Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (118)

Search Parameters:
Keywords = PVD sputtering

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 5161 KB  
Article
Structure and Tribological Properties of TiN/DLC, CrN/DLC, TiAlCN/DLC, AlTiCN/DLC and AlCrTiN/DLC Hybrid Coatings on Tool Steel
by Marcin Staszuk, Daniel Pakuła, Magdalena Olszowska, Anna Kloc-Ptaszna, Magdalena Szindler, Andrzej N. Wieczorek, Rafał Honysz, Ewa Jonda and Marcin Basiaga
Materials 2025, 18(17), 4188; https://doi.org/10.3390/ma18174188 - 6 Sep 2025
Viewed by 817
Abstract
In view of the need to increase the durability of working tools exposed to intense friction, this study analysed hybrid coatings (TiAlCN, AlTiCN, AlCrTiN, TiN, CrN) with a DLC (Diamond-Like Carbon) layer, deposited using PVD (Physical Vapour Deposition) methods (arc evaporation and magnetron [...] Read more.
In view of the need to increase the durability of working tools exposed to intense friction, this study analysed hybrid coatings (TiAlCN, AlTiCN, AlCrTiN, TiN, CrN) with a DLC (Diamond-Like Carbon) layer, deposited using PVD (Physical Vapour Deposition) methods (arc evaporation and magnetron sputtering). The structural characteristics of the coatings were determined using SEM (Scanning Electron Microscope) and AFM (Atomic Force Microscope) microscopy, as well as Raman spectroscopy, which confirmed the compact structure and amorphous nature of the DLC layer. Tribological tests were performed using a ball-on-disc test, revealing that DLC hybrid coatings significantly reduce the coefficient of friction (stabilisation in the range of 0.10 to 0.14 due to DLC graphitisation), limiting tool wear even under increased load. The SEM-EDS (Scanning Electron Microscope-Energy Dispersive Spectroscopy) microscopic examination revealed that the dominant wear mechanisms are abrasive and adhesive damage, and the AlCrTiN/DLC system is characterised by low wear and high adhesion (Lc = 105 N), making it the optimal configuration for the given loads. Microhardness tests showed that high hardness does not always automatically translate into increased wear resistance (e.g., the AlTiCN coating with 4220 HV showed the highest wear), while coating systems with moderate hardness (TiAlCN/DLC, CrN/DLC) achieved very low wear values (~0.17 × 10−5 mm3/Nm), which highlights the importance of synergy between the hardness of the sublayer and the low friction of DLC in the design of protective coatings. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Figure 1

30 pages, 3586 KB  
Review
Research Progress on Thermoelectric Properties of Doped SnSe Thin Films
by Zhengjie Guo, Chi Zhang, Jinhui Zhou, Fuyueyang Tan, Canyuan Yang, Shenglan Li, Yue Lou, Enning Zhu, Zaijin Li, Yi Qu and Lin Li
Coatings 2025, 15(9), 1041; https://doi.org/10.3390/coatings15091041 - 5 Sep 2025
Viewed by 510
Abstract
With the continuous advancement of science and technology, SnSe thin films are widely used in various fields such as solar cells, energy harvesting, and flexible devices. The importance of SnSe thin films continues to be highlighted, from solar cells to flexible devices. With [...] Read more.
With the continuous advancement of science and technology, SnSe thin films are widely used in various fields such as solar cells, energy harvesting, and flexible devices. The importance of SnSe thin films continues to be highlighted, from solar cells to flexible devices. With the continuous improvement of performance requirements for SnSe thin films in different fields, research on the properties of SnSe thin films has gradually become a hot topic. As an environmentally friendly and green material, SnSe thin films are more in line with modern semiconductor technology compared to crystalline materials, and they have unique advantages in the construction and application of thermoelectric micro/nano devices. This article first analyzes the characteristics of SnSe materials and then compares and analyzes PVD technologies and CVD technologies on doped SnSe thin films. In particular, it summarizes the research progress of CVD technologies on doped SnSe thin films, such as vacuum evaporation, magnetron sputtering, and pulse laser deposition, and it summarizes the research progress of PVD technologies on doped SnSe thin films, such as dual-temperature-zone CVD, the solution process method, and electrochemical deposition technology. It analyzes the performance of doped SnSe thin films prepared by different techniques. Finally, the preparation technology for the optimal thermoelectric properties of doped SnSe thin films and the approaches for potential research direction of future researchers were discussed, in the context of providing better performance SnSe thin films for the fields of solar cells, energy harvesting, and flexible devices. Full article
(This article belongs to the Special Issue Recent Developments in Thin Films for Technological Applications)
Show Figures

