Bioactive Extracts of Spirulina platensis Inhibit Colletotrichum orchidearum and Fusarium nirenbergiae: A Green Approach to Hydroponic Lettuce Protection
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials and Chemicals
2.2. Isolation and Identification of Phytopathogens
2.3. Characterization of Spirulina platensis Biomass and Extract Production
- PC = phycocyanin concentration (mg·mL−1);
- A620 = absorbance at 620 nm;
- A652 = absorbance at 652 nm.
2.4. In Vitro Assay for Phytopathogen Inhibition
- PC = pathogen growth on the control plate (mm);
- PE = pathogen growth on the plate containing biocontrol agents (mm).
2.5. Data Processing and Statistical Analysis
3. Results
3.1. Identification of Phytopathogens
3.2. Spirulina platensis Biomass Characterization and Extract Yields
3.3. Efficacy of Extracts in Controlling Phytopathogens In Vitro
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) gene sequences Sample 37083 CCCTTCATTGAGACCAAGTACGCTGTGAGTAGCACCCCTCCAAGCTCGCCGCGATATCACGCCCGCCACCCCTCAATCGCGAACGCCAGCTTCTGGCTGCCGATCAGACGCCAAAATCAATCAGGCTCTGATACAGCGAGCGATTGATGGGGCCGGCGCGGCGGGGTCGAACATAGCCTCAATGGTTTCGGTTGCTGATACGCCATCCGCAGGCCTACATGCTCAAGTACGACTC Elongation factor (EF) gene sequences Sample 37084 CACGGTGACCGGGAGCGTCTGAGTGATGTTAGTACGAAGAGAAGTAGAATGAAGCATGAGCGACAACATACCAATGACGGTGACATAGTAGCGAGGAGTCTCGAACTTCCAGAGAGCAATATCGATGGTGATACCACGCTCACGCTCGGCCTTGAGCTTGTCAAGAACCCAGGCGTACTTGAAGGAACCCTTACCGAGCTCAGCGGCTTCCTATTGTTGAATGGTTAGTGACTGCTTGACACGTGACGACGCACTCATTGAGGTTGTGAGAATGGTTAAGAGGGCAAACGCTCCCGTCGCTCAAGTGGCGGGGTAAGTGCCCCACCAAAAAAAATTACAGTCATATTGCAAAATTTTTGGTCTCGAGCGGGGTAGCGGGCACGTTTCGAGTCGTAGGGGAAATCGATGGGCAAAGGACGCGCGATCGAAGGGAAAGTGACTAACCTTCTCGAACTTCTCGATGGTTCGCTTATCGATACCACCGCACTGGTAGATCAAGTGACCGGTCTGTGAAACGATGTCAGTATGTTGACTTTGAGAAATACCCCACCAGGTCTTGGTCGGGATTGACGATGGCAGATAAGCTCATTGTCGAGGAGAGTACTCACAGTG Second largest subunit of DNA-directed RNA polymerase II (RPB2) gene sequences Sample 37084 TCTTTCACATTTGCGTCGAACCAATACTCCCATCGGACGAGATGGTAAATTGGCCAAGCCTCGACAGCTTCACAACACTCACTGGGGTTTGGTGTGTCCTGCCGAAACACCTGAGGGTCAAGCTTGTGGTCTGGTCAAAAACTTGTCTCTGATGTGTTACGTCAGTGTCGGCTCTCCAGCCGATCCTCTGATTGAATTCATGATCAACAGAGGTATGGAAGTCGTTGAGGAGTACGAGCCGACAAGATACCCCCACGCTACAAAGATTTTCGTCAACGGTAGCTGGGTTGGTGTTCATGCCGACCCCAAGCATCTCGTGAATCAGGTCTTGGACACAAGACGAAAGTCTTACGTGCAGTTCGAAGTATCACTTGTTCGTGATATCCGAGACCGTGAATTCAAGATTTTCTCAGACGCTGGCCGTGTCATGAGACCCGTCTTTACAGTTCATCAGGAGGATGACTATGAGAACAACATCACCAAGGGACAACTAGTGTTGACAAAGGACCATGTCAATAGGCTAGCCCAAGAACAGGCAGAGCCTCCTGCCAACCCAGCGGACAAGTTTGGATGGGATGGCTTGATCCGCGAAGGAGCTGTCGAGTATCTCGATGCTGAGGAAGAAGAGACAGCCATGATTTGCATGACGCCAGAGGATCTCGAACTTTACCGTGAGCAAAAGAATGATGAAGCTACACTCACAGAAGAAGAGAAACGGGCCAAGCAAGAGGCAGAGAAGAGAGAACAAGAGGAGGACCGCAACAAGCGATTGAAGACAAAGGTGAACCCCACAACTCACATGTACACACATTGTGAGATTCACCCCAGTATGATTCTCGGTATCTGTGCCAGTATCATTCCTTTCCCCGATCACAACCAGGTATGTATGTCCTATGACC