57 | 31.28 | 40.79 | 36.21 |
LREE/HREE | - | - | 3.63 | 2.79 | 6.24 | 2.88 | 3.47 | 2.60 | 2.86 | 3.64 |
Ce/Ce*(1) | - | - | 0.98 | - | - | - | - | - | - | - |
Ce/Ce*(2) | - | - | - | 1.01 | 0.58 | 0.72 | 1.02 | 0.91 | 1.24 | 1.08 |
Eu/Eu*(1) | - | - | 0.67 | - | - | - | - | - | - | - |
Eu/Eu*(2) | - | - | - | 1.09 | 1.21 | 1.11 | 1.08 | 1.17 | 1.14 | 1.08 |
(La/Yb)N (1) | - | - | 2.86 | - | - | - | - | - | - | - |
(La/Yb)N (2) | - | - | - | 0.56 | 4.07 | 0.80 | 0.74 | 0.60 | 0.68 | 0.96 |
da, ε, τ | Parent Rock | Alteritic Sequence | Solum | Mean Mobilization Rate | |||||
---|---|---|---|---|---|---|---|---|---|
C5 | C4 | C3 | C2 | C1 | Bw | Ah | |||
Reference Code | MBr | MB1 | MB2 | MB3 | MB4 | MB5 | MB6 | MB7 | |
Depth (m) | - | 0–0.70 | 0.70–1.20 | 1.20–3.00 | 3.00–6.00 | 6.00–7.20 | 7.20–7.70 | 7.70–8.00 | - |
da (g/cm3) | 2.03 | 2.63 | 2.34 | 4.31 | 2.16 | 1.66 | 1.39 | 1.35 | - |
ε Ti | - | −23 | −74 | −46 | 13 | 67 | 10 | −18 | - |
τ Si | - | −26.76 | −81.82 | −2.74 | −2.08 | 17.07 | −41.99 | −53.56 | −27.41 |
τ Al | - | 84.20 | −55.67 | 57.49 | 64.84 | 75.99 | 31.76 | −21.14 | 33.92 |
τ Fe | - | 228.40 | 79.95 | 148.13 | 242.82 | 193.25 | 114.62 | 30.94 | 148.30 |
τ Ca | - | −68.97 | −92.15 | −84.08 | −85.52 | −85.89 | −95.69 | −93.73 | −86.58 |
τ Na | - | −26.83 | −77.16 | −36.53 | −23.60 | −25.45 | −57.34 | −76.39 | −46.18 |
τ K | - | 339.35 | −4.76 | 31.76 | 107.48 | 116.42 | 20.97 | −9.91 | 85.90 |
τ Mg | - | 15.38 | −51.26 | 3.55 | 93.85 | 81.82 | 13.46 | −48.25 | 15.51 |
τ P | - | 80.00 | −10.89 | 361.54 | 356.00 | 472.73 | 65.00 | 30.91 | 193.61 |
τ Mn | - | −54.55 | −37.89 | −5.59 | −34.55 | 11.57 | −59.09 | −80.17 | −37.18 |
τ Sc | - | 85.56 | −4.29 | 74.36 | 64.00 | 87.88 | 22.50 | −16.97 | 44.72 |
τ V | - | 200.00 | 620.30 | −78.37 | −89.50 | −91.48 | 106.25 | 50.00 | 102.46 |
τ Co | - | 40.00 | 315.84 | −46.15 | −100.00 | −18.18 | 130.00 | 78.18 | 57.10 |
τ Ni | - | −100.00 | 505.94 | 15.38 | 1556.00 | −100.00 | 320.00 | 380.00 | 368.19 |
τ Cu | - | −100.00 | 1385.15 | 476.92 | −100.00 | 4263.64 | 380.00 | 609.09 | 987.83 |
τ Zn | - | 13,900.00 | 8870.30 | 18,823.08 | 14,540.00 | 24,172.73 | 11,300.00 | 8409.09 | 14,287.88 |
τ Ga | - | 105.88 | −63.31 | 35.75 | 69.41 | 41.98 | −7.35 | −39.68 | 20.38 |
τ Ge | - | 3900.00 | −10.50 | −22.91 | −7.97 | −5.51 | 26.67 | −5.92 | 553.41 |
τ Rb | - | 289.26 | −8.30 | −13.27 | 49.80 | 20.81 | 25.84 | 13.48 | 53.95 |
τ Sr | - | −48.51 | −51.10 | −28.08 | −20.33 | −16.85 | −68.50 | −76.35 | −44.24 |