Figure 1

17 pages, 3153 KB  
Review
Fabrication and Properties of Hard Coatings by a Hybrid PVD Method
by Rui Zhang, Qimin Wang, Yuxiang Xu, Lisheng Li and Kwang Ho Kim
Lubricants 2025, 13(9), 390; https://doi.org/10.3390/lubricants13090390 - 1 Sep 2025
Viewed by 930
Abstract
By integrating cathodic arc evaporation (CAE) with magnetron sputtering (MS) or high-power impulse magnetron sputtering (HiPIMS), hard coatings with diverse multicomponent compositions can be fabricated. Depending on the deposition conditions, the coatings with nano-composite or nano-multilayered microstructures are produced. During the mixing deposition [...] Read more.
By integrating cathodic arc evaporation (CAE) with magnetron sputtering (MS) or high-power impulse magnetron sputtering (HiPIMS), hard coatings with diverse multicomponent compositions can be fabricated. Depending on the deposition conditions, the coatings with nano-composite or nano-multilayered microstructures are produced. During the mixing deposition conditions, nano-composite coatings are fabricated, which can be tailored to possess combining properties of super hardness, low friction coefficient, and excellent thermal/chemical stability. For the deposition with larger rotating periods, layer-by-layer deposition was observed. By the nano-multilayered coating design, superior mechanical properties (hardness ≥ 35 GPa), modulated residual stresses, and enhanced high-temperature properties can be obtained. In addition, lubricious elements, low friction (friction coefficient < 0.4), and low wear (<10−5 mm3/N∙m) both at ambient temperature and high temperature can be realized. Among these coatings, some have been specifically designed to achieve outstanding cutting performance in high-speed cutting applications. Several nitride and oxide hard coatings, such as AlTiN, TiAlN/TiSiN, AlCrN/Cu, and AlCrO, were deposited using a hybrid industrial physical vapor deposition (PVD) coating system. The microstructure, mechanical properties, and cutting performance of these coatings will be discussed. Full article
(This article belongs to the Special Issue Wear and Friction of High-Performance Coatings and Hardened Surfaces)
Show Figures

Figure 1

20 pages, 6318 KB  
Article
Mechanical, Tribological, and Corrosion Behavior of Magnetron-Sputtered VN Coatings Deposited at Different Substrate Temperatures
by Stanislava Rabadzhiyska, Dimitar Dechev, Nikolay Ivanov, Maria Shipochka, Genoveva Atanasova, Velichka Strijkova, Vesela Katrova and Nina Dimcheva
Metals 2025, 15(9), 955; https://doi.org/10.3390/met15090955 - 28 Aug 2025
Viewed by 722
Abstract
Vanadium nitride (VN) ceramic layers were deposited on 304L stainless steel specimens by direct current (DC) magnetron sputtering in an Ar/N2 gas mixture at substrate temperatures of 250 °C, 300 °C, and 350 °C. The obtained films were evaluated by X-ray diffraction [...] Read more.
Vanadium nitride (VN) ceramic layers were deposited on 304L stainless steel specimens by direct current (DC) magnetron sputtering in an Ar/N2 gas mixture at substrate temperatures of 250 °C, 300 °C, and 350 °C. The obtained films were evaluated by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and atomic force microscopy (AFM). The results showed the existence of VN and V2N phases in the as-deposited coatings. It was found that the surface roughness parameter (Ra = 10 nm) decreased with increasing substrate temperatures up to 350 °C. The highest hardness (10.6 GPa) was achieved in the layer produced at 300 °C. The low values of plastic and elastic deformation, as well as a low friction coefficient (0.38), led to an enhancement in the coatings’ tribological properties. The film’s thickness increased with increasing temperature due to the presence of nucleation centers in the films. The highest thickness (557 nm) was achieved in the layer deposited at 350 °C. The electrochemical tests exhibited reliable protection against corrosion in strongly aggressive electrolytes. It has been proven that the temperature significantly affects the ceramic coatings’ structural, morphological, tribological, and corrosion properties. Full article
(This article belongs to the Special Issue Surface Treatments and Coating of Metallic Materials)
Show Figures