Internal transcribed spacer (ITS) region sequences Sample 37085 GCAACGACCACCTCAAGCCGGAAAGTTCGTCAAACTCGGTCATTTAGAGGAAGTAAAAGTCGTAACAAGGTCTCCGTAGGTGAACCTGCGGAGGGATCATTACACAAATATGAAGGCGGGCTGGAACCTCTCGGGGTTACAGCCTTGCTGAATTATTCACCCTTGTCTTTTGCGTACTTCTTGTTTCCTTGGTGGGTTCGCCCACCACTAGGACAAACATAAACCTTTTGTAATTGCAATCAGCGTCAGTAACAAATTAATAATTACAACTTTCAACAACGGATCTCTTGGTTCTGGCATCGATGAAGAACGCAGCGAAATGCGATAAGTAGTGTGAATTGCAGAATTCAGTGAATCATCGAATCTTTGAACGCACATTGCGCCCTTTGGTATTCCAAAGGGCATGCCTGTTCGAGCGTCATTTGTACCCTCAAGCTTTGCTTGGTGTTGGGCGTCTTGTCTCTAGCTTTGCTGGAGACTCGCCTTAAAGTAATTGGCAGCCGGCCTACTGGTTTC |
References
- López Mejía, N.; Martínez Correa, H.A.; Lobatón García, H.F. Biostimulating Activity of Biomass Extracts and Supernatants from a Culture of Arthrospira platensis Enriched with L-Tryptophan. J. Appl. Phycol. 2024, 36, 1875–1884. [Google Scholar] [CrossRef]
- Varia, J.; Kamaleson, C.; Lerer, L. Biostimulation with Phycocyanin-Rich Spirulina Extract in Hydroponic Vertical Farming. Sci. Hortic. 2022, 299, 111042. [Google Scholar] [CrossRef]
- Braun, J.C.A.; Colla, L.M. Use of Microalgae for the Development of Biofertilizers and Biostimulants. Bioenergy Res. 2023, 16, 289–310. [Google Scholar] [CrossRef]
- Brião, V.B.; Sbeghen, A.L.; Colla, L.M.; Castoldi, V.; Seguenka, B.; Schimidt, G.d.O.; Costa, J.A.V. Is Downstream Ultrafiltration Enough for Production of Food-Grade Phycocyanin from Arthrospira platensis? J. Appl. Phycol. 2020, 32, 1129–1140. [Google Scholar] [CrossRef]
- Righini, H.; Francioso, O.; Di Foggia, M.; Prodi, A.; Quintana, A.M.; Roberti, R. Tomato Seed Biopriming with Water Extracts from Anabaena minutissima, Ecklonia maxima and Jania adhaerens as a New Agro-Ecological Option against Rhizoctonia solani. Sci. Hortic. 2021, 281, 109921. [Google Scholar] [CrossRef]
- Toribio, A.J.; Jurado, M.M.; Suárez-Estrella, F.; López-González, J.A.; Martínez-Gallardo, M.R.; López, M.J. Application of Sonicated Extracts of Cyanobacteria and Microalgae for the Mitigation of Bacterial Canker in Tomato Seedlings. J. Appl. Phycol. 2021, 33, 3817–3829. [Google Scholar] [CrossRef]
- Attia, M.S.; Elsayed, S.M.; Abdelaziz, A.M.; Ali, M.M. Potential Impacts of Ascophyllum nodosum, Arthrospira platensis Extracts and Calcium Phosphite as Therapeutic Nutrients for Enhancing Immune Response in Pepper Plant against Fusarium Wilt Disease. Biomass Convers. Biorefin. 2023, 14, 19613–19622. [Google Scholar] [CrossRef]
