Application of Advanced Materials and Technologies in the Separation and Adsorption

A special issue of Separations (ISSN 2297-8739). This special issue belongs to the section "Materials in Separation Science".

Deadline for manuscript submissions: 10 September 2025 | Viewed by 5198

Special Issue Editor


E-Mail Website
Guest Editor
School of Energy and Mechanical Engineering, Nanjing Normal University, Nanjing, China
Interests: pollutant (condensable particulate matter/SO3/ammonia emission/ VOCs/trace element) removal; wastewater treatment; resource utilization; high-efficiency separation technology

Special Issue Information

Dear Colleagues,

The application of advanced materials and technologies in the fields of separation and adsorption is garnering significant attention in contemporary research. This interest is driven by the potential to develop more efficient, selective, and environmentally sustainable materials and technologies. The selection of appropriate materials and technologies is critical to optimizing separation efficiency and adsorption capacity while minimizing the co-adsorption of unwanted substances. Techniques play a vital role in evaluating the effectiveness of these processes and ensuring the purity and functionality of the separated compounds for various industrial and environmental applications.

Thus, I am pleased to invite you to contribute your research article, communication, or review to this Special Issue dedicated to the application of advanced materials and technologies in separation and adsorption. This Special Issue will gather innovative research on materials and techniques that enhance the separation and adsorption of target compounds. Your contribution will help to advance our understanding of these crucial processes and promote the development of sustainable and high-performance materials and technologies.

Dr. Hao Wu
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Separations is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • advanced material
  • technology
  • separation
  • adsorption
  • pollutant treatment
  • efficient
  • low energy consumption
  • resource utilization

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (9 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

17 pages, 3618 KiB  
Article
Polymer-Coated Nickel Nanoparticles for CO2 Capture in Seawater
by Abhishek, Abhishek Ratanpara, Adib Mahmoodi Nasrabadi and Myeongsub Kim
Separations 2025, 12(5), 107; https://doi.org/10.3390/separations12050107 - 24 Apr 2025
Viewed by 189
Abstract
Carbon capture and storage (CCS) technologies are employed to mitigate global warming by removing carbon from the atmosphere. To enhance carbon capture efficiency, nanoparticles have gained considerable attention as catalysts due to their large surface area, tunable properties, regeneration, and enhanced reactivity. However, [...] Read more.
Carbon capture and storage (CCS) technologies are employed to mitigate global warming by removing carbon from the atmosphere. To enhance carbon capture efficiency, nanoparticles have gained considerable attention as catalysts due to their large surface area, tunable properties, regeneration, and enhanced reactivity. However, it poses some challenges, such as nanoparticle aggregation and reduced effectiveness in sustainable solvents like seawater. To address these limitations and promote an environmentally sustainable method for carbon capture, this study evaluates the CO2 capture efficiency of seawater using nickel nanoparticles (NiNPs) coated with polyvinylpyrrolidone (PVP) as a catalyst. We examined the time-dependent size variations of CO2 bubbles in a flow-focusing microchannel using high-speed bubble-based microfluidics, directly associated with transitory CO2 dissolution into the surrounding solution. We hypothesized that smaller polymer-coated NiNPs, due to their higher surface-to-volume ratio, can enhance CO2 solubility and capture rates under identical environmental conditions. To verify this, polymer-coated NiNPs of three different sizes—5 nm, 10 nm, and 20 nm—were synthesized and tested. The experiments revealed that 5 nm NiNPs achieved a CO2 dissolution rate of 77%, in contrast to 71% for 10 nm and 43% for 20 nm particles. These findings validate the hypothesis, demonstrating that smaller nanoparticles facilitate more effective CO2 capture using equivalent material quantities, thereby potentially improving the overall efficiency of CO2 reduction. This innovative approach contributes to advancing NiNP-based catalysts for saltwater-based CO2 capture. Full article
Show Figures