τ Y | - | 47.92 | −65.97 | 29.81 | 42.50 | 53.41 | 26.56 | −28.41 | 15.12 |
τ Zr | - | 59.66 | −81.90 | 36.61 | 50.40 | 40.94 | 0.94 | −9.76 | 13.84 |
τ Nb | - | 152.87 | −64.49 | 59.15 | 46.21 | 34.80 | 1.72 | −13.48 | 30.97 |
τ Cs | - | 800.00 | 422.77 | 165.38 | 212.00 | 131.82 | 365.00 | 320.00 | 345.28 |
τ Ba | - | 78.89 | −35.83 | −27.29 | 33.16 | 67.16 | −38.38 | −53.13 | 3.51 |
τ Hf | - | 36.11 | −83.09 | 23.40 | 35.00 | 28.79 | −10.42 | −19.70 | 1.44 |
τ Ta | - | 8.57 | −86.85 | 0.55 | 8.00 | 3.25 | −18.57 | −22.86 | −15.42 |
τ W | - | 35.00 | −85.64 | −100.00 | −100.00 | 106.82 | −25.00 | −27.27 | −28.01 |
τ Pb | - | 45,400.00 | 12,672.28 | 31,053.85 | 52,700.00 | 177,172.73 | 59,900.00 | 47,354.55 | 60,893.34 |
τ Th | - | 31.03 | −72.35 | 15.38 | 28.28 | 22.26 | 16.38 | 31.66 | 10.38 |
τ U | - | 10.00 | −70.89 | 7.31 | 5.60 | 13.18 | 2.00 | −6.73 | −5.65 |
τ La | - | −13.10 | −13.10 | 5.81 | 10.04 | −12.47 | −31.22 | −38.07 | −13.16 |
τ Ce | - | −3.09 | −58.97 | −21.49 | 23.71 | −10.03 | −13.40 | −32.52 | −16.54 |
τ Pr | - | 5.77 | −42.88 | 12.80 | 34.62 | 11.45 | −29.09 | −37.06 | −6.34 |
τ Nd | - | 12.36 | −38.81 | 16.68 | 34.83 | 17.47 | −26.97 | −38.71 | −3.31 |
τ Sm | - | 1.75 | −43.33 | 21.07 | 31.64 | 12.73 | −29.65 | −41.03 | −6.69 |
τ Eu | - | 13.33 | −36.63 | 27.69 | 33.60 | 34.55 | −11.00 | −36.00 | 3.65 |
τ Gd | - | 5.55 | −51.77 | 9.30 | 15.29 | 18.10 | −13.73 | −40.95 | −8.32 |
τ Tb | - | 32.00 | −63.17 | 56.00 | 62.24 | 76.73 | −0.40 | −28.44 | 19.28 |
τ Dy | - | 26.71 | −66.05 | 27.57 | 26.71 | 42.29 | 9.01 | −32.92 | 4.76 |
τ Ho | - | 30.68 | −69.62 | 23.91 | 26.14 | 44.89 | 10.80 | −34.92 | 4.55 |
τ Er | - | 39.66 | −74.56 | 18.18 | 27.37 | 34.59 | −2.23 | −37.02 | 0.86 |
τ Tm | - | 24.10 | −64.93 | 44.58 | 53.25 | 70.87 | −8.73 | −31.00 | 12.59 |
τ Yb | - | 54.70 | −78.67 | 31.75 | 48.07 | 45.66 | 0.83 | −35.71 | 9.52 |
τ Lu | - | 36.47 | −78.68 | 18.10 | 36.94 | 36.36 | −10.00 | −40.96 | −0.25 |
Parent Rock | Alteritic Sequence | Solum | ||||||
---|---|---|---|---|---|---|---|---|
C5 | C4 | C3 | C2 | C1 | Bw | Ah | ||
Sample | MBr | MB1 | MB2 | MB3 | MB4 | MB5 | MB6 | MB7 |
Depth (m) | - | 0–0.70 | 0.70–1.20 | 1.20–3.00 | 3.00–6.00 | 6.00–7.20 | 7.20–7.70 | 7.70–8.00 |
Si/Al | 2.91 | 3.61 | 3.72 | 5.61 | 5.39 | 6.05 | 4.00 | 5.35 |
CIA | 59.93 | 68.44 | 67.29 | 78.12 | 73.96 | 75.15 | 80.21 | 78.90 |
MIA | 19.86 | 36.89 | 34.58 | 56.23 | 47.92 | 50.30 | 60.43 | 57.79 |