- Yadav, D.R.; Adhikari, M.; Kim, S.W.; Kim, H.S.; Lee, Y.S. Suppression of Fusarium Wilt Caused by Fusarium oxysporum f. sp. Lactucae and Growth Promotion on Lettuce Using Bacterial Isolates. J. Microbiol. Biotechnol. 2021, 31, 1241–1255. [Google Scholar] [CrossRef]
- Sela Saldinger, S.; Rodov, V.; Kenigsbuch, D.; Bar-Tal, A. Hydroponic Agriculture and Microbial Safety of Vegetables: Promises, Challenges, and Solutions. Horticulturae 2023, 9, 51. [Google Scholar] [CrossRef]
- Hultberg, M.; Holmkvist, A.; Alsanius, B. Strategies for Administration of Biosurfactant-Producing Pseudomonads for Biocontrol in Closed Hydroponic Systems. Crop Prot. 2011, 30, 995–999. [Google Scholar] [CrossRef]
- Aiello, D.; Fiorenza, A.; Leonardi, G.R.; Vitale, A.; Polizzi, G. Fusarium nirenbergiae (Fusarium oxysporum Species Complex) Causing the Wilting of Passion Fruit in Italy. Plants 2021, 10, 2011. [Google Scholar] [CrossRef]
- Mirghasempour, S.A.; Studholme, D.J.; Chen, W.; Cui, D.; Mao, B. Identification and Characterization of Fusarium nirenbergiae Associated with Saffron Corm Rot Disease. Plant Dis. 2022, 106, 486–495. [Google Scholar] [CrossRef] [PubMed]
- Jumpathong, W.; Intra, B.; Euanorasetr, J.; Wanapaisan, P. Biosurfactant-Producing Bacillus velezensis PW192 as an Anti-Fungal Biocontrol Agent against Colletotrichum gloeosporioides and Colletotrichum musae. Microorganisms 2022, 10, 1017. [Google Scholar] [CrossRef] [PubMed]
- Shonde, A.T.; Adekunle, A.A.; Samuel, T.O.; Adeogun, O.O.; Ebabhi, A.M.; Kanife, U.C. Isolation, Identification and Effect of Fungi from Rhizosphere of Diseased Amaranthus hybridus L., Solanum lycopersicum L., Lactuca sativa L. and Allium fistulosum L. Vegetable Crops in Selected Farms in Lagos State, Nigeria. J. Appl. Sci. Environ. Manag. 2023, 27, 989–994. [Google Scholar] [CrossRef]
- Dutta, S.; Basu, A.; Maji, P.K. New Anthracnose Disease Caused by Colletotrichum orchidearum on Cattleya sp. Orchid in India. Braz. J. Dev. 2024, 10, e67401. [Google Scholar] [CrossRef]
- Muniz, P.H.P.C.; Marques, M.G.; Peixoto, G.H.S.; Simão, K.G.; Carvalho, D.D.C. Morphological characterization of Alternaria alternata associated on iceberg lettuce seeds cv. “Astra”. Rev. Agric. Neotrop. 2018, 5, 82–86. Available online: https://www.cabidigitallibrary.org/doi/full/10.5555/20193512866 (accessed on 10 July 2025). [CrossRef]
- Töfoli, J.G.; Domingues, R.J.; Ferrari, J.T. Alternaria spp. Em Oleráceas: Sintomas, Etiologia, Manejo e Fungicidas. O Biológico 2015, 77, 21–34. [Google Scholar]
- Faresin, L.d.S.; Devos, R.J.B.; Reinehr, C.O.; Colla, L.M. Development of Ice Cream with Reduction of Sugar and Fat by the Addition of Inulin, Spirulina platensis or Phycocyanin. Int. J. Gastron. Food Sci. 2022, 27, 100445. [Google Scholar] [CrossRef]
- Guarienti, C.; Bender, L.E.; Frota, E.G.; Bertolin, T.E.; Costa, J.A.V.; dos S. Richards, N.S.P. Effects of Microencapsulation on the Preservation of Thermal Stability and Antioxidant Properties of Spirulina. J. Food Meas. Charact. 2021, 15, 5657–5668. [Google Scholar] [CrossRef]
- Dranseikienė, D.; Balčiūnaitė-Murzienė, G.; Karosienė, J.; Morudov, D.; Juodžiukynienė, N.; Hudz, N.; Gerbutavičienė, R.J.; Savickienė, N. Cyano-Phycocyanin: Mechanisms of Action on Human Skin and Future Perspectives in Medicine. Plants 2022, 11, 1249. [Google Scholar] [CrossRef]
- Tavakoli, S.; Hong, H.; Wang, K.; Yang, Q.; Gahruie, H.H.; Zhuang, S.; Li, Y.; Liang, Y.; Tan, Y.; Luo, Y. Ultrasonic-Assisted Food-Grade Solvent Extraction of High-Value Added Compounds from Microalgae Spirulina platensis and Evaluation of Their Antioxidant and Antibacterial Properties. Algal Res. 2021, 60, 102493. [Google Scholar] [CrossRef]
- Chen, C.-Y.; Kao, P.-C.; Tan, C.H.; Show, P.L.; Cheah, W.Y.; Lee, W.-L.; Ling, T.C.; Chang, J.-S. Using an Innovative PH-Stat CO2 Feeding Strategy to Enhance Cell Growth and C-Phycocyanin Production from Spirulina platensis. Biochem. Eng. J. 2016, 112, 78–85. [Google Scholar] [CrossRef]
- Martí-Quijal, F.J.; Ramon-Mascarell, F.; Pallarés, N.; Ferrer, E.; Berrada, H.; Phimolsiripol, Y.; Barba, F.J. Extraction of Antioxidant Compounds and Pigments from Spirulina (Arthrospira platensis) Assisted by Pulsed Electric Fields and the Binary Mixture of Organic Solvents and Water. Appl. Sci. 2021, 11, 7629. [Google Scholar] [CrossRef]
- Rempel, A.; de Souza Sossella, F.; Margarites, A.C.; Astolfi, A.L.; Steinmetz, R.L.R.; Kunz, A.; Treichel, H.; Colla, L.M. Bioethanol from Spirulina platensis Biomass and the Use of Residuals to Produce Biomethane: An Energy Efficient Approach. Bioresour. Technol. 2019, 288, 121588. [Google Scholar] [CrossRef]
- Lupatini, A.L.; de Oliveira Bispo, L.; Colla, L.M.; Costa, J.A.V.; Canan, C.; Colla, E. Protein and Carbohydrate Extraction from S. platensis Biomass by Ultrasound and Mechanical Agitation. Food Res. Int. 2017, 99, 1028–1035. [Google Scholar] [CrossRef]
- Le, D.; Tran, L.T.M.; Cao, L.T.; Pham, T.N.; Dinh, A.Q.; Nguyen, U.K. Diversity and Pathogenicity of Fungal Species Associated with Lettuce Wilt and Root Rot in Vietnam. J. Plant Pathol. 2024, 107, 351–363. [Google Scholar] [CrossRef]
- Barnett, H.L.; Hunter, B.B. Illustrated Genera of Imperfect Fungi, 4th ed.; American Phytopathological Society (APS Press): St. Paul, MN, USA, 1998; Available online: https://l1nk.dev/Ddh6B (accessed on 10 July 2025).