Figure 1

22 pages, 2805 KB  
Review
Recent Developments in Self-Lubricating Thin-Film Coatings Deposited by a Sputtering Technique: A Critical Review of Their Synthesis, Properties, and Applications
by Sunil Kumar Tiwari, Turali Narayana, Rashi Tyagi, Gaurav Pant and Piyush Chandra Verma
Lubricants 2025, 13(8), 372; https://doi.org/10.3390/lubricants13080372 - 21 Aug 2025
Viewed by 912
Abstract
In response to the demand for advanced materials in extreme environments, researchers have developed a variety of bulk and thin-film materials. One of the best-known processes for altering the mechanical and tribological properties of materials is surface engineering techniques. These involve various approaches [...] Read more.
In response to the demand for advanced materials in extreme environments, researchers have developed a variety of bulk and thin-film materials. One of the best-known processes for altering the mechanical and tribological properties of materials is surface engineering techniques. These involve various approaches to synthesize thin-film coatings, along with post-deposition treatments. The need for self-lubricating materials in extreme situations such as high-temperature applications, cryogenic temperatures, and vacuum systems has attracted the attention of researchers. They have fabricated several types of thin films using CVD and PVD techniques to meet this demand. Among the various techniques used for fabricating self-lubricating coatings, sputtering stands out as a special one. It contributes to developing smooth, homogeneous, and crack-free dense microstructures, which further enhance the coatings’ properties. This review explains the need for self-lubricating materials and the different techniques used to synthesize them. It discusses and summarizes the concept of synthesizing various types of self-lubricating films. It shows the different types of self-lubricating material systems, like transition metal-based nitrides and carbides, diamond-like carbon-based materials, and so on. This work also reflects the governing factors like the deposition temperature, doping elements, thickness of the film, deposition pressure, gas flow rate, etc., that influence the deposition results and, consequently, the properties of the film, as well as their advanced applications in different areas. This work reflects the self-lubricating properties of different kinds of films exposed to various environments in terms of their coefficient of friction and wear rate, emphasizing how the friction coefficient affects the wear rate. Full article
Show Figures

Figure 1

12 pages, 4963 KB  
Article
Effect of Bias Voltage and Cr/Al Content on the Mechanical and Scratch Resistance Properties of CrAlN Coatings Deposited by DC Magnetron Sputtering
by Shahnawaz Alam, Zuhair M. Gasem, Nestor K. Ankah and Akbar Niaz
J. Manuf. Mater. Process. 2025, 9(8), 264; https://doi.org/10.3390/jmmp9080264 - 6 Aug 2025
Viewed by 568
Abstract
Chromium–aluminum nitride (CrAlN) coatings were deposited on polished H13 tool steel substrates using direct current (DC) magnetron sputtering. The Cr/Al composition in the target was varied by inserting either four or eight chromium (Cr) plugs into cavities machined into an aluminum (Al) plate [...] Read more.
Chromium–aluminum nitride (CrAlN) coatings were deposited on polished H13 tool steel substrates using direct current (DC) magnetron sputtering. The Cr/Al composition in the target was varied by inserting either four or eight chromium (Cr) plugs into cavities machined into an aluminum (Al) plate target. Nitrogen was introduced as a reactive gas to facilitate the formation of the nitride phase. Coatings were deposited at substrate bias voltages of −30 V, −50 V, and −60 V to study the combined effects of composition and ion energy on coating properties. Compositional analysis of coatings deposited at a −50 V bias revealed Cr/Al ratios of approximately 0.8 and 1.7 for the 4- and 8-plug configurations, respectively. This increase in the Cr/Al ratio led to a 2.6-fold improvement in coating hardness. Coatings produced using the eight-Cr-plug target exhibited a nearly linear increase in hardness with increasing substrate bias voltage. Cross-sectional scanning electron microscopy revealed a uniform bilayer structure consisting of an approximately 0.5 µm metal interlayer beneath a 2–3 µm CrAlN coating. Surface morphology analysis indicated the presence of coarse microdroplets in coatings with the lower Cr/Al ratio. These microdroplets were significantly suppressed in coatings with higher Cr/Al content, especially at increased bias voltages. This suppression is likely due to enhanced ion bombardment associated with the increased Cr content, attributed to Cr’s relatively higher atomic mass compared to Al. Coatings with lower hardness exhibited greater scratch resistance, likely due to the influence of residual compressive stresses. The findings highlight the critical role of both Cr/Al content and substrate bias in tailoring the tribo-mechanical performance of PVD CrAlN coatings for wear-resistant applications. Full article
Show Figures

Figure 1

12 pages, 1556 KB  
Article
Antibacterial Nanocomposite Ceramic Coating for Liquid Filtration Application
by Angelica Luceri, Michela Toppan, Alessandro Calogero, Antonio Rinaldi and Cristina Balagna
Nanomaterials 2025, 15(12), 911; https://doi.org/10.3390/nano15120911 - 12 Jun 2025
Viewed by 839
Abstract
Water contamination due to microbial proliferation remains a critical global challenge, especially with increasing urbanization, industrial activities, and the use of agrochemicals, and it requires the development of innovative methods for their purification that are not harmful to the environment and humans. In [...] Read more.
Water contamination due to microbial proliferation remains a critical global challenge, especially with increasing urbanization, industrial activities, and the use of agrochemicals, and it requires the development of innovative methods for their purification that are not harmful to the environment and humans. In this study, innovative antibacterial nanocomposite coatings, composed of zirconia and silver nanocluster, were developed and deposited via eco-friendly co-sputtering physical vapor deposition (PVD) method onto electrospun polymeric membranes (PCL and PAN-PCL) for water filtration applications. Structural and morphological analyses, including XRD and UV-Vis spectroscopy, confirmed the deposition of a composite coating, consisting of an amorphous zirconia matrix embedding silver nanoclusters, homogeneously distributed on one side of the polymeric fibers. Wettability evaluations showed an increase in hydrophobicity after coating, particularly affecting the filtration performance of the PCL membranes. Antibacterial tests revealed strong inhibition against Staphylococcus epidermidis (Gram-positive) and partial efficacy against Escherichia coli (Gram-negative). Filtration tests of contaminated solutions revealed a 99% reduction in Bacillus subtilis, significant inhibition of Listeria monocytogenes, and limited effect on E. coli, with no bacterial proliferation observed on the coated membranes. These results underscore the effectiveness of ZrO2/Ag nanocomposites in enhancing microbial control and suggest a promising, scalable strategy for sustainable and safe water purification systems. Full article
(This article belongs to the Special Issue Ceramic Matrix Nanocomposites)
Show Figures

