A Conditional Value-at-Risk-Based Bidding Strategy for PVSS Participation in Energy and Frequency Regulation Ancillary Markets
Abstract
1. Introduction
2. Market Bidding Framework
3. Upper-Level Decision Model
3.1. Market Revenue Maximization
3.2. Risk Measure Based on Conditional Value-at-Risk
3.3. Constraints of the Upper-Level Model
4. Joint Clearing Model of the Lower-Level Energy and Frequency Regulation Markets
4.1. Objective Function
4.2. Constraints of the Lower-Level Model
5. Bi-Level Model Transformation Method Based on KKT Conditions and Strong Duality Theorem
5.1. Restructuring of the Bi-Level Optimization Framework
- Step 1: Construct the Lagrangian function of the lower-level model, as shown in Appendix A, Equation (A2);
- Step 2: Derive the stationarity conditions by taking the partial derivatives of the Lagrangian function, as shown in Appendix A, Equation (A3);
- Step 3: Formulate the complementary slackness conditions for the lower-level inequality constraints, as given in Appendix A, Equation (A4).
- Upper-level constraints: These are given in Equations (9)–(25).
- Lower-level constraints: These include the equality constraints in Equations (29) and (38), and the transformed inequality constraints shown in Equations (A3) and (A4).
5.2. Linearization of the Objective Function
6. CVaR-Based Trading Decision Model for PVSS Participating in the Energy and Frequency Regulation Markets
6.1. Data Processing and Scenario Generation
6.2. Risk Modeling and Bidding Decision
7. Results and Discussion
7.1. Case Study Design
7.2. Market Revenue Analysis
7.2.1. Economic Analysis of the Energy and Frequency Regulation Markets
7.2.2. Clearing Results of the Bi-Level Bidding Strategy
7.3. Risk Analysis
7.4. Computational Accuracy and Efficiency Analysis
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Clean Energy Market Monitor—March 2024—Analysis. Available online: https://www.iea.org/reports/clean-energy-market-monitor-march-2024 (accessed on 28 October 2025).
- Masson, G.; Jäger-Waldau, A.; Kaizuka, I.; Lindahl, J.; Donoso, J.; de L’Epine, M. A Snapshot of the Global PV Market and Industry. In Proceedings of the 2025 IEEE 53rd Photovoltaic Specialists Conference (PVSC), Montreal, QC, Canada, 8–13 June 2025; pp. 0508–0510. [Google Scholar]
- Wang, J.; Jin, X.; Jia, H.; Tostado-Véliz, M.; Mu, Y.; Yu, X.; Liang, S. Joint Electricity and Carbon Sharing with PV and Energy Storage: A Low-Carbon DR-Based Game Theoretic Approach. IEEE Trans. Sustain. Energy 2024, 15, 2703–2717. [Google Scholar] [CrossRef]
- González-Garrido, A.; Saez-de-Ibarra, A.; Gaztañaga, H.; Milo, A.; Eguia, P. Annual Optimized Bidding and Operation Strategy in Energy and Secondary Reserve Markets for Solar Plants with Storage Systems. IEEE Trans. Power Syst. 2019, 34, 5115–5124. [Google Scholar] [CrossRef]
- Wang, Y.; Li, T.; Li, Y.; Shao, N.; Wang, Y. Spot Market Clearing Model and Flexibility Premium Assessment Method Considering Flexible Regulation of Virtual Power Plants. IEEE Access 2024, 12, 53855–53870. [Google Scholar] [CrossRef]
- Saxena, P.; Singh, N.; Pandey, A.K. Self-Regulated Solar PV Systems: Replacing Battery via Virtual Inertia Reserve. IEEE Trans. Energy Convers. 2021, 36, 2185–2194. [Google Scholar] [CrossRef]
- Dreidy, M.; Mokhlis, H.; Mekhilef, S. Inertia Response and Frequency Control Techniques for Renewable Energy Sources: A Review. Renew. Sustain. Energy Rev. 2017, 69, 144–155. [Google Scholar] [CrossRef]
- Pourmousavi, S.A.; Saha, T.K. Evaluation of the Battery Operation in Ramp-Rate Control Mode within a PV Plant: A Case Study. Sol. Energy 2018, 166, 242–254. [Google Scholar] [CrossRef]