- Leslie, J.F.; Summerell, B.A. The Fusarium Laboratory Manual; John Wiley& Sons: Hoboken, NJ, USA, 2008. [Google Scholar]
- de Hoog, G.S.; van den Ende, A.H.G.G. Molecular Diagnostics of Clinical Strains of Filamentous Basidiomycetes. Mycoses 1998, 41, 183–189. [Google Scholar] [CrossRef]
- Vilgalys, R.; Hester, M. Rapid Genetic Identification and Mapping of Enzymatically Amplified Ribosomal DNA from Several Cryptococcus Species. J. Bacteriol. 1990, 172, 4238–4246. [Google Scholar] [CrossRef]
- Carbone, I.; Kohn, L.M. A Method for Designing Primer Sets for Speciation Studies in Filamentous Ascomycetes. Mycologia 1999, 91, 553–556. [Google Scholar] [CrossRef]
- O’Donnell, K.; Sarver, B.A.J.; Brandt, M.; Chang, D.C.; Noble-Wang, J.; Park, B.J.; Sutton, D.A.; Benjamin, L.; Lindsley, M.; Padhye, A.; et al. Phylogenetic Diversity and Microsphere Array-Based Genotyping of Human Pathogenic Fusaria, Including Isolates from the Multistate Contact Lens-Associated U.S. Keratitis Outbreaks of 2005 and 2006. J. Clin. Microbiol. 2007, 45, 2235–2248. [Google Scholar] [CrossRef]
- Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. Mol. Biol. Evol. 2018, 35, 1547–1549. [Google Scholar] [CrossRef] [PubMed]
- Lowry, O.H.; Rosebrough, N.J.; Farr, A.L.; Randall, R.J. Protein Measurement with the Folin Phenol Reagent. J. Biol. Chem. 1951, 193, 265–275. [Google Scholar] [CrossRef] [PubMed]
- DuBois, M.; Gilles, K.A.; Hamilton, J.K.; Rebers, P.; Smith, F. Colorimetric Method for Determination of Sugars and Related Substances. Anal. Chem. 1956, 28, 350–356. [Google Scholar] [CrossRef]
- Silveira, S.T.; Burkert, J.F.M.; Costa, J.A.V.; Burkert, C.A.V.; Kalil, S.J. Optimization of Phycocyanin Extraction from Spirulina platensis Using Factorial Design. Bioresour. Technol. 2007, 98, 1629–1634. [Google Scholar] [CrossRef]
- Bennett, A.; Bogorad, L. Complementary Chromatic Adaptation in a Filamentous Blue-Green Alga. J. Cell Biol. 1973, 58, 419–435. [Google Scholar] [CrossRef]
- Colla, L.M.; Furlong, E.B.; Costa, J.A.V. Antioxidant Properties of Spirulina (Arthospira) platensis Cultivated under Different Temperatures and Nitrogen Regimes. Braz. Arch. Biol. Technol. 2007, 50, 161–167. [Google Scholar] [CrossRef]
- Correia, R.T.P.; McCue, P.; Magalhães, M.M.A.; Macêdo, G.R.; Shetty, K. Production of Phenolic Antioxidants by the Solid-State Bioconversion of Pineapple Waste Mixed with Soy Flour Using Rhizopus oligosporus. Process Biochem. 2004, 39, 2167–2172. [Google Scholar] [CrossRef]
- Sousa, B.A.; Correia, R.T.P. Phenolic Content, Antioxidant Activity and Antiamylolytic Activity of Extracts Obtained from Bioprocessed Pineapple and Guava Wastes. Braz. J. Chem. Eng. 2012, 29, 25–30. [Google Scholar] [CrossRef]
