Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,975)

Search Parameters:
Keywords = PV storage

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 2368 KB  
Article
PSCAD-Based Analysis of Short-Circuit Faults and Protection Characteristics in a Real BESS–PV Microgrid
by Byeong-Gug Kim, Chae-Joo Moon, Sung-Hyun Choi, Yong-Sung Choi and Kyung-Min Lee
Energies 2026, 19(3), 598; https://doi.org/10.3390/en19030598 (registering DOI) - 23 Jan 2026
Abstract
This paper presents a PSCAD-based analysis of short-circuit faults and protection characteristics in a real distribution-level microgrid that integrates a 1 MWh battery energy storage system (BESS) with a 500 kW power conversion system (PCS) and a 500 kW photovoltaic (PV) plant connected [...] Read more.
This paper presents a PSCAD-based analysis of short-circuit faults and protection characteristics in a real distribution-level microgrid that integrates a 1 MWh battery energy storage system (BESS) with a 500 kW power conversion system (PCS) and a 500 kW photovoltaic (PV) plant connected to a 22.9 kV feeder. While previous studies often rely on simplified inverter models, this paper addresses the critical gap by integrating actual manufacturer-defined control parameters and cable impedances. This allows for a precise analysis of sub-millisecond transient behaviors, which is essential for developing robust protection schemes in inverter-dominated microgrids. The PSCAD model is first verified under grid-connected steady-state operation by examining PV output, BESS power, and grid voltage at the point of common coupling. Based on the validated model, DC pole-to-pole faults at the PV and ESS DC links and a three-phase short-circuit fault at the low-voltage bus are simulated to characterize the fault current behavior of the grid, BESS and PV converters. The DC fault studies confirm that current peaks are dominated by DC-link capacitor discharge and are strongly limited by converter controls, while the AC three-phase fault is mainly supplied by the upstream grid. As an initial application of the model, an instantaneous current change rate (ICCR) algorithm is implemented as a dedicated DC-side protection function. For a pole-to-pole fault, the ICCR index exceeds the 100 A/ms threshold and issues a trip command within 0.342 ms, demonstrating the feasibility of sub-millisecond DC fault detection in converter-dominated systems. Beyond this example, the validated PSCAD model and associated data set provide a practical platform for future research on advanced DC/AC protection techniques and protection coordination schemes in real BESS–PV microgrids. Full article
(This article belongs to the Section A1: Smart Grids and Microgrids)
Show Figures

Figure 1

28 pages, 3944 KB  
Article
A Distributed Energy Storage-Based Planning Method for Enhancing Distribution Network Resilience
by Yitong Chen, Qinlin Shi, Bo Tang, Yu Zhang and Haojing Wang
Energies 2026, 19(2), 574; https://doi.org/10.3390/en19020574 - 22 Jan 2026
Viewed by 26
Abstract
With the widespread adoption of renewable energy, distribution grids face increasing challenges in efficiency, safety, and economic performance due to stochastic generation and fluctuating load demand. Traditional operational models often exhibit limited adaptability, weak coordination, and insufficient holistic optimization, particularly in early-/mid-stage distribution [...] Read more.
With the widespread adoption of renewable energy, distribution grids face increasing challenges in efficiency, safety, and economic performance due to stochastic generation and fluctuating load demand. Traditional operational models often exhibit limited adaptability, weak coordination, and insufficient holistic optimization, particularly in early-/mid-stage distribution planning where feeder-level network information may be incomplete. Accordingly, this study adopts a planning-oriented formulation and proposes a distributed energy storage system (DESS) planning strategy to enhance distribution network resilience under high uncertainty. First, representative wind and photovoltaic (PV) scenarios are generated using an improved Gaussian Mixture Model (GMM) to characterize source-side uncertainty. Based on a grid-based network partition, a priority index model is developed to quantify regional storage demand using quality- and efficiency-oriented indicators, enabling the screening and ranking of candidate DESS locations. A mixed-integer linear multi-objective optimization model is then formulated to coordinate lifecycle economics, operational benefits, and technical constraints, and a sequential connection strategy is employed to align storage deployment with load-balancing requirements. Furthermore, a node–block–grid multi-dimensional evaluation framework is introduced to assess resilience enhancement from node-, block-, and grid-level perspectives. A case study on a Zhejiang Province distribution grid—selected for its diversified load characteristics and the availability of detailed historical wind/PV and load-category data—validates the proposed method. The planning and optimization process is implemented in Python and solved using the Gurobi optimizer. Results demonstrate that, with only a 4% increase in investment cost, the proposed strategy improves critical-node stability by 27%, enhances block-level matching by 88%, increases quality-demand satisfaction by 68%, and improves grid-wide coordination uniformity by 324%. The proposed framework provides a practical and systematic approach to strengthening resilient operation in distribution networks. Full article
(This article belongs to the Section F1: Electrical Power System)
Show Figures