Figure 1

11 pages, 4115 KiB  
Article
Porous Composite Polymers Composed of Polyethyleneimine and Cyclodextrins: Synthesis and Application as Adsorbents for an Organic Compound
by Naofumi Naga, Yuma Miyazaki and Tamaki Nakano
Separations 2025, 12(4), 94; https://doi.org/10.3390/separations12040094 - 10 Apr 2025
Viewed by 209
Abstract
Polyethyleneimine-based porous composites have been prepared by ring-opening polymerization of 2,2-bishydroxymethylbutanol-tris[3-(1-aziridinyl)propionate] (3AZ), a tri-aziridine compound, in water, in the presence of cyclodextrins (CDs), i.e., α-CD, γ-CD, methyl-β-cyclodextrin (Me-β-CD), monoacetyl-β-cyclodextrin (Ac-β-CD), and hydroxypropyl-β-cyclodextrin (HP-β-CD). The corresponding 3AZ-CD porous polymer composites were successfully obtained in [...] Read more.
Polyethyleneimine-based porous composites have been prepared by ring-opening polymerization of 2,2-bishydroxymethylbutanol-tris[3-(1-aziridinyl)propionate] (3AZ), a tri-aziridine compound, in water, in the presence of cyclodextrins (CDs), i.e., α-CD, γ-CD, methyl-β-cyclodextrin (Me-β-CD), monoacetyl-β-cyclodextrin (Ac-β-CD), and hydroxypropyl-β-cyclodextrin (HP-β-CD). The corresponding 3AZ-CD porous polymer composites were successfully obtained in most cases under a wide range of CD concentrations, 5–20 wt%, and reaction temperatures, 20–60 °C. The reaction system in the presence of Ac-β-CD preferentially yielded gels. The polymer composites were composed of connected particles with sizes of the order of 10−9 m. The particle sizes decreased with an increase in the CD concentration. Young’s moduli of the 3AZ-CD porous polymer composites tended to increase with an increase in bulk density. The 3AZ-CD porous polymer composites with Me-β-CD and HP-β-CD effectively adsorbed phenolphthalein in the solution. The adsorption value increased with increasing the CD content and rose to more than 600 mg/g of porous polymer composite. Full article
Show Figures

Figure 1

14 pages, 3193 KiB  
Article
Enhancing SO3 and Fine Particle Co-Removal in Low-Low Temperature Electrostatic Precipitation via Turbulent Agglomeration
by Zongkang Sun, Danping Pan, Lingxiao Zhan and Linjun Yang
Separations 2025, 12(4), 87; https://doi.org/10.3390/separations12040087 - 3 Apr 2025
Viewed by 180
Abstract
Fine particulate matter (PM) and sulfur trioxide (SO3) from coal-fired flue gas pose significant environmental and health risks. While low-low temperature electrostatic precipitators (LLT-ESPs) enhance PM and SO3 removal by cooling flue gas below the acid dew point, their efficiency [...] Read more.
Fine particulate matter (PM) and sulfur trioxide (SO3) from coal-fired flue gas pose significant environmental and health risks. While low-low temperature electrostatic precipitators (LLT-ESPs) enhance PM and SO3 removal by cooling flue gas below the acid dew point, their efficiency is limited by incomplete agglomeration. This study proposes integrating turbulent agglomeration technology into LLT-ESP systems to improve collision and adhesion between droplets and particles. Experiments were conducted under three conditions: flue gas containing SO3 alone, fly ash alone, and their mixture. Particle size distributions, mass concentrations, and removal efficiencies were analyzed using ELPI+ and PM samplers. Results showed that turbulent agglomeration reduced the number concentration of sulfuric acid droplets by 21.4% from 1.59 × 107 cm−3 to 1.25 × 107 cm−3 (SO3-only case) and fine fly ash particles by 19.5% from 5.79 × 106 cm−3 to 4.66 × 106 cm−3 (fly-ash-only case). Although LLT-ESP combined with turbulent agglomeration has a certain removal effect in the case of individual pollutants, the overall effect is not unsatisfactory, especially for SO3, whose mass-based removal efficiency was merely 16.2%. The value of the fly-ash-only case was 92.1%. Synergistic effects in the coexistence scenario (fly ash and SO3) significantly enhanced agglomeration, increasing SO3 and PM removal efficiencies to 82.9% and 97.6%, respectively, compared to 69.7% and 90.1% without turbulent agglomeration. The mechanism behind the efficiency improvement involved droplet–particle collisions, sulfate deposition, and improved particle charging. This work demonstrates that turbulent agglomeration optimizes multi-pollutant control in LLT-ESP systems, offering a feasible strategy for achieving ultra-low emissions in coal-fired power plants. Full article
Show Figures