- Tortelli, B.; Cappellaro, S.; de Macedo Nava, F.F.; Tonial, F.; Huzar-Novakowiski, J.; Milanesi, P.M.; Chiomento, J.L.T. Bioactivity of an Extract from the Endophyte Diaporthe infecunda on Soybean Seeds Inoculated with Colletotrichum truncatum and Sclerotinia sclerotiorum. Eur. J. Plant Pathol. 2023, 166, 509–520. [Google Scholar] [CrossRef]
- Quiroga, E.N.; Sampietro, A.R.; Vattuone, M.A. Screening Antifungal Activities of Selected Medicinal Plants. J. Ethnopharmacol. 2001, 74, 89–96. [Google Scholar] [CrossRef]
- Ferreira, E.B.; Cavalcanti, P.P.; Nogueira, D.A. ExpDes.Pt: Pacote Experimental Designs (Portugues) 2021. Available online: https://cran.r-project.org/package=ExpDes.pt (accessed on 10 July 2025).
- Cho, H.S.; Kim, B.R.; Yu, S.H. Taxonomic Studies on Alternaria in Korea. Mycobiology 2001, 29, 27–42. [Google Scholar] [CrossRef]
- Simmons, E.G. Alternaria Taxonomy: Current Status, Viewpoint, Challenge. In Alternaria Biology, Plant Diseases and Metabolites; Elsevier Science Publishers: Amsterdam, The Netherlands, 1992; pp. 1–35. Available online: https://l1nq.com/aEY0V (accessed on 10 July 2025).
- Lestari, A.; Henri, H.; Sari, E.; Wahyuni, T. Microscopic Characterization of Fusarium sp. Associated with Yellow Disease of Pepper (Piper Nigrum L.) in South Bangka Regency. PLANTA Trop. J. Agrosains (J. Agro Sci.) 2021, 9, 1–9. [Google Scholar] [CrossRef]
- Summerell, B.A.; Salleh, B.; Leslie, J.F. A Utilitarian Approach to Fusarium Identification. Plant Dis. 2003, 87, 117–128. [Google Scholar] [CrossRef] [PubMed]
- Sarada, R.; Pillai, M.G.; Ravishankar, G.A. Phycocyanin from Spirulina platensis: Influence of Processing of Biomass on Phycocyanin Yield, Analysis of Efficacy of Extraction Methods and Stability Studies on Phycocyanin. Process Biochem. 1999, 34, 795–801. [Google Scholar] [CrossRef]
- Schmid, B.; Coelho, L.; Schulze, P.S.C.; Pereira, H.; Santos, T.; Maia, I.B.; Reis, M.; Varela, J. Antifungal Properties of Aqueous Microalgal Extracts. Bioresour. Technol. Rep. 2022, 18, 101096. [Google Scholar] [CrossRef]
- Damm, U.; Sato, T.; Alizadeh, A.; Groenewald, J.Z.; Crous, P.W. The Colletotrichum dracaenophilum, C. magnum and C. orchidearum Species Complexes. Stud. Mycol. 2019, 92, 1–46. [Google Scholar] [CrossRef]
- Lee, S.-H.; Lee, J.E.; Kim, Y.; Lee, S.-Y. The Production of High Purity Phycocyanin by Spirulina platensis Using Light-Emitting Diodes Based Two-Stage Cultivation. Appl. Biochem. Biotechnol. 2016, 178, 382–395. [Google Scholar] [CrossRef]
- Alara, O.R.; Abdurahman, N.H.; Ukaegbu, C.I. Extraction of Phenolic Compounds: A Review. Curr. Res. Food Sci. 2021, 4, 200–214. [Google Scholar] [CrossRef]
- Tran, L.-D.; Kuhnholz, J.; Siebecke, V.; Noke, A. Augmentation of the Stability of Phycocyanin from Arthrospira maxima (Spirulina) by the Addition of Food Preservatives and Influence of PH on Extracts Obtained with Different Extraction Procedures. J. Appl. Phycol. 2025, 37, 1933–1949. [Google Scholar] [CrossRef]
- Pradana, Y.S.; Nugraha, B.A.; Sari, W.; Sadewo, B.R.; Dewayanto, N. Application of Low-Dose UV-C for Microalgae Spirulina platensis Sterilization. In AIP Conference Proceedings; AIP Publishing: Yogyakarta, Indonesia, 2023. [Google Scholar] [CrossRef]
- Scaglioni, P.T.; Pagnussatt, F.A.; Lemos, A.C.; Nicolli, C.P.; Del Ponte, E.M.; Badiale-Furlong, E. Nannochloropsis sp. and Spirulina platensis as a Source of Antifungal Compounds to Mitigate Contamination by Fusarium graminearum Species Complex. Curr. Microbiol. 2019, 76, 930–938. [Google Scholar] [CrossRef]
- Rajamanickam, K.; Sudha, S.S.; Francis, M.; Sowmya, T.; Rengaramanujam, J.; Sivalingam, P.; Prabakar, K. Microalgae Associated Brevundimonas sp. MSK 4 as the Nano Particle Synthesizing Unit to Produce Antimicrobial Silver Nanoparticles. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2013, 113, 10–14. [Google Scholar] [CrossRef]
- Sacramento, R.V.; Deegan, K.R.; Vitória, M.K.M.; Barbosa, C.d.J.; Lima, S.T.d.C. Antifungal Potential of Eukaryotic Microalgae against the Fungus Colletotrichum gloeosporioides. Res. Soc. Dev. 2025, 14, e6814148071. [Google Scholar] [CrossRef]
Component/Condition | ITS | EF | GAPDH | RPB2 |
---|---|---|---|---|
Total Volume (μL) | 15 | 15 | 15 | 15 |
Genomic DNA (μL) | 2.0 | 2.0 | 2.0 | 2.0 |
Primer (μL each) | 0.30 | 0.15 | 0.15 | 0.30 |
Ultrapure Water (μL) | 9.88 | 9.43 | 10.18 | 10.03 |
Taq Polymerase (μL) | 0.12 | 0.12 | 0.12 | 0.12 |
10× PCR Buffer (μL) | 1.50 | 1.50 | 1.50 | 1.50 |
MgCl2 (μL) | 0.6 | 0.6 | 0.6 | 0.45 |
DMSO (μL) | – | 0.75 | – | – |
dNTPs (μL) | 0.3 | 0.3 | 0.3 | 0.3 |
Initial Denaturation | 95 °C 5 min | 94 °C 1 min | 94 °C 4 min | 94 °C 1 min 30 s |
Denaturation | 94 °C 30 s | 94 °C 30 s | 94 °C 45 s | 94 °C 30 s |
Extraction Type | Abbreviation | References |
---|---|---|
1% (w/v) biomass homogenized in phosphate buffer for 21 h at 4 °C | A | [22] |
1% (w/v) biomass homogenized in phosphate buffer for 21 h at 4 °C, followed by ultrasonic bath treatment | A+UB 1 | [22,25] |
1% (w/v) biomass homogenized in phosphate buffer for 21 h at 4 °C, followed by ultrasound probe treatment | A+UP 2 | [22,24] |
1% (w/v) biomass homogenized in phosphate buffer for 4 h at 25 °C | B | [22,36] |
1% (w/v) biomass homogenized in phosphate buffer for 4 h at 25 °C, followed by ultrasonic bath treatment | B+UB | [22,25,36] |
1% (w/v) biomass homogenized in phosphate buffer for 4 h at 25 °C, followed by ultrasound probe treatment | B+UP | [22,24,36] |
5% (w/v) biomass homogenized in hydroalcoholic solvent, followed by shaking (150 rpm) for 60 min at 25 °C | C | [21,25] |
5% (w/v) biomass homogenized in hydroalcoholic solvent, followed by ultrasonic bath treatment, and then shaking (150 rpm) for 60 min | C+UB | [21,25] |
5% (w/v) biomass homogenized in hydroalcoholic solvent, followed by ultrasound probe treatment, and then shaking (150 rpm) for 60 min at 25 °C | C+UP | [21,24] |
Study/Source | Extraction Method | Time/Conditions | Compound and Concentration |
---|---|---|---|
Brião et al. (2020) [4] | Phosphate buffer | 21 h, 4 °C | 58.54 mg·(g dry biomass)−1 of PC |
Current study (ultrasonic bath + probe) | Phosphate buffer + ultrasound (bath and probe) | 4 h, room temperature or 21 h, 4 °C, followed by ultrasonic bath treatment (37 kHz, 30 min at 30 °C; P60H), or ultrasound probe treatment (5 min at 100% power). | ~76 mg·(g dry biomass)−1 of PC |
Tavakoli et al. (2021) [21] | Sonication with WE70 solvent (70% ethanol + 30% water) | 30 min, 100 W | 28.78 mg GAE·(g dry biomass)−1 of TPC |
Martí-Quijal et al. (2021) [23] | 50% Ethanol | 120 min, room temperature | 6.04 mg GAE·(g dry biomass)−1 of TPC |
Current study (hydroalcoholic mixture) | Hydroalcoholic mixture (ethanol:water 1:1)—subjected to shaking, followed by either ultrasonic bath or ultrasound probe treatment | Shaking at 150 rpm for 60 min at 25 °C, followed by ultrasonic bath treatment (37 kHz, 30 min at 30 °C; P60H), or ultrasound probe treatment (5 min at 100% power). | 2.13 mg GAE·(g dry biomass)−1 of TPC |
Current study (phosphate buffer + ultrasound) | Phosphate buffer + ultrasound (bath and probe) | 21 h, 4 °C, followed by ultrasonic bath treatment (37 kHz, 30 min at 30 °C; P60H), or ultrasound probe treatment (5 min at 100% power). | 20.95 mg GAE·(g dry biomass)−1 of TPC |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bender, L.E.; Monteiro, E.d.L.; Chiomento, J.L.T.; Colla, L.M. Bioactive Extracts of Spirulina platensis Inhibit Colletotrichum orchidearum and Fusarium nirenbergiae: A Green Approach to Hydroponic Lettuce Protection. Processes 2025, 13, 2483. https://doi.org/10.3390/pr13082483
Bender LE, Monteiro EdL, Chiomento JLT, Colla LM. Bioactive Extracts of Spirulina platensis Inhibit Colletotrichum orchidearum and Fusarium nirenbergiae: A Green Approach to Hydroponic Lettuce Protection. Processes. 2025; 13(8):2483. https://doi.org/10.3390/pr13082483
Chicago/Turabian StyleBender, Leticia Eduarda, Emily da Luz Monteiro, José Luís Trevizan Chiomento, and Luciane Maria Colla. 2025. "Bioactive Extracts of Spirulina platensis Inhibit Colletotrichum orchidearum and Fusarium nirenbergiae: A Green Approach to Hydroponic Lettuce Protection" Processes 13, no. 8: 2483. https://doi.org/10.3390/pr13082483
APA StyleBender, L. E., Monteiro, E. d. L., Chiomento, J. L. T., & Colla, L. M. (2025). Bioactive Extracts of Spirulina platensis Inhibit Colletotrichum orchidearum and Fusarium nirenbergiae: A Green Approach to Hydroponic Lettuce Protection. Processes, 13(8), 2483. https://doi.org/10.3390/pr13082483