Figure 1

24 pages, 5286 KB  
Article
A Conditional Value-at-Risk-Based Bidding Strategy for PVSS Participation in Energy and Frequency Regulation Ancillary Markets
by Xiaoming Wang, Kesong Lei, Hongbin Wu, Bin Xu and Jinjin Ding
Sustainability 2026, 18(2), 1122; https://doi.org/10.3390/su18021122 - 22 Jan 2026
Viewed by 12
Abstract
As the participation of photovoltaic–storage systems (PVSS) in the energy and frequency regulation ancillary service markets continues to increase, the market risks caused by photovoltaic output uncertainty will directly affect photovoltaic integration efficiency and the provision of system flexibility, thereby having a significant [...] Read more.
As the participation of photovoltaic–storage systems (PVSS) in the energy and frequency regulation ancillary service markets continues to increase, the market risks caused by photovoltaic output uncertainty will directly affect photovoltaic integration efficiency and the provision of system flexibility, thereby having a significant impact on the sustainable development of power systems. Therefore, studying the risk decision-making of PVSS in the energy and frequency regulation markets is of great importance for supporting the sustainable development of power systems. First, to address the issue where the existing studies regard PVSS as a price taker and fail to reflect the impact of bids on clearing prices and awarded quantities, this paper constructs a market bidding framework in which PVSS acts as a price-maker. Second, in response to the revenue volatility and tail risk caused by PV uncertainty, and the fact that existing CVaR-based bidding studies focus mainly on a single energy market, this paper introduces CVaR into the price-maker (Stackelberg) bidding framework and constructs a two-stage bi-level risk decision model for PVSS. Finally, using the Karush–Kuhn–Tucker (KKT) conditions and the strong duality theorem, the bi-level nonlinear optimization model is transformed into a solvable single-level mixed-integer linear programming (MILP) problem. A simulation study based on data from a PV–storage power generation system in Northwestern China shows that compared to PV systems participating only in the energy market and PVSS participating only in the energy market, PVSS participation in both the energy and frequency regulation joint markets results in an expected net revenue increase of approximately 45.9% and 26.3%, respectively. When the risk aversion coefficient, β, increases from 0 to 20, the expected net revenue decreases slightly by about 0.4%, while CVaR increases by about 3.4%, effectively measuring the revenue at different risk levels. Full article
Show Figures

Figure 1

24 pages, 1420 KB  
Article
Distributed Photovoltaic–Storage Hierarchical Aggregation Method Based on Multi-Source Multi-Scale Data Fusion
by Shaobo Yang, Xuekai Hu, Lei Wang, Guanghui Sun, Min Shi, Zhengji Meng, Zifan Li, Zengze Tu and Jiapeng Li
Electronics 2026, 15(2), 464; https://doi.org/10.3390/electronics15020464 - 21 Jan 2026
Viewed by 33
Abstract
Accurate model aggregation is pivotal for the efficient dispatch and control of massive distributed photovoltaic (PV) and energy storage (ES) resources. However, the lack of unified standards across equipment manufacturers results in inconsistent data formats and resolutions. Furthermore, external disturbances like noise and [...] Read more.
Accurate model aggregation is pivotal for the efficient dispatch and control of massive distributed photovoltaic (PV) and energy storage (ES) resources. However, the lack of unified standards across equipment manufacturers results in inconsistent data formats and resolutions. Furthermore, external disturbances like noise and packet loss exacerbate the problem. The resulting data are massive, multi-source, and heterogeneous, which poses severe challenges to building effective aggregation models. To address these issues, this paper proposes a hierarchical aggregation method based on multi-source multi-scale data fusion. First, a Multi-source Multi-scale Decision Table (Ms-MsDT) model is constructed to establish a unified framework for the flexible storage and representation of heterogeneous PV-ES data. Subsequently, a two-stage fusion framework is developed, combining Information Gain (IG) for global coarse screening and Scale-based Trees (SbT) for local fine-grained selection. This approach achieves adaptive scale optimization, effectively balancing data volume reduction with high-fidelity feature preservation. Finally, a hierarchical aggregation mechanism is introduced, employing the Analytic Hierarchy Process (AHP) and a weight-guided improved K-Means algorithm to perform targeted clustering tailored to the specific control requirements of different voltage levels. Validation on an IEEE-33 node system demonstrates that the proposed method significantly improves data approximation precision and clustering compactness compared to conventional approaches. Full article
(This article belongs to the Section Industrial Electronics)
Show Figures

Figure 1

20 pages, 15768 KB  
Article
Capacity Configuration and Scheduling Optimization on Wind–Photovoltaic–Storage System Considering Variable Reservoir–Irrigation Load
by Jian-hong Zhu, Yu He, Juping Gu, Xinsong Zhang, Jun Zhang, Yonghua Ge, Kai Luo and Jiwei Zhu
Electronics 2026, 15(2), 454; https://doi.org/10.3390/electronics15020454 - 21 Jan 2026
Viewed by 44
Abstract
High penetration and output volatility of island wind and photovoltaics (PV) pose challenges to energy consumption and supply–demand balance, and cost-effective energy storage configuration. A coupled dispatch model for a wind–PV–storage system is proposed, which treats multiple canal units as virtual ‘loads’ that [...] Read more.
High penetration and output volatility of island wind and photovoltaics (PV) pose challenges to energy consumption and supply–demand balance, and cost-effective energy storage configuration. A coupled dispatch model for a wind–PV–storage system is proposed, which treats multiple canal units as virtual ‘loads’ that switch between generation and pumping under constraints of power balance and available water head model. Considering the variable reservoir–irrigation feature, a multi-objective model framework is developed to minimize both economic cost and storage capacity required. An augmented Lagrangian–Nash product enhanced NSGA-II (AL-NP-NSGA-II) algorithm enforces constraints of irrigation shortfall and overflow via an augmented Lagrangian term and allocates fair benefits across canal units through a Nash product reward. Moreover, updates of Lagrange multipliers and reward weights maintain power balance and accelerate convergence. Finally, a case simulation (3.7 MW wind, 7.1 MW PV, and 24 h rural load) is performed, where 440.98 kWh storage eliminates shortfall/overflow and yields 1.5172 × 104 CNY. Monte Carlo uncertainty analysis (±10% perturbations in load, wind, and PV) shows that increasing storage to 680 kWh can stabilize reliability above 98% and raise economic benefit to 1.5195 × 104 CNY. The dispatch framework delivers coordination of irrigation and power balance in island microgrids, providing a systematic configuration solution. Full article
Show Figures