Figure 1

14 pages, 2508 KiB  
Article
Selective Adsorption of VOCs/Water Vapor on Activated Carbon: The Role of Adsorbent and VOC Molecular Polarity
by Wenlin Hang, Jiaxing Sun, Ronghang Zhao, Heng Chen and Jinjin Li
Separations 2025, 12(4), 86; https://doi.org/10.3390/separations12040086 - 2 Apr 2025
Viewed by 262
Abstract
The presence of abundant water vapor in industrial organic waste gases greatly reduces the selective adsorption of volatile organic pollutants (VOCs). The polarity of the adsorbent and VOC molecules plays an important role in the adsorption process, especially in the presence of water [...] Read more.
The presence of abundant water vapor in industrial organic waste gases greatly reduces the selective adsorption of volatile organic pollutants (VOCs). The polarity of the adsorbent and VOC molecules plays an important role in the adsorption process, especially in the presence of water vapor. In this paper, commercial coconut shell activated carbon (CSC) was modified by a thermal reduction treatment to obtain heat-treated coconut shell activated carbon (HCSC). CSC and HCSC exhibited similar pore structure characteristics but differed significantly in surface oxygen content (10.97% and 7.55%, respectively). Dynamic adsorption breakthrough experiments were conducted to determine the dynamic adsorption capacities of toluene on both adsorbents under varying relative humidity levels. HCSC demonstrated superior toluene/water vapor adsorption selectivity. Further analyses of toluene adsorption kinetics, activation energy, and water vapor adsorption isotherms revealed that the lower surface oxygen functional group content of HCSC resulted in a weaker surface polarity, facilitating the adsorption of weakly polar toluene. This was attributed to stronger toluene–HCSC interactions and weaker water–HCSC interactions. The dynamic adsorption capacities of three VOCs with varying polarities were also tested on HCSC. The observed VOC/water vapor adsorption selectivity had the following order: toluene > n-heptane > 1,2-dichloroethane. Grand Canonical Monte Carlo (GCMC) simulations were employed to quantify the relationship between the adsorption selectivity of eight VOCs with varying polarities and their molecular polarity. The results indicated a decrease in adsorption selectivity with increasing VOC polarity. A mechanistic analysis suggests that more polar VOCs prefer to adsorb polar oxygen-containing functional groups, competing with water molecules for adsorption sites. Under high humidity, hydrogen bonding leads to the formation of water clusters, exacerbating this competition. This research holds significant implications for the efficient selective adsorption of VOCs with varying polarities in humid industrial conditions. Full article
Show Figures

Figure 1

15 pages, 3252 KiB  
Article
Adsorption of Nitrate Ions Using Magnesium-Loaded Bamboo Powder and Nano-Sized Crushed Oyster Shells
by Harada Hiroyuki, Nur Maisarah Mohamad Sarbani, Aoyagi Misturu and Jun Nishimoto
Separations 2025, 12(4), 76; https://doi.org/10.3390/separations12040076 - 27 Mar 2025
Viewed by 214
Abstract
Excess nitrate ions should be avoided in agriculture as they are absorbed by plants and ingested by humans, which can have serious effects on soil and groundwater. In this study, environmentally friendly bamboo flour and nano-sized oyster shells were used as adsorbents. The [...] Read more.
Excess nitrate ions should be avoided in agriculture as they are absorbed by plants and ingested by humans, which can have serious effects on soil and groundwater. In this study, environmentally friendly bamboo flour and nano-sized oyster shells were used as adsorbents. The equilibrium time for nitrate adsorption was found to be short, less than five minutes, and the treatment temperature had little effect on adsorption. The adsorption capacity and adsorption mechanism were investigated using experiments and adsorption isotherms. Bamboo powder treated with magnesium chloride (Mg bamboo), crushed oyster shell (oyster shell), and hydrogel induced with sodium alginate (hydrogel) were used. The maximum adsorption of nitrate ions on the magnesium-treated bamboo flour was estimated to be 399 mg NO3/g by the Dubin–Radushakevich equation (correlation coefficient 0.84), with the Langmuir (correlation coefficient 0.91) and Freundlich (correlation coefficient 0.91) equations also fitting relatively well. The D-R equation (correlation coefficient 0.938) and Freundlich equation (correlation coefficient 0.943) also fitted oyster shells relatively well. The maximum adsorption was estimated at 354 mg NO3/g. In oyster shell treatments where phosphate and nitrate ions were present, it was observed that both substances were adsorbed simultaneously. For the hydrogels, only the D-R equation (correlation coefficient 0.944) and the Freundlich isotherm were applicable. The maximum adsorption was estimated at 156 mg/g. Full article
Show Figures