Graphical abstract

18 pages, 6070 KB  
Article
A Non-Vacuum Coating Process That Fully Achieves Technical Goals of Bipolar Plates via Synergistic Control of Multiple Layer-by-Layer Strategy
by Qiaoling Liu, Xiaole Chen, Menghan Wu, Weihao Wang, Yinru Lin, Zilong Chen, Shuhan Yang, Yuhui Zheng and Qianming Wang
Molecules 2025, 30(12), 2543; https://doi.org/10.3390/molecules30122543 - 11 Jun 2025
Viewed by 691
Abstract
The primary challenge associated with stainless steel in fuel cell operation is its susceptibility to corrosion, which leads to increased contact resistance and subsequent degradation of electrochemical performance. In general, the protective layers have been loaded onto the metal surface by widely used [...] Read more.
The primary challenge associated with stainless steel in fuel cell operation is its susceptibility to corrosion, which leads to increased contact resistance and subsequent degradation of electrochemical performance. In general, the protective layers have been loaded onto the metal surface by widely used traditional techniques such as physical vapor deposition (PVD), or cathode arc ion plating. However, the above sputtering and evaporation ways require a high-vacuum condition, complicated experimental setups, higher costs, and an elevated temperature. Therefore, herein the achievement for uniform coatings over a large surface area has been realized by using a cost-effective strategy through a complete wet chemical process. The synergistic regulation of two conductive components and a plastic additive has been employed together with the entrapment of a surfactant to optimize the microstructure of the coating surface. The assembly of layered graphite and a polystyrene sphere could maintain both the high corrosion resistance feature and excellent electrical conductivity. In particular, the intrinsic vacant space in the above physical barriers has been filled with fine powders of indium tin oxide (ITO) due to its small size, and the interconnected conductive network with vertical/horizontal directions would be formed. All the key technical targets based on the U.S. Department of Energy (DOE) have been achieved under the simulated operating environments of a proton exchange membrane fuel cell. The corrosion current density has been measured as low as 0.52 μA/cm2 (for the sample of graphite/mixed layer) over the applied potentials from −0.6 V to 1.2 V and its protective efficiency is evaluated to be 99.8%. The interfacial contact resistance between the sample and the carbon paper is much less than 10 mΩ·cm2 (3.4 mΩ·cm2) under a contact pressure of 165 N/cm2. The wettability has been investigated and its contact angle has been evolved from 48° (uncoated sample) to even 110°, providing superior hydrophobicity to prevent water penetration. Such an innovative approach opens up new possibilities for improving the durability and reducing the costs of carbon-based coatings. Full article
(This article belongs to the Special Issue Inorganic Chemistry in Asia)
Show Figures

Figure 1

22 pages, 5743 KB  
Article
Influence of N2 Flow Rate on Mechanical and Tribological Properties of TAlN Coatings Deposited on 300M Substrate and Nitrocarburized Layer
by Shiwei Zuo, Qinghua Li, Zhehang Fan, Xiaoyong Tao, Xiangjie Wang, Hui Xie, Qianqian Shen, Tianshi Jia and Hongyan Wu
Lubricants 2025, 13(6), 254; https://doi.org/10.3390/lubricants13060254 - 6 Jun 2025
Viewed by 705
Abstract
This study systematically investigates the influence of nitrogen (N2) flow rates and nitrocarburized (PNC) interlayers on the mechanical and tribological properties of TiAlN coatings deposited on 300M steel substrates via magnetron sputtering. The coatings were fabricated under three N2 flow [...] Read more.
This study systematically investigates the influence of nitrogen (N2) flow rates and nitrocarburized (PNC) interlayers on the mechanical and tribological properties of TiAlN coatings deposited on 300M steel substrates via magnetron sputtering. The coatings were fabricated under three N2 flow rates (30, 90, and 150 sccm), with microstructure evolution, elemental composition, and phase transitions analyzed using SEM, EDS, AFM, and XRD. The results indicate that the PNC/TiAlN composite coatings exhibited superior interfacial adhesion and load-bearing capacity compared to standalone TiAlN coatings, attributed to the graded hardness transition and stress distribution optimization at the coating–substrate interface. Nanoindentation tests revealed enhanced hardness and elastic modulus in PNC/TiAlN systems under high N2 flow conditions. Tribological evaluations demonstrated that the composite coatings achieved lower specific wear rates (25.23 × 10−8 mm3·N−1·m−1) under 7.3 N, outperforming monolithic TiAlN coatings by mitigating abrasive wear and delamination. The synergy between N2 flow modulation and nitrocarburizing pretreatment effectively optimized coating–substrate compatibility, establishing a robust framework for designing wear-resistant TiAlN coatings in extreme service environments. This work provides critical insights into tailoring PVD coating architectures for aerospace and heavy-load applications. Full article
Show Figures

Figure 1

18 pages, 2426 KB  
Article
Strain-Hardening and Strain-Softening Phenomena Observed in Thin Nitride/Carbonitride Ceramic Coatings During the Nanoindentation Experiments
by Uldis Kanders, Karlis Kanders, Ernests Jansons, Irina Boiko, Artis Kromanis, Janis Lungevics and Armands Leitans
Coatings 2025, 15(6), 674; https://doi.org/10.3390/coatings15060674 - 1 Jun 2025
Cited by 1 | Viewed by 726
Abstract
This study investigates the nanomechanical and tribological behavior of multilayered nitride/carbonitride nanostructured superlattice type coatings (NTCs) composed of alternating TiAlSiNb-N and TiCr-CN sublayers, deposited via high-power ion-plasma magnetron sputtering (HiPIPMS) technique. Reinforced with refractory elements Cr and Nb, the NTC samples exhibit high [...] Read more.
This study investigates the nanomechanical and tribological behavior of multilayered nitride/carbonitride nanostructured superlattice type coatings (NTCs) composed of alternating TiAlSiNb-N and TiCr-CN sublayers, deposited via high-power ion-plasma magnetron sputtering (HiPIPMS) technique. Reinforced with refractory elements Cr and Nb, the NTC samples exhibit high nanohardness (39–59 GPa), low friction, and excellent wear resistance. A novel analytical approach was introduced to extract stress–strain field (SSF) gradients and divergences from nanoindentation data, revealing alternating strain-hardening and strain-softening cycles beneath the incrementally loaded indenter. The discovered oscillatory behavior, consistent across all samples under the investigation, suggests a general deformation mechanism in thin films under incremental loading. Fourier analysis of the SSF gradient oscillatory pattern revealed a variety of characteristic dominant wavelengths within the length-scale interval (0.84–8.10) nm, indicating multi-scale nanomechanical responses. Additionally, the NTC samples display an anisotropic coating morphology exhibited as unidirectional undulating surface roughness waves, potentially attributed to atomic shadowing, strain-induced instabilities, and limited adatom diffusion. These findings deepen our understanding of nanoscale deformation in advanced PVD coatings and underscore the utility of SSF analysis for probing thin-film mechanics. Full article
(This article belongs to the Section Ceramic Coatings and Engineering Technology)
Show Figures

Figure 1

15 pages, 4691 KB  
Article
Comparison of Continuous and Pulsed Low-Power DC Sputtered Ti Thin Films Deposited at Room Temperature
by Anna Maria Reider, Ariane Kronthaler, Fabio Zappa, Alexander Menzel, Felix Laimer and Paul Scheier
Surfaces 2025, 8(2), 36; https://doi.org/10.3390/surfaces8020036 - 31 May 2025
Viewed by 1336
Abstract
Titanium thin films with thicknesses of up to 105 nm were deposited on borosilicate glass implementing low-power continuous (25 W) and pulsed (85 W, with an ultra-low duty cycle) DC magnetron sputtering. The characteristics of the resulting films were studied via atomic force [...] Read more.
Titanium thin films with thicknesses of up to 105 nm were deposited on borosilicate glass implementing low-power continuous (25 W) and pulsed (85 W, with an ultra-low duty cycle) DC magnetron sputtering. The characteristics of the resulting films were studied via atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS), VIS spectroscopy, and four-point-probe measurements. Both deposition modes yield films with low surface roughness, and AFM analysis showed no topographical features indicative of columnar-and-void structures. The films exhibited high optical reflectivity and stable transmittance and reflectance across the visible spectrum. The electric resistivity could be measured even at single nanometer thickness, emphasizing the metallic character of the films and approaching the bulk titanium value at higher film thicknesses. The low power regime of magnetron sputter deposition not only offers the possibility of studying the development of physical characteristics during the growth of ultra-thin films but also provides the advantage of extremely low heat development and no evident mechanical stress on the substrate during the coating process. These results outline a path for low-power DC sputtering as a reliable approach for studying the evolution of functional properties in ultra-thin films and for the gentle fabrication of coatings where thermal stress must be avoided, making the method compatible with temperature-sensitive applications. Full article
(This article belongs to the Special Issue Surface Engineering of Thin Films)
Show Figures

Graphical abstract

13 pages, 8592 KB  
Article
Magnetron-Sputtered Amorphous Carbon Films for Aluminium Proton-Exchange-Membrane Fuel Cell Bipolar Plates
by Parnia Navabpour, Kun Zhang, Giuseppe Sanzone, Susan Field and Hailin Sun
Physchem 2025, 5(2), 18; https://doi.org/10.3390/physchem5020018 - 4 May 2025
Viewed by 3224
Abstract
Aluminium is an attractive material for proton-exchange-membrane fuel cell bipolar plates as it has a much lower density than steel and is easier to form than both steel and graphite. This work focused on the development of amorphous carbon films deposited using closed-field [...] Read more.
Aluminium is an attractive material for proton-exchange-membrane fuel cell bipolar plates as it has a much lower density than steel and is easier to form than both steel and graphite. This work focused on the development of amorphous carbon films deposited using closed-field unbalanced magnetron sputtering (CFUBMS) in order to improve the corrosion resistance of aluminium bipolar plates and to enhance fuel cell performance and durability. Chromium and tungsten adhesion layers were used for the coatings. It was possible to achieve good electrical conductivity and high electrochemical corrosion resistance up to 70 °C on polished Aluminium alloy 6082 by tuning the deposition parameters. Coatings with a tungsten adhesion layer showed better corrosion resistance than those with a chromium adhesion layer. In situ, accelerated stress testing of single cells was performed using uncoated and coated Al6082 bipolar plates. Both coatings resulted in improved fuel cell performance compared to uncoated aluminium when used on the cathode side of the fuel cell. Full article
(This article belongs to the Section Electrochemistry)
Show Figures

Figure 1

14 pages, 21317 KB  
Article
Investigation of Tensile and Fatigue Behavior of Cr/CrN/TiCrN/TiCrCN Multilayer Films Coated on AA6063 and AZ91 Alloys by Closed-Field Unbalanced Magnetron Sputtering Process
by Ruhi Yeşildal, Sadberk Sezer and Filiz Karabudak
Appl. Sci. 2025, 15(7), 3525; https://doi.org/10.3390/app15073525 - 24 Mar 2025
Cited by 1 | Viewed by 532
Abstract
Despite the widespread use of Mg and Al alloys among light metals in the automobile and aviation industries, they have low tensile and fatigue strength. Therefore, in the present work, AZ91 Mg and AA6063 Al alloys were coated with a multilayer transition metal [...] Read more.
Despite the widespread use of Mg and Al alloys among light metals in the automobile and aviation industries, they have low tensile and fatigue strength. Therefore, in the present work, AZ91 Mg and AA6063 Al alloys were coated with a multilayer transition metal nitride film (Cr/CrN/TiCrN/TiCrCN) to increase fatigue and tensile strength. Films with Cr/CrN/TiCrN/TiCrCN microstructure architecture were synthesized on the surfaces of AZ91 Mg and AA6063 Al alloys using the CFUBMS (closed-field unbalanced magnetron sputtering) system, one of the PVD (physical vapor deposition) techniques. Films’ structural properties were analyzed by XRD, SEM, and EDAX, whereas mechanical properties were investigated using tensile and rotary bending fatigue testing machines. According to the SEM examination, the Cr, CrN, TiCrN, and TiCrCN multilayer nitride films on the two alloys have a columnar and dense microstructure. The XRD analysis detected Cr (211), CrN (111) and (200), TiN (111), (200) and (222), and TiCN (200) and (311) diffraction peaks. The Cr/CrN/TiCrN/TiCrCN multilayer coating increased the fatigue limit value of AZ91 by 11.22% from 70.26 MPa to 78.15 MPa. The fatigue limit value of AA6063 decreased by 9.79% from 79.71 MPa to 71.9 MPa. After coating, the tensile strength value of AZ91 increased from 137.89 MPa to 139.65 MPa, while the tensile strength of AA6063 decreased from 129.35 MPa to 118.16 MPa. Full article
(This article belongs to the Section Mechanical Engineering)
Show Figures

Figure 1

16 pages, 13439 KB  
Article
Three-Dimensional-Printed Biomimetic Structural Ceramics with Excellent Tribological Properties
by Zhaozhi Wang, Yajie Liu, Biao Jiang, Zhiheng Xin and Zhibin Jiao
Materials 2025, 18(6), 1376; https://doi.org/10.3390/ma18061376 - 20 Mar 2025
Cited by 4 | Viewed by 716
Abstract
Inspired by the ventral scale structure of the oriental sand boa, this study successfully fabricated multiscale bioinspired alumina (Al2O3) ceramics by combining the excellent mechanical properties, high-temperature resistance, and high hardness of ceramic composites with direct ink writing (DIW) [...] Read more.
Inspired by the ventral scale structure of the oriental sand boa, this study successfully fabricated multiscale bioinspired alumina (Al2O3) ceramics by combining the excellent mechanical properties, high-temperature resistance, and high hardness of ceramic composites with direct ink writing (DIW) 3D printing technology and femtosecond laser processing. A MoS2 thin film was then deposited on the ceramic surface via radio frequency magnetron sputtering (PVD) to systematically investigate the impact of bioinspired structures on the tribological properties of ceramic composites under both dry and lubricated conditions. Experimental results demonstrated that bioinspired structures at different scales exhibited significant friction-reducing and wear-resistant characteristics compared to blank structures. Specifically, under room-temperature conditions, the friction coefficients of bioinspired ceramic composites with solid lubricants and oil lubrication were 0.3 and 0.148, respectively, indicating excellent tribological performance. These findings confirm the synergistic lubrication effect between bioinspired structures, two-dimensional solid lubricants, and lubricating oil, which significantly enhanced the friction-reducing and wear-resistant properties of ceramic components. Therefore, the synergistic design of multiscale bioinspired structures and solid lubricants provides an innovative strategy for the advanced application of ceramic components. Full article
Show Figures

Figure 1

10 pages, 6041 KB  
Article
Investigating the Effects of Long-Term Ambient Air Storage on the Sliding Properties of N-Alloyed MoSe2 Coatings
by Talha Bin Yaqub, Irfan Nadeem, Muhammad Aneeq Haq, Muhammad Yasir, Albano Cavaleiro and Mitjan Kalin
Nanomaterials 2025, 15(6), 414; https://doi.org/10.3390/nano15060414 - 7 Mar 2025
Cited by 1 | Viewed by 799
Abstract
Transition metal dichalcogenide coatings have emerged as potential candidates for terrestrial and aerospace mobility applications. Among these, the alloyed MoSe2 coatings have displayed promising results while sliding in diverse environments. N-alloyed Mose2 coatings provide the additional benefit of overcoming the impact [...] Read more.
Transition metal dichalcogenide coatings have emerged as potential candidates for terrestrial and aerospace mobility applications. Among these, the alloyed MoSe2 coatings have displayed promising results while sliding in diverse environments. N-alloyed Mose2 coatings provide the additional benefit of overcoming the impact of PVD compositional variations on dry sliding, making them promising solid lubricants for mobility-sector applications. However, the impact of long-term storage has never been investigated for this rarely studied solid-lubricant system. This study investigates the tribological performance of direct current magnetron sputtered MoSeN coatings after 40 months of storage in an ambient atmosphere. Sliding tests were conducted under conditions consistent with pre-storage conditions. The results showed that coatings with 0 at. %, 22 at. %, 33 at. %, and 35 at. % N-alloying exhibited COF values nearly identical to the pre-storage results, with only a negligible increase in ~0.01. Similarly, all coatings displayed specific wear rates in the range of 10−7, aligning with earlier findings. The obtained results show that the sliding performance of MoSeN coatings does not deteriorate over time, highlighting their suitability for critical aerospace applications, where components and assembled parts may be stored for years before launching into space or in actual applications. Full article
(This article belongs to the Special Issue Design and Applications of Heterogeneous Nanostructured Materials)
Show Figures

Figure 1

Back to TopTop