- Maluenda, M.; Córdova, S.; Lorca, Á.; Negrete-Pincetic, M. Optimal Operation Scheduling of a PV-BESS-Electrolyzer System for Hydrogen Production and Frequency Regulation. Appl. Energy 2023, 344, 121243. [Google Scholar] [CrossRef]
- He, G.; Chen, Q.; Kang, C.; Xia, Q.; Poolla, K. Cooperation of Wind Power and Battery Storage to Provide Frequency Regulation in Power Markets. IEEE Trans. Power Syst. 2017, 32, 3559–3568. [Google Scholar] [CrossRef]
- Chen, W.; Qiu, J.; Zhao, J.; Chai, Q.; Dong, Z.Y. Bargaining Game-Based Profit Allocation of Virtual Power Plant in Frequency Regulation Market Considering Battery Cycle Life. IEEE Trans. Smart Grid 2021, 12, 2913–2928. [Google Scholar] [CrossRef]
- Angenendt, G.; Merten, M.; Zurmühlen, S.; Sauer, D.U. Evaluation of the Effects of Frequency Restoration Reserves Market Participation with Photovoltaic Battery Energy Storage Systems and Power-to-Heat Coupling. Appl. Energy 2020, 260, 114186. [Google Scholar] [CrossRef]
- Wang, H.; Ding, C.; Fan, G.; Bian, J.; Yu, G.; Xin, C. Photovoltaic and storage system participating in the electricity market based on AGC zoning control. Power Syst. Prot. Control 2023, 51, 121–131. [Google Scholar] [CrossRef]
- Jie, B.; Qin, X.; Wang, Z. Research on Optimized Purchasing Strategy and Risk Management in Electricity Market. In Proceedings of the 2018 China International Conference on Electricity Distribution (CICED), Tianjin, China, 17–19 September 2018; pp. 2714–2717. [Google Scholar]
- Xie, M.; Hu, X.; Ke, S.; Cheng, P.; Liu, M. Vine-Copula Based Dynamic Risk VaR Assessment Method for Operation Profit and Loss of Generation Companies. Autom. Electr. Power Syst. 2019, 43, 39–45, 52. [Google Scholar]
- Guo, H.X.; Gao, R.; Yang, P. Two-stage Dispatch of Microgrid Based on CVaR Theory Under Electricity Spot Market. Power Syst. Technol. 2019, 43, 2665–2674. [Google Scholar] [CrossRef]
- Yang, B.; Tang, W.; Wu, F.; Wang, H.L.; Sun, W.Q. Day-ahead market bidding strategy for “renewable energy + energy storage” power plants considering conditional value-at-risk. Power Syst. Prot. Control. 2022, 50, 93–100. [Google Scholar] [CrossRef]
- Vahedipour-Dahraie, M.; Rashidizadeh-Kermani, H.; Shafie-Khah, M.; Catalão, J.P.S. Risk-Averse Optimal Energy and Reserve Scheduling for Virtual Power Plants Incorporating Demand Response Programs. IEEE Trans. Smart Grid 2021, 12, 1405–1415. [Google Scholar] [CrossRef]
- Li, X.; Qin, W.; Jing, X.; Zhu, Z.; Lu, R.; Han, X. Joint Optimization for Virtual Power Plant Participating in Main and Auxiliary Markets Considering Uncertain Risks and Multi-agent Coordination. Power Syst. Technol. 2024, 48, 4553–4567. [Google Scholar] [CrossRef]
- Wang, J.; Xu, J.; Wang, J.; Ke, D.; Liao, S.; Sun, Y.; Wu, Y. Bi-level Stochastic Optimization for A Virtual Power Plant Participating in Energy and Reserve Market Based on Conditional Value at Risk. Power Syst. Technol. 2024, 48, 2502–2510. [Google Scholar] [CrossRef]
- Brandtner, M. Conditional Value-at-Risk, Spectral Risk Measures and (Non-)Diversification in Portfolio Selection Problems—A Comparison with Mean–Variance Analysis. J. Bank. Financ. 2013, 37, 5526–5537. [Google Scholar] [CrossRef]
- Fieberg, C.; Liedtke, G.; Zaremba, A.; Cakici, N. A Factor Model for the Cross-Section of Country Equity Risk Premia. J. Bank. Financ. 2025, 171, 107373. [Google Scholar] [CrossRef]
- Ahmadi, M.; Rosolia, U.; Ingham, M.D.; Murray, R.M.; Ames, A.D. Risk-Averse Decision Making Under Uncertainty. IEEE Trans. Autