Mechanical, Tribological, and Corrosion Behavior of Magnetron-Sputtered VN Coatings Deposited at Different Substrate Temperatures
Abstract
1. Introduction
2. Materials and Methods
2.1. VN Film Deposition and Applied Technology
- Cathode cleaning—this is a process of high-energy ion bombardment where 304L stainless steel substrates were etched by Ar positive ions for 10 min at a negative bias voltage of 1050 V to remove surface contamination involving the oxide layers from the substrate surface. This process was performed under the following technological conditions:
- Working pressure PAr = 8 Pa;
- Discharge voltage U = 900 V;
- Discharge current I = 0.1 A;
- Temperature T = 270 °C;
- Cleaning time t = 10 min.
- Deposition of intermediate pure V layer—this process was used to improve adhesion between the substrate and the coating. This process was performed under the following conditions:
- Working pressure PAr = 9 × 10−2 Pa;
- Discharge voltage U = 460 V;
- Discharge current I = 1 A;
- Temperature T = 250 °C;
- Deposition time t = 3 min.
- Deposition process of VN coatings—the production process took place in an Ar/N2 atmosphere and with a substrate bias voltage of −50 V.
- Nitrogen pressure PN2 = 2.4 × 10−2 Pa;
- Pressure ratio between reactive and inert gas PN2/PAr = 2.3;
- Voltage U = 575 V;
- Substrate temperatures—VN coatings were produced at temperatures of 250 °C, 300 °C, and 350 °C.
- Constant current I = 1 A;
- Deposition time t = 30 min.
2.2. XRD Analysis
2.3. XPS Analysis
2.4. AFM Investigations
2.5. Thickness
2.6. Mechanical Properties
2.7. Tribological Behavior
2.8. Corrosion Studies
3. Results and Discussion
3.1. XRD Analysis
3.2. XPS Analysis
3.3. AFM Analysis
3.4. Thickness
3.5. Mechanical Properties
3.6. Friction Coefficient
3.7. Corrosion Resistance
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, Y.; Lee, J.-W.; Duh, J.-G. Mechanical strengthening in self-lubricating Can/VN multilayer coatings for improved high-temperature tribological characteristics. Surf. Coat. Technol. 2016, 303, 12–17. [Google Scholar] [CrossRef]
- Hovsepian, P.; Luo, Q.; Robinson, G.; Pittman, M.; Howard, M.; Doerwald, D.; Tietema, R.; Sim, W.; Deeming, A.; Zens, T. TiAlN/VN superlattice structured PVD coatings: A new alternative in machining of aluminum alloys for aerospace and automotive components. Surf. Coat. Technol. 2006, 201, 265. [Google Scholar] [CrossRef]
- Chabanon, A.; Michau, A.; Schlegel, M.; Gündüz, D.; Puga, B.; Miserque, F.; Schuster, F.; Maskrot, H.; Pareige, C.; Cadel, E.; et al. Surface Modification of 304L Stainless Steel and Interface Engineering by HiPIMS Pre-Treatment. Coatings 2022, 12, 727. [Google Scholar] [CrossRef]
- Caicedo, J.; Zambrano, G.; Aerators, W.; Escobar-Alarcon, L.; Camps, E. Mechanical and electrochemical characterization of vanadium nitride (VN) thin films. App. Surf. Sci. 2011, 258, 312–320. [Google Scholar] [CrossRef]
- Bautista, J.; Campelo, M.; Luna, D.; Luque, J.; Marinas, J. Gas-phase selective oxidation of toluene on TiO2–sepiolite supported vanadium oxides: Influence of vanadium loading on conversion and product selectivities. Catal. Today 2007, 128, 183–190. [Google Scholar] [CrossRef]
- Fu, Y.; Peng, Y.; Zhao, L.; Ran, F. Recent advances of fabricating vanadium nitride nanocompositions for high-performance anode materials of supercapacitors. J. Energy Storage 2024, 75, 109564. [Google Scholar] [CrossRef]
- Jrondi, A.; Buvat, G.; Pena, F.; Marinova, M.; Huvé, M.; Brousse, T.; Roussel, P.; Lethien, C. Major improvement in the cycling ability of pseudocapacitive vanadium nitride films for micro-supercapacitor. Adv. Energy Mater. 2023, 13, 2203462. [Google Scholar] [CrossRef]
- Adalati, R.; Sharma, M.; Sharma, S.; Kumar, A.; Malik, G.; Boukherroub, R.; Chandra, R. Metal nitrides as efficient electrode material for supercapacitors: A review. J. Energy Storage 2022, 56, 105912. [Google Scholar] [CrossRef]
- Panjan, P.; Drnovšek, A.; Gselman, P.; Čekada, M.; Panjan, M. Review of Growth Defects in Thin Films Prepared by PVD Techniques. Coatings 2020, 10, 447. [Google Scholar] [CrossRef]
- Mohimi, E.; Zhang, Z.; Mallek, J.; Liu, S.; Trinh, B.; Shetty, P.; Girolami, G.; Abelson, J. Low temperature chemical vapor deposition of superconducting vanadium nitride thin films. J. Vac. Sci. Technol. A 2019, 37, 031509. [Google Scholar] [CrossRef]
- Huang, J.; Yu, G. Optimization of deposition processing of VN thin films using design of experiment and single-variable (nitrogen flow rate) methods. Mater. Chem. Phys. 2019, 224, 246–256. [Google Scholar] [CrossRef]
- Aissani, L.; Alhussein, A.; Nouveau, C.; Ghelani, L.; Zaabat, M. Influence of film thickness and Ar/N2 plasma gas on the structure and performance of sputtered vanadium nitride coatings. Surf. Coat. Technol. 2019, 378, 124948. [Google Scholar] [CrossRef]
- Lebreton, A.; Lethien, C.; Coleman, J.; Brousse, T.; Barbé, J. Tuning Deposition Conditions for VN Thin Films Electrodes for Microsupercapacitors: Influence of the Substrate Bias Voltage. J. Electrochem. Soc. 2025, 172, 040523. [Google Scholar] [CrossRef]
- Liao, M.-J.; Gotoh, Y.; Tsuji, H.; Ishikawa, J. Crystallographic structure and composition of vanadium nitride films deposited by direct sputtering of a compound target. J. Vac. Sci. Technol. A 2004, 22, 146–150. [Google Scholar] [CrossRef]
- Huang, J.-H.; Wei, L.-J.; Ting, I.-S. Evaluation of fracture toughness of VN hard coatings: Effect of preferred orientation. Mater. Chem. Phys. 2022, 275, 125253. [Google Scholar] [CrossRef]
- Ghimbeu, M.; Sima, F.; Ostaci, R.; Socol, G.; Mihailescu, I.; Vix-Guterl, C. Crystalline vanadium nitride ultra-thin films obtained at room temperature by pulsed laser deposition. Surf. Coat. Technol. 2012, 211, 158–162. [Google Scholar] [CrossRef]
- Xiang, W.; Drogoff, B.; Chaker, M. An innovative method to achieve large-scale high-quality VO2 thin films: Oxidation of vanadium nitride material deposited by sputtering. Appl. Surf. Scie 2023, 633, 157607. [Google Scholar] [CrossRef]
- Cupric, A.; Gilewicz, A.; Tolmachova, G.; Klimenko, I.; Kolodiy, I.; Vasilenko, R.; Warcholinski, B. Effect of Nitrogen Pressure and Substrate Bias Voltage on Structure and Mechanical Properties of Vacuum Arc Deposited VN Coatings. Metallur. Mater. Trans. A 2023, 54, 4438–4455. [Google Scholar]
- Chun, S.-Y. Properties of VNCoatings Deposited by ICPAssisted Sputtering: Effect of ICPPower. J. Korean Ceramic Soc. 2017, 54, 38–42. [Google Scholar] [CrossRef]
- Gao, M.; Xu, X.; Li, H. Investigation on preparation of vanadium nitride hard coating by in-situ method technique. Mater. Lett. 2020, 274, 128045. [Google Scholar] [CrossRef]
- Jia-Hong, H.; Cheng-Han, L.; Ge-Ping, Y. Texture evolution of vanadium nitride thin films. Thin Solid Film. 2019, 688, 137415. [Google Scholar] [CrossRef]
- Aissani, L.; Mamoun, F.; Chadli, A.; Samad, M.; Cheriet, A.; Salhi, F.; Nouveau, C.; Wei, S.; Orbison, A.; Alhussein, A. Investigating the effect of nitrogen on the structural and tribo-mechanical behavior of vanadium nitride thin films deposited using R.F. magnetron sputtering. J. Mater. Scie 2021, 56, 17319–17336. [Google Scholar] [CrossRef]
- Zhaobing, C.; Jibin, P.; Liping, W.; Qunji, X. Synthesis of a new orthorhombic form of diamond in varying- C VN films: Microstructure, mechanical and tribological properties. Appl. Surf. Sci. 2019, 481, 767–776. [Google Scholar] [CrossRef]
- Hongjian, G.; Bo, L.; Jianyi, W.; Wenyuan, C.; Zhenyu, Z.; Wenzhen, W.; Junhong, J. Microstructures, mechanical and tribological properties of VN films deposited by PLD technique. RSC Adv. 2016, 6, 33403–33408. [Google Scholar] [CrossRef]
- Yuexiu, Q.; Zhang, S.; Li, B.; Wei, J.-L.; Dongliang, Z. Influence of nitrogen partial pressure and substrate bias on the mechanical properties of VN coatings. Procedia Eng. 2012, 36, 217–225. [Google Scholar] [CrossRef]
- Gueddaoui, H.; Schmerber, G.; Abes, M.; Guemmaz, M.; Parlebas, J.C. Effects of experimental parameters on the physical properties of non-stoichiometric sputtered vanadium nitrides films. Catal. Today 2006, 113, 270–274. [Google Scholar] [CrossRef]
- Fallqvist, M.; Olsson, M. The influence of surface defects on the mechanical and tribological properties of VN-based arc-evaporated coatings. Wear 2013, 297, 1111–1119. [Google Scholar] [CrossRef]
- Krause, B.; Kaufholz, M.; Kotapati, S.; Schneider, R.; Müller, E.; Gerthsen, D.; Wochner, P.; Baumbach, T. Angle-resolved X-ray reflectivity measurements during off-normal sputter deposition of VN. Surf. Coat. Technol. 2015, 277, 52–57. [Google Scholar] [CrossRef]
- Hajihoseini, H.; Gudmundsson, J. Vanadium and vanadium nitride thin films grown by high power impulse magnetron sputtering. J. Phys. D Appl. Phys. 2017, 50, 505302. [Google Scholar] [CrossRef]
- Fangfang, G.; Zhu, P.; Fanping, M. Enhancing the wear resistance of magnetron sputtered VN coating by Si addition. Wear 2016, 354–355, 32–40. [Google Scholar] [CrossRef]
- AlHazaa, A.; Haneklaus, N. Diffusion Bonding and Transient Liquid Phase (TLP)Bonding of Type 304 and 316 Austenitic Stainless Steel—A Review of Similar and Dissimilar Material Joints. Metals 2020, 10, 613. [Google Scholar] [CrossRef]
- Oliver, W.C.; Pharr, G.M. Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology. J. Mater. Res. 2004, 19, 3–20. [Google Scholar] [CrossRef]
- Rabadzhiyska, S.; Dechev, D.; Ivanov, N.; Ivanova, T.; Strijkova, V.; Katrova, V.; Rupetsov, V.; Dimcheva, N.; Valkov, S. Wear and Corrosion Resistance of ZrN Coatings Deposited on Ti6Al4V Alloy for Biomedical Applications. Coatings 2024, 14, 1434. [Google Scholar] [CrossRef]
- Galesic, I.; Bolbesen, B. Formation of vanadium nitride by rapid thermal processing. Thin Solid Film. 1999, 349, 14–18. [Google Scholar] [CrossRef]
- Galesic, I.; Angelkort, C.; Lewalter, H.; Berendes, A.; Kolbesen, B. Formation of Tansition Metal Nitrides by Rapid Thermal Processing (RTP). Phys. Stat. Sol. 2000, 177, 15–26. [Google Scholar] [CrossRef]
- Jinghua, L.; Fengfan, L.; Weiwei, L.; Xin, L. Effect of calcination temperature on the microstructure of vanadium nitride/nitrogen doped graphene nanocomposites as anode materials in electrochemical capacitors. Inorg. Chem. Front. 2019, 6, 164–171. [Google Scholar]
- Osonkie, V.; Chukwunenye, P.; Cundari, T.; Kelbera, J. Plasma modification of vanadium oxynitride surfaces: Characterization by in situ XPS experiments and DFT calculations. J. Chem. Phys. 2020, 153, 144709. [Google Scholar] [CrossRef]
- Liu, H.-H.; Zhang, H.-L.; Xu, H.-B.; Lou, T.-P.; Sui, Z.-T.; Zhang, Y. Hierarchically nanostructured vanadium nitride microspheres assembled with porous nanosheets fabricated by a template-free route. Ceram. Int. 2018, 44, 1583–1588. [Google Scholar] [CrossRef]
- Ling, C.; Yajid, M.; Tamin, M.; Kamarudin, M.; Taib, M.; Nosbi, N.; Wan, A. Effect of substrate roughness and PVD deposition temperatures on hardness and wear performance of AlCrN-coated WC-Co. Surf. Coat. Technol. 2022, 436, 128304. [Google Scholar] [CrossRef]
- Sánchez, E.; Sanchéz, M.; Ipaz, L.; Aperador, W.; Caicedo, J.; Amaya, C.; Hernández, M.; Landaverde, F.; Beltran, E.; Muñoz-Saldaña, J.; et al. Mechanical, tribological, and electrochemical behavior of Cr1 xAlxN coatings deposited by r.f. reactive magnetron co-sputtering method. Appl. Surf. Sci. 2010, 256, 2380–2387. [Google Scholar] [CrossRef]
- Ponomarev, I.; Polcar, T.; Nicolini, P. Tribological properties of V2O5 studied via reactive molecular dynamics simulations. Tribol. Inter. 2021, 154, 106750. [Google Scholar] [CrossRef]
- Ge, C.; Zhang, B.; Xu, X.; Lyu, X.; Ma, X.; Li, T.; Lu, X.; Liu, Z. Tribofilm distribution and tribological analysis of piston ring-cylinder liner interfaces under realistic engine conditions. Tribol. Inter. 2025, 201, 110250. [Google Scholar] [CrossRef]
- Kong, Q.; Ji, L.; Li, H.; Liu, X.; Wang, Y.; Chen, J.; Zhou, H. Influence of substrate bias voltage on the microstructure and residual stress of CrN films deposited by medium frequency magnetron sputtering. Mater. Scien. Enginer. B 2011, 176, 850–854. [Google Scholar] [CrossRef]
- Liu, Z.-J.; Shen, Y. Temperature effect on surface roughening of thin films. Surf. Sci. 2005, 595, 20–29. [Google Scholar] [CrossRef]
- Li, J.; Song, Z.; Liu, Z.; Xie, X.; Guan, P.; Zhu, Y. Exploring Surface-Driven Mechanisms for Low-Temperature Sintering ofNanoscale Copper. Appl. Sci. 2025, 15, 476. [Google Scholar] [CrossRef]
- Chang, H.; Huang, P.; Yeh, J.; Davison, A.; Tsau, C.; Yang, C. Influence of substrate bias, deposition temperature and post-deposition annealing on the structure and properties of multi-principal-component (AlCrMoSiTi)N coatings. Surf. Coat. Technol. 2008, 202, 3360–3366. [Google Scholar] [CrossRef]
- Camacho-Espinosa, E.; Rosendo, E.; Díaz, T.; Oliva, A.; Rejon, V.; Peña, J. Effects of temperature and deposition time on the RF- sputtered CdTe films preparation. Superf. Vacío 2014, 27, 15–19. [Google Scholar]
- Aissani, L.; Fellah, M.; Nouveau, C.; Samade, M.; Montagne, A.; Iost, A. Structural and mechanical properties of Cr–Zr–N coatings with different Zr content. Surf. Eng. 2017, 35, 1–9. [Google Scholar] [CrossRef]
- Kiryukhantsev-Korneev, P.; Pierson, J.; Petrzhik, M.; Alnot, M.; Levashov, E.; Shtansky, D. Effect of nitrogen partial pressure on the structure, physical and mechanical properties of CrB2 and Cr–B–N films. Thin Solid Film. 2009, 517, 2675–2680. [Google Scholar] [CrossRef]
- Aissani, L.; Nouveau, C.; Walock, M.; Djebaili, H.; Djelloul, A. Influence of vanadium on structure, mechanical and tribological properties of CrN coatings. Surf. Eng. 2015, 31, 779–788. [Google Scholar] [CrossRef]
- Zhang, S.; Yan, F.; Yang, Y.; Yan, M.; Zhang, Y.; Guo, J.; Li, H. Effects of sputtering gas on microstructure and tribological properties of titanium nitride films. Appl. Surf. Sci. 2019, 488, 61–69. [Google Scholar] [CrossRef]
- Zhang, B.; Qigang, H.; Zhang, J.; Han, Z.; Niu, S.; Luquan, R. Advanced bio-inspired structural materials: Local properties determine overall performance. Mater. Today 2020, 41, 177–197. [Google Scholar] [CrossRef]
- Guo, H.; Lu, C.; Zhang, Z.; Liang, B.; Jia, J. Comparison of microstructures and properties of VN and VN/Ag nanocomposite films fabricated by pulsed laser deposition. Appl. Phys. A 2018, 124, 694. [Google Scholar] [CrossRef]
- Pfeiler-Deutschmann, M.; Mayrhofer, P.; Chladil, K.; Penoy, M.; Michotte, C.; Kathrein, M. Effect of wavelength modulation of arc evaporated Ti–Al–N/Ti–Al–V–N multilayer coatings on microstructure and mechanical/tribological properties. Thin Solid Film. 2015, 581, 20–24. [Google Scholar] [CrossRef]
- Pfeiler, M.; Kutschej, K.; Penoy, M.; Michotte, C.; Mitterer, C.; Kathrein, M. The effect of increasing V content on structure, mechanical and tribological properties of arc evaporated Ti–Al–V–N coatings. Int. J. Refract. Met. Hard Mater. 2009, 27, 502–506. [Google Scholar] [CrossRef]
- Naghashzadeh, A.; Shafyei, A.; Sourani, F. Nanoindentation and Tribological Behavior of TiN-TiCN-TiAlN Multilayer Coatings on AISI D3 Tool Steel. J. Mater. Eng. Perform. (JMEP) 2022, 31, 4335–4342. [Google Scholar] [CrossRef]
- Lv, Y.; Ji, L.; Liu, X.; Li, H.; Zhou, H. Influence of substrate bias voltage on structure and properties of the CrAlN films deposited by unbalanced magnetron sputtering. Appl. Phys. Lett. 2012, 258, 3864–3870. [Google Scholar] [CrossRef]
- Gassner, G.; Mayrhofer, P.; Kutschej, K.; Mitterer, C.; Kathreinc, M. A new low friction concept for high temperatures: Lubricious oxide formation on sputtered VN coatings. Tribol. Lett. 2004, 17, 751–756. [Google Scholar] [CrossRef]
- Qiu, Y.; Zhang, S.; Li, B.; Wang, Y.; Lee, J.-W.; Li, F.; Zhao, D. Improvement of tribological performance of CrN coating via multilayering with VN. Surf. Coat. Technol. 2013, 231, 357–363. [Google Scholar] [CrossRef]
- Wiklund, U.; Casas, B.; Stavlid, N. Evaporated vanadium nitride as a friction material in dry sliding against stainless steel. Wear 2006, 261, 2–8. [Google Scholar] [CrossRef]
- Liu, Z.; Li, Y.; Xie, X.; Qin, J.; Wang, Y. The tribo-corrosion behavior of monolayer VN and multilayer VN/C hard coatings under simulated seawater. Ceram. Int. 2021, 47, 25655–25663. [Google Scholar] [CrossRef]
- Cai, Z.; Pu, J.; Lu, X.; Jiang, X.; Wang, L.; Xue, Q. Improved tribological property of VN film with the design of pre-oxidized layer. Ceram. Int. 2019, 45, 6051–6057. [Google Scholar] [CrossRef]
- García-León, R.; Martínez-Trinidad, J.; Zepeda-Bautista, R.; Campos-Silva, I.; Guevara-Morales, A.; Martínez-Londoño, J.; Barbosa-Saldaña, J. Dry sliding wear test on borided AISI 316L stainless steel under ball-on-flat configuration: A statistical analysis. Tribol. Int. 2021, 157, 106885. [Google Scholar] [CrossRef]