V | 1.91 | 6.06 | 4.52 | 5.36 | 4.69 | 5.15 | 6.59 | 7.18 |
WPI | 7.91 | 7.84 | 4.70 | 3.49 | 4.80 | 4.13 | 0.74 | −1.41 |
SEC | 17.85 | 38.82 | 45.45 | 27.60 | 30.63 | 26.58 | 35.91 | 29.74 |
LOI | 1.40 | 3.59 | 5.25 | 2.01 | 2.04 | 1.99 | 5.23 | 6.66 |
Imob | 0.00 | −0.27 | −0.08 | 0.43 | 0.28 | 0.36 | 0.35 | 0.42 |
pH | - | 6.11 | 6.09 | 8.68 | 8.77 | 7.73 | 6.18 | 5.16 |
Eh | - | 0.05 | 0.05 | −0.08 | −0.09 | −0.03 | 0.05 | 0.11 |
rH2 | - | 14.15 | 14.14 | 14.42 | 14.40 | 14.30 | 14.16 | 14.00 |
Parent Rock | Alteritic Sequence | Solum | ||||||
---|---|---|---|---|---|---|---|---|
C5 | C4 | C3 | C2 | C1 | Bw | Ah | ||
Samples | MBr | MB1 | MB2 | MB3 | MB4 | MB5 | MB6 | MB7 |
Depth (m) | - | 0–0.7 | 0.7–1.2 | 1.2–3.0 | 3.0–6.0 | 6.0–7.2 | 7.2–7.7 | 7.7–8.0 |
Th/U | 2.90 | 3.45 | 2.76 | 3.12 | 3.52 | 3.13 | 3.31 | 4.09 |
Ba/Nb | 70.23 | 49.68 | 126.92 | 32.08 | 63.96 | 87.09 | 42.54 | 38.04 |
Ti/Nb | 0.03 | 0.01 | 0.10 | 0.02 | 0.02 | 0.03 | 0.03 | 0.04 |
Zr/Rb | 17.40 | 7.14 | 3.43 | 27.41 | 17.47 | 20.30 | 13.96 | 13.84 |
La/Lu | 26.94 | 17.16 | 109.84 | 24.14 | 21.65 | 17.29 | 20.59 | 28.26 |
La/Yb | 4.22 | 2.37 | 17.18 | 3.39 | 3.13 | 2.53 | 2.88 | 4.06 |
La/Sm | 3.64 | 3.11 | 5.58 | 3.18 | 3.04 | 2.83 | 3.56 | 3.82 |
(Rb + Sr)/Sr | 1.10 | 1.76 | 1.19 | 1.12 | 1.19 | 1.15 | 1.40 | 1.48 |
Y/Ho | 27.27 | 30.87 | 30.56 | 28.57 | 30.81 | 28.88 | 31.15 | 30.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nzeukou, A.N.; Tsozué, D.; Mamdem, E.L.T.; Dedzo, M.G.; Fagel, N. Mineralogical and Geochemical Features of Soil Developed on Rhyolites in the Dry Tropical Area of Cameroon. Standards 2025, 5, 20. https://doi.org/10.3390/standards5030020
Nzeukou AN, Tsozué D, Mamdem ELT, Dedzo MG, Fagel N. Mineralogical and Geochemical Features of Soil Developed on Rhyolites in the Dry Tropical Area of Cameroon. Standards. 2025; 5(3):20. https://doi.org/10.3390/standards5030020
Chicago/Turabian StyleNzeukou, Aubin Nzeugang, Désiré Tsozué, Estelle Lionelle Tamto Mamdem, Merlin Gountié Dedzo, and Nathalie Fagel. 2025. "Mineralogical and Geochemical Features of Soil Developed on Rhyolites in the Dry Tropical Area of Cameroon" Standards 5, no. 3: 20. https://doi.org/10.3390/standards5030020
APA StyleNzeukou, A. N., Tsozué, D., Mamdem, E. L. T., Dedzo, M. G., & Fagel, N. (2025). Mineralogical and Geochemical Features of Soil Developed on Rhyolites in the Dry Tropical Area of Cameroon. Standards, 5(3), 20. https://doi.org/10.3390/standards5030020