Figure 1

41 pages, 5360 KB  
Article
Jellyfish Search Algorithm-Based Optimization Framework for Techno-Economic Energy Management with Demand Side Management in AC Microgrid
by Vijithra Nedunchezhian, Muthukumar Kandasamy, Renugadevi Thangavel, Wook-Won Kim and Zong Woo Geem
Energies 2026, 19(2), 521; https://doi.org/10.3390/en19020521 - 20 Jan 2026
Viewed by 160
Abstract
The optimal allocation of Photovoltaic (PV) and wind-based renewable energy sources and Battery Energy Storage System (BESS) capacity is an important issue for efficient operation of a microgrid network (MGN). The impact of the unpredictability of PV and wind generation needs to be [...] Read more.
The optimal allocation of Photovoltaic (PV) and wind-based renewable energy sources and Battery Energy Storage System (BESS) capacity is an important issue for efficient operation of a microgrid network (MGN). The impact of the unpredictability of PV and wind generation needs to be smoothed out by coherent allocation of BESS unit to meet out the load demand. To address these issues, this article proposes an efficient Energy Management System (EMS) and Demand Side Management (DSM) approaches for the optimal allocation of PV- and wind-based renewable energy sources and BESS capacity in the MGN. The DSM model helps to modify the peak load demand based on PV and wind generation, available BESS storage, and the utility grid. Based on the Real-Time Market Energy Price (RTMEP) of utility power, the charging/discharging pattern of the BESS and power exchange with the utility grid are scheduled adaptively. On this basis, a Jellyfish Search Algorithm (JSA)-based bi-level optimization model is developed that considers the optimal capacity allocation and power scheduling of PV and wind sources and BESS capacity to satisfy the load demand. The top-level planning model solves the optimal allocation of PV and wind sources intending to reduce the total power loss of the MGN. The proposed JSA-based optimization achieved 24.04% of power loss reduction (from 202.69 kW to 153.95 kW) at peak load conditions through optimal PV- and wind-based DG placement and sizing. The bottom level model explicitly focuses to achieve the optimal operational configuration of MGN through optimal power scheduling of PV, wind, BESS, and the utility grid with DSM-based load proportions with an aim to minimize the operating cost. Simulation results on the IEEE 33-node MGN demonstrate that the 20% DSM strategy attains the maximum operational cost savings of €ct 3196.18 (reduction of 2.80%) over 24 h operation, with a 46.75% peak-hour grid dependency reduction. The statistical analysis over 50 independent runs confirms the sturdiness of the JSA over Particle Swarm Optimization (PSO) and Osprey Optimization Algorithm (OOA) with a standard deviation of only 0.00017 in the fitness function, demonstrating its superior convergence characteristics to solve the proposed optimization problem. Finally, based on the simulation outcome of the considered bi-level optimization problem, it can be concluded that implementation of the proposed JSA-based optimization approach efficiently optimizes the PV- and wind-based resource allocation along with BESS capacity and helps to operate the MGN efficiently with reduced power loss and operating costs. Full article
(This article belongs to the Section A1: Smart Grids and Microgrids)
Show Figures

Figure 1

28 pages, 3071 KB  
Review
A Critical Review of State-of-the-Art Stability Control of PV Systems: Methodologies, Challenges, and Perspectives
by Runzhi Mu, Yuming Zhang, Yangyang Wu, Xiongbiao Wan, Xiaolong Song, Deng Wang, Liming Sun and Bo Yang
Energies 2026, 19(2), 507; https://doi.org/10.3390/en19020507 - 20 Jan 2026
Viewed by 86
Abstract
With the continuous and rapid growth of global photovoltaic (PV) installed capacity, the fluctuation, intermittence, and randomness of its output aggravate the inertia loss of traditional power systems, which poses severe challenges to grid voltage stability, frequency regulation, and safe operation of equipment. [...] Read more.
With the continuous and rapid growth of global photovoltaic (PV) installed capacity, the fluctuation, intermittence, and randomness of its output aggravate the inertia loss of traditional power systems, which poses severe challenges to grid voltage stability, frequency regulation, and safe operation of equipment. Stability control of PV power stations has become a necessary aspect of technical support for the construction of new power systems (NPSs). In this paper, a technical analysis framework of stability control of photovoltaic power stations is systematically constructed. First, the core stability problems of photovoltaic systems are sorted out. Then, a technical review of the three control levels, namely the equipment, system, and grid, is carried out. At the same time, the application potential of emerging technologies such as data-driven and AI control, digital twin predictive control, and advanced grid-forming (GFM) inverters is described. Based on existing reviews, this paper proposes an equipment–system–grid hierarchical analysis framework and explicitly integrates emerging technologies with classical methods. This framework provides references for the selection, engineering deployment, and future research directions of stability control technologies for photovoltaic power plants, while also offering technical support for the safe and efficient operation of high-penetration renewable energy power grids. Full article
Show Figures

Figure 1

20 pages, 1905 KB  
Article
Feasibility Study of School-Centred Peer-to-Peer Energy Trading with Households and Electric Motorbike Loads
by Lerato Paulina Molise, Jason Avron Samuels and Marthinus Johannes Booysen
Sustainability 2026, 18(2), 978; https://doi.org/10.3390/su18020978 - 18 Jan 2026
Viewed by 162
Abstract
South Africa faces high energy costs, highlighting the urgent need for sustainable and cost-effective energy solutions. This study investigates the design of a cost-effective photovoltaic energy system that maximises savings and revenue for the school through energy trading. In this study, the school [...] Read more.
South Africa faces high energy costs, highlighting the urgent need for sustainable and cost-effective energy solutions. This study investigates the design of a cost-effective photovoltaic energy system that maximises savings and revenue for the school through energy trading. In this study, the school trades with 14 neighbouring households and 125 electric motorbikes. This research first applies Latin Hypercube Sampling to explore the solution space and determine which system parameters have a significant impact on supply reliability, investment costs, revenue and savings. Optimal solutions are generated using Non-Dominated Sorting Genetic Algorithm II for a range of system scenarios. Following this, the most promising scenario is selected and applied to 53 schools in the Western Cape. The results show that number of panels strongly correlates with both supply reliability and revenue, thus reducing the break-even years, while battery capacity affects investment costs and, to some extent, break-even years. Among the configurations tested, scenarios where schools traded with both households and electric motorbikes, particularly when both included their own battery systems, achieved the most favourable financial performance for the school, with break-even periods of less than five years under sufficient roof area and improved reliability for the external entities, with an average improvement of 60%. These findings demonstrate that peer-to-peer energy trading between schools and communities can enhance the financial feasibility and sustainability of decentralised solar systems, offering a scalable model for improving energy access and affordability in South Africa and possibly other developing countries. Full article
Show Figures

Figure 1

22 pages, 3350 KB  
Article
Challenges in the Legal and Technical Integration of Photovoltaics in Multi-Family Buildings in the Polish Energy Grid
by Robert Kowalak, Daniel Kowalak, Konrad Seklecki and Leszek S. Litzbarski
Energies 2026, 19(2), 474; https://doi.org/10.3390/en19020474 - 17 Jan 2026
Viewed by 240
Abstract
This article analyzes the case of a typical modern residential area, which was built following current legal regulations in Poland. For the purposes of the calculations, a housing estate consisting of 32 houses was assumed, with a connection power of 36 kW each. [...] Read more.
This article analyzes the case of a typical modern residential area, which was built following current legal regulations in Poland. For the purposes of the calculations, a housing estate consisting of 32 houses was assumed, with a connection power of 36 kW each. The three variants evaluate power consumption and photovoltaic system operation: Variant I assumes no PV installations and fluctuating consumer power demands; Variant II involves PV installations in all estate buildings with a total capacity matching the building’s 36 kW connection power and minimal consumption; and Variant III increases installed PV capacity per building to 50 kW, aligning with apartment connection powers, also with minimal consumption. The simulations performed indicated that there may be problems with voltage levels and current overloads of network elements. Although in case I the transformer worked properly, after connecting the PV installation in an extreme case, it was overloaded by about 117% (Variant II) or even about 180% (Variant III). The described case illustrates the impact of changes in regulations on the stability of the electricity distribution network. A potential solution to this problem is to oversize the distribution network elements, introduce power restrictions for PV installations or to oblige prosumers to install energy storage facilities. Full article
(This article belongs to the Special Issue Advances in the Design and Application of Solar Energy in Buildings)
Show Figures

Figure 1

24 pages, 3395 KB  
Article
Bi-Objective Intraday Coordinated Optimization of a VPP’s Reliability and Cost Based on a Dual-Swarm Particle Swarm Algorithm
by Jun Zhan, Xiaojia Sun, Yang Li, Wenjing Sun, Jiamei Jiang and Yang Gao
Energies 2026, 19(2), 473; https://doi.org/10.3390/en19020473 - 17 Jan 2026
Viewed by 234
Abstract
With the increasing penetration of renewable energy, power systems are facing greater uncertainty and volatility, which poses significant challenges for Virtual Power Plant scheduling. Existing research mainly focuses on optimizing economic efficiency but often overlooks system reliability and the impact of forecasting deviations [...] Read more.
With the increasing penetration of renewable energy, power systems are facing greater uncertainty and volatility, which poses significant challenges for Virtual Power Plant scheduling. Existing research mainly focuses on optimizing economic efficiency but often overlooks system reliability and the impact of forecasting deviations on scheduling, leading to suboptimal performance. Thus, this paper presents a reliability-cost bi-objective cooperative optimization model based on a dual-swarm particle swarm algorithm: it introduces positive and negative imbalance price penalty factors to explicitly describe the economic costs of forecast deviations, constructs a reliability evaluation system covering PV, EVs, air-conditioning loads, electrolytic aluminum loads, and energy storage, and solves the multi-objective model via algorithm design of “sub-swarms specializing in single objectives + periodic information exchange”. Simulation results show that the method ensures stable intraday operation of VPPs, achieving 6.8% total cost reduction, 12.5% system reliability improvement, and 14.8% power deviation reduction, verifying its practical value and application prospects. Full article
Show Figures

Figure 1

25 pages, 16529 KB  
Article
Multi-Scale Photovoltaic Power Forecasting with WDT–CRMABIL–Fusion: A Two-Stage Hybrid Deep Learning Framework
by Reza Khodabakhshi Palandi, Loredana Cristaldi and Luca Martiri
Energies 2026, 19(2), 455; https://doi.org/10.3390/en19020455 - 16 Jan 2026
Viewed by 189
Abstract
Ultra-short-term photovoltaic (PV) power forecasts are vital for secure grid operation as solar penetration rises. We propose a two-stage hybrid framework, WDT–CRMABIL–Fusion. In Stage 1, we apply a three-level discrete wavelet transform to PV power and key meteorological series (shortwave radiation and panel [...] Read more.
Ultra-short-term photovoltaic (PV) power forecasts are vital for secure grid operation as solar penetration rises. We propose a two-stage hybrid framework, WDT–CRMABIL–Fusion. In Stage 1, we apply a three-level discrete wavelet transform to PV power and key meteorological series (shortwave radiation and panel irradiance). We then forecast the approximation and detail sub-series using specialized component predictors: a 1D-CNN with dual residual multi-head attention (feature-wise and time-wise) together with a BiLSTM. In Stage 2, a compact dense fusion network recombines the component forecasts into the final PV power trajectory. We use 5-min data from a PV plant in Milan and evaluate 5-, 10-, and 15-min horizons. The proposed approach outperforms strong baselines (DCC+LSTM, CNN+LSTM, CNN+BiLSTM, CRMABIL direct, and WDT+CRMABIL direct). For the 5-min horizon, it achieves MAE = 1.60 W and RMSE = 4.21 W with R2 = 0.943 and CORR = 0.973, compared with the best benchmark (MAE = 3.87 W; RMSE = 7.89 W). The gains persist across K-means++ weather clusters (rainy/sunny/cloudy) and across seasons. By combining explicit multi-scale decomposition, attention-based sequence learning, and learned fusion, WDT–CRMABIL–Fusion provides accurate and robust ultra-short-term PV forecasts suitable for storage dispatch and reserve scheduling. Full article
Show Figures

Figure 1

39 pages, 5114 KB  
Article
Optimal Sizing of Electrical and Hydrogen Generation Feeding Electrical and Thermal Load in an Isolated Village in Egypt Using Different Optimization Technique
by Mohammed Sayed, Mohamed A. Nayel, Mohamed Abdelrahem and Alaa Farah
Energies 2026, 19(2), 452; https://doi.org/10.3390/en19020452 - 16 Jan 2026
Viewed by 105
Abstract
This paper analyzes the functional feasibility and strategic value of hybrid hydrogen storage and photovoltaic (PV) energy systems at isolated areas, specifically at Egypt’s Shalateen station. The paper is significant as it formulates a solution to the energy independence coupled with economic feasibility [...] Read more.
This paper analyzes the functional feasibility and strategic value of hybrid hydrogen storage and photovoltaic (PV) energy systems at isolated areas, specifically at Egypt’s Shalateen station. The paper is significant as it formulates a solution to the energy independence coupled with economic feasibility issue in regions where the basic energy infrastructure is non-existent or limited. Through the integration of a portfolio of advanced optimization algorithms—Differential Evolution (DE), Genetic Algorithm (GA), Particle Swarm Optimization (PSO), Grey Wolf Optimizer (GWO), Multi-Objective Genetic Algorithm (MOGA), Pattern Search, Sequential Quadratic Programming (SQP), and Simulated Annealing—the paper evaluates the performance of two scenarios. The first evaluates the PV system in the absence of hydrogen production to demonstrate how system parameters are optimized by Pattern Search and PSO to achieve a minimum Cost of Energy (COE) of 0.544 USD/kWh. The second extends the system to include hydrogen production, which becomes important to ensure energy continuity during solar irradiation-free months like those during winter months. In this scenario, the same methods of optimization enhance the COE to 0.317 USD/kWh, signifying the economic value of integrating hydrogen storage. The findings underscore the central role played by hybrid renewable energy systems in ensuring high resilience and sustainability of supplies in far-flung districts, where continued enhancement by means of optimization is needed to realize maximum environmental and technological gains. The paper offers a futuristic model towards sustainable, dependable energy solutions key to the energy independence of the future in such challenging environments. Full article
(This article belongs to the Section A2: Solar Energy and Photovoltaic Systems)
Show Figures

Figure 1

26 pages, 2039 KB  
Article
Modeling and Optimization of AI-Based Centralized Energy Management for a Community PV-Battery System Using PSO
by Sree Lekshmi Reghunathan Pillai Sree Devi, Chinmaya Krishnan, Preetha Parakkat Kesava Panikkar and Jayesh Santhi Bhavan
Energies 2026, 19(2), 439; https://doi.org/10.3390/en19020439 - 16 Jan 2026
Viewed by 166
Abstract
The rapid rise in energy demand, urban electrification, and the increasing prevalence of Electric Vehicles (EV) have intensified the need for reliable and decentralized energy management solutions. This study proposes an AI-driven centralized control architecture for a community-based photovoltaic–battery energy storage system (PV–BESS) [...] Read more.
The rapid rise in energy demand, urban electrification, and the increasing prevalence of Electric Vehicles (EV) have intensified the need for reliable and decentralized energy management solutions. This study proposes an AI-driven centralized control architecture for a community-based photovoltaic–battery energy storage system (PV–BESS) to enhance energy efficiency and self-sufficiency. The framework integrates a central controller which utilizes the Particle Swarm Optimization (PSO) technique which receives the Long Short-Term Memory (LSTM) forecasting output to determine optimal photovoltaic generation, battery charging, and discharging schedules. The proposed system minimizes the grid dependence, reduces the operational costs and a stable power output is ensured under dynamic load conditions by coordinating the renewable resources in the community microgrid. This system highlights that the AI-based Particle Swarm Optimization will reduce the peak load import and it maximizes the energy utilization of the system compared to the conventional optimization techniques. Full article
Show Figures

Graphical abstract

32 pages, 10354 KB  
Article
Advanced Energy Management and Dynamic Stability Assessment of a Utility-Scale Grid-Connected Hybrid PV–PSH–BES System
by Sharaf K. Magableh, Mohammad Adnan Magableh, Oraib M. Dawaghreh and Caisheng Wang
Electronics 2026, 15(2), 384; https://doi.org/10.3390/electronics15020384 - 15 Jan 2026
Viewed by 199
Abstract
Despite the growing adoption of hybrid energy systems integrating solar photovoltaic (PV), pumped storage hydropower (PSH), and battery energy storage (BES), comprehensive studies on their dynamic stability and interaction mechanisms remain limited, particularly under weak grid conditions. Due to the high impedance of [...] Read more.
Despite the growing adoption of hybrid energy systems integrating solar photovoltaic (PV), pumped storage hydropower (PSH), and battery energy storage (BES), comprehensive studies on their dynamic stability and interaction mechanisms remain limited, particularly under weak grid conditions. Due to the high impedance of weak grids, ensuring stability across varied operating scenarios is crucial for advancing grid resilience and energy reliability. This paper addresses these research gaps by examining the interaction dynamics between PV, PSH, and BES on the DC side and the utility grid on the AC side. The study identifies operating-region-dependent instability mechanisms arising from negative incremental resistance behavior and weak grid interactions and proposes a virtual-impedance-based active damping control strategy to suppress poorly damped oscillatory modes. The proposed controller effectively reshapes the converter output impedance, shifts unstable eigenmodes into the left-half plane, and improves phase margins without requiring additional hardware components or introducing steady-state power losses. System stability is analytically assessed using root-locus, Bode, and Nyquist criteria within a developed small-signal state-space model, and further validated through large-signal real-time simulations on an OPAL-RT platform. The main contributions of this study are threefold: (i) a comprehensive stability analysis of a utility-scale grid-connected hybrid PV–PSH–BES system under weak grid conditions, (ii) identification of operating-region-dependent instability mechanisms associated with DC–link interactions, and (iii) development and real-time validation of a practical virtual-impedance-based active damping strategy for enhancing system stability and grid integration reliability. Full article
(This article belongs to the Special Issue Advances in Power Electronics Converters for Modern Power Systems)
Show Figures

Figure 1

38 pages, 7660 KB  
Article
Optimizing Energy Storage Systems with PSO: Improving Economics and Operations of PMGD—A Chilean Case Study
by Juan Tapia-Aguilera, Luis Fernando Grisales-Noreña, Roberto Eduardo Quintal-Palomo, Oscar Danilo Montoya and Daniel Sanin-Villa
Appl. Syst. Innov. 2026, 9(1), 22; https://doi.org/10.3390/asi9010022 - 14 Jan 2026
Viewed by 190
Abstract
This work develops a methodology for operating Battery Energy Storage Systems (BESSs) in distribution networks, connected in parallel with a medium- and small-scale photovoltaic Distributed Generator (PMGD), focusing on a real project located in the O’Higgins region of Chile. The objective is to [...] Read more.
This work develops a methodology for operating Battery Energy Storage Systems (BESSs) in distribution networks, connected in parallel with a medium- and small-scale photovoltaic Distributed Generator (PMGD), focusing on a real project located in the O’Higgins region of Chile. The objective is to increase energy sales by the PMGD while ensuring compliance with operational constraints related to the grid, PMGD, and BESSs, and optimizing renewable energy use. A real distribution network from Compañía General de Electricidad (CGE) comprising 627 nodes was simplified into a validated three-node, two-line equivalent model to reduce computational complexity while maintaining accuracy. A mathematical model was designed to maximize economic benefits through optimal energy dispatch, considering solar generation variability, demand curves, and seasonal energy sales and purchasing prices. An energy management system was proposed based on a master–slave methodology composed of Particle Swarm Optimization (PSO) and an hourly power flow using the successive approximation method. Advanced optimization techniques such as Monte Carlo (MC) and the Genetic Algorithm (GAP) were employed as comparison methods, supported by a statistical analysis evaluating the best and average solutions, repeatability, and processing times to select the most effective optimization approach. Results demonstrate that BESS integration efficiently manages solar generation surpluses, injecting energy during peak demand and high-price periods to maximize revenue, alleviate grid congestion, and improve operational stability, with PSO proving particularly efficient. This work underscores the potential of BESS in PMGD to support a more sustainable and efficient energy matrix in Chile, despite regulatory and technical challenges that warrant further investigation. Full article
(This article belongs to the Section Applied Mathematics)
Show Figures

Figure 1

Back to TopTop