Figure 1

20 pages, 6626 KiB  
Article
In Situ N-Doped Low-Corrosion Porous Carbon Derived from Biomass for Efficient CH4/N2 Separation
by Huihui Wang, Yuqiong Zhao, He Lian, Qi Wang, Zhihong Shang and Guojie Zhang
Separations 2025, 12(2), 42; https://doi.org/10.3390/separations12020042 - 8 Feb 2025
Viewed by 419
Abstract
The separation of CH4 and N2 is essential for the effective use of low-concentration coalbed methane (CBM). In this study, a series of nitrogen-doped porous carbons were synthesized using an in situ nitrogen doping method combined with K2CO3 [...] Read more.
The separation of CH4 and N2 is essential for the effective use of low-concentration coalbed methane (CBM). In this study, a series of nitrogen-doped porous carbons were synthesized using an in situ nitrogen doping method combined with K2CO3 activation. The study systematically examined how changes in the physical structure and surface properties of the porous carbons affected their CH4/N2 separation performance. The results revealed that in situ nitrogen doping not only effectively adjusts the pore structure and alters the reaction of K2CO3 on the carbon matrix, but also introduces nitrogen and oxygen functional groups that significantly enhance the adsorption capabilities of the materials. In particular, sample S3Y6−800 demonstrated the highest methane adsorption capacity of 2.23 mmol/g at 273 K and 1 bar, outperforming most other porous carbons. This exceptional performance is attributed to the introduction of N-5, N-6, C-O, and COOH functional groups, as well as a narrower pore-size distribution (0.5–0.7 nm) and the formation of carbon nanotube structures. The introduction of heteroatoms also provides additional adsorption sites for the porous carbon, thus improving its methane adsorption capacity. Furthermore, dynamic breakthrough experiments confirmed that all samples effectively separated methane and nitrogen. The Toth model accurately described the CH4 adsorption behavior on S3Y6−800 at 298 K, suggesting that the adsorption process follows a sub-monolayer coverage mechanism within the microporous regions. This study provides a mild and environmentally friendly preparation method of porous carbons for CH4/N2 separation. Full article
Show Figures

Figure 1

17 pages, 3383 KiB  
Article
Condensable Particulate Matter Removal and Its Mechanism by Phase Change Technology During Wet Desulfurization Process
by Hui Tong, Yun Xu, Qiangqiang Ren, Hao Wu, Linzhi Shen, Menglong Sun and Hongmin Yang
Separations 2024, 11(11), 330; https://doi.org/10.3390/separations11110330 - 18 Nov 2024
Cited by 1 | Viewed by 938
Abstract
Limestone-gypsum wet flue gas desulfurization (WFGD) played a key role in SOx removal and clean emissions. However, it would also affect the condensable particulate matter (CPM) removal and compositions. The effects of the WFGD system on the removal of CPM and the contents [...] Read more.
Limestone-gypsum wet flue gas desulfurization (WFGD) played a key role in SOx removal and clean emissions. However, it would also affect the condensable particulate matter (CPM) removal and compositions. The effects of the WFGD system on the removal of CPM and the contents of soluble ions in CPM were investigated in a spray desulfurization tower at varied conditions. The results indicate that the emission concentration of CPM decreased from 7.5 mg/Nm3 to 3.7 mg/Nm3 following the introduction of cold water spray and hot alkali droplet spray systems. This resulted in a CPM reduction rate of approximately 51%, reducing the percentage of CPM in total particulate matter and solving the problem of substandard particulate matter emission concentrations in some coal-fired power plants. The concentrations of NO3, SO42−, and Cl among the soluble ions decreased by 41–66.6%. As the liquid-to-gas ratio of the cold water spray and hot alkali droplet spray increased, CPM came into contact with more spray, which accelerated dissolution and chemical reactions. Consequently, the CPM emission concentration decreased by 17.4–19%. The liquid-to-gas ratio has a great effect on the ion concentrations of NO3, SO42−, Cl and NH4+, with a decrease of 28–66%. The temperatures of the cold water spray and the hot alkali droplet spray primarily affect the ionic concentrations of SO42− and Ca2+, leading to a decrease of 32.3–51%. When the SO2 concentration increased from 0 mg/Nm3 to 1500 mg/Nm3, large amounts of SO2 reacted with the desulfurization slurry to form new CPM and its precursors, the CPM emission concentration increased by 57–68.4%. This study addresses the issue of high Concentration of CPM emissions from coal-fired power plants in a straightforward and efficient manner, which is significant for enhancing the air quality and reducing hazy weather conditions. Also, it provides a theoretical basis and technical foundation for the efficient removal of CPM from actual coal-fired flue gas. Full article
Show Figures

Figure 1

11 pages, 8089 KiB  
Article
Copper–Chitosan-Modified Magnetic Textile as a Peroxidase-Mimetic Catalyst for Dye Removal
by Ivo Safarik, Jitka Prochazkova and Kristyna Zelena Pospiskova
Separations 2024, 11(11), 325; https://doi.org/10.3390/separations11110325 - 10 Nov 2024
Viewed by 991
Abstract
Copper chitosan attached to a magnetic synthetic nonwoven textile was manufactured using a simple, rapid, and green procedure employing chitosan dissolved in diluted acetic acid and treatment with copper sulfate solution. The prepared copper–chitosan-modified textile exhibited peroxidase-mimetic activity which was subsequently used for [...] Read more.
Copper chitosan attached to a magnetic synthetic nonwoven textile was manufactured using a simple, rapid, and green procedure employing chitosan dissolved in diluted acetic acid and treatment with copper sulfate solution. The prepared copper–chitosan-modified textile exhibited peroxidase-mimetic activity which was subsequently used for the degradation (decolorization) of important organic dyes, namely methylene blue, Congo red, and Bismarck brown Y, in the presence of hydrogen peroxide. After 5 h of treatment at 22 °C, 87.5%, 79.5%, and 87.7% dye removal were observed for methylene blue, Congo red, and Bismarck brown Y, respectively. The textile bound catalyst can be easily recovered from the reaction mixture after the process is completed. Full article
Show Figures

Graphical abstract

Review

Jump to: Research

23 pages, 3216 KiB  
Review
A Review of Hydrogel Application in Wastewater Purification
by Lilyan Alsaka, Lina Alsaka, Ali Altaee, Syed Javaid Zaidi, John Zhou and Tayma Kazwini
Separations 2025, 12(2), 51; https://doi.org/10.3390/separations12020051 - 13 Feb 2025
Cited by 3 | Viewed by 1590
Abstract
Hydrogels have garnered considerable interest in water purification owing to their distinctive physicochemical characteristics, including high porosity, modifiable surface chemistry, and superior water retention capacity. This paper provides a thorough examination of the use of hydrogels in wastewater treatment. It encompasses their categorization [...] Read more.
Hydrogels have garnered considerable interest in water purification owing to their distinctive physicochemical characteristics, including high porosity, modifiable surface chemistry, and superior water retention capacity. This paper provides a thorough examination of the use of hydrogels in wastewater treatment. It encompasses their categorization and separation procedures, including size exclusion, adsorption, electrostatic interactions, and non-sieving processes. Furthermore, it examines how functional groups improve the efficiency of pollutant removal. The review examines hydrogel composites and their filtering processes, measuring their efficacy in adsorption and evaluating the benefits and limits of hydrogels, especially regarding regeneration capacities. It explores hydration processes in hydrogels, emphasizing the fundamental mechanisms and measuring methods involved. Future research must prioritize optimizing hydrogel design to enhance mechanical strength and reusability, investigate innovative functionalization techniques to address emergent contaminants, and establish scalable manufacturing methods for extensive industrial use. Full article
Show Figures

Graphical abstract

Back to TopTop