- Muhammed, M.; Javidani, M.; Heidari, M.; Jahazi, M. Enhancing the Tribological Performance of Tool Steels for Wood-Processing Applications: A Comprehensive Review. Metals 2023, 13, 1460. [Google Scholar] [CrossRef]
- Ju, H.; Yu, D.; Xu, J.; Yu, L.; Geng, Y.; Gao, T.; Yi, G.; Bian, S. Microstructure, mechanical, and tribological properties of niobium vanadium carbon nitride films. J. Vac. Sci. Technol. A 2018, 36, 1–7. [Google Scholar] [CrossRef]
- Malik, G.; Kumar, A.; Adalati, R.; Sharma, S.; Bansal, A.; Chandra, R. Enhanced electrochemical corrosion resistance of SS(304L) alloy with nano-pyramids c-Tina layer for saline media application. J. Alloys Metallur. Syst. 2023, 3, 100028. [Google Scholar] [CrossRef]
- Toloei, A.; Stoilov, V.; Northwood, D. The Relationship Between Surface Roughness and Corrosion. In Proceedings of the ASME 2013 International Mechanical Engineering Congress & Exposition IMECE 65498, San Diego, CA, USA, 15–21 November 2013; American Society of Mechanical Engineers: New York, NY, USA, 2013. [Google Scholar]
VN Samples | C, at.% | O, at.% | V, at.% | N, at.% |
---|---|---|---|---|
250 °C | 68.5 | 16.3 | 4.4 | 10.8 |
300 °C | 77.1 | 12.2 | 2.6 | 8.1 |
350 °C | 70.2 | 17.3 | 3.6 | 8.9 |
Binding Energy, eV | Oxidation State | Concentration, % | ||
---|---|---|---|---|
250 °C | 300 °C | 350 °C | ||
513.7 | V3+ → V-N | 40.0 | 27.3 | 32.7 |
515.2 | V3+ → V-O | 38.6 | 23.7 | 37.6 |
517.0 | V5+ → V-O | 36.9 | 26.0 | 37.0 |
VN Samples | Hardness, GPa | Elastic Modulus, GPa | H/E Ratio | H3/E2 Ratio |
---|---|---|---|---|
250 °C | 9.7 ± 0.8 | 197 ± 18 | 0.048 | 0.023 |
300 °C | 10.6 ±1.4 | 208 ± 28 | 0.051 | 0.027 |
350 °C | 9.5 ± 0.6 | 191 ± 14 | 0.050 | 0.024 |
Time, min | VN (250 °C) | VN (300 °C) | VN (350 °C) |
---|---|---|---|
5 | 0.3546 | 0.4569 | 0.4579 |
10 | 0.4825 | 0.5458 | 0.5226 |
No | Sample | OCP, V | OCP2, V * |
---|---|---|---|
1 | VN 250 °C | 0.245 | 0.266 |
2 | VN 300 °C | 0.236 | 0.266 |
3 | VN 350 °C | 0.224 | 0.264 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rabadzhiyska, S.; Dechev, D.; Ivanov, N.; Shipochka, M.; Atanasova, G.; Strijkova, V.; Katrova, V.; Dimcheva, N. Mechanical, Tribological, and Corrosion Behavior of Magnetron-Sputtered VN Coatings Deposited at Different Substrate Temperatures. Metals 2025, 15, 955. https://doi.org/10.3390/met15090955
Rabadzhiyska S, Dechev D, Ivanov N, Shipochka M, Atanasova G, Strijkova V, Katrova V, Dimcheva N. Mechanical, Tribological, and Corrosion Behavior of Magnetron-Sputtered VN Coatings Deposited at Different Substrate Temperatures. Metals. 2025; 15(9):955. https://doi.org/10.3390/met15090955
Chicago/Turabian StyleRabadzhiyska, Stanislava, Dimitar Dechev, Nikolay Ivanov, Maria Shipochka, Genoveva Atanasova, Velichka Strijkova, Vesela Katrova, and Nina Dimcheva. 2025. "Mechanical, Tribological, and Corrosion Behavior of Magnetron-Sputtered VN Coatings Deposited at Different Substrate Temperatures" Metals 15, no. 9: 955. https://doi.org/10.3390/met15090955
APA StyleRabadzhiyska, S., Dechev, D., Ivanov, N., Shipochka, M., Atanasova, G., Strijkova, V., Katrova, V., & Dimcheva, N. (2025). Mechanical, Tribological, and Corrosion Behavior of Magnetron-Sputtered VN Coatings Deposited at Different Substrate Temperatures. Metals, 15(9), 955. https://doi.org/10.3390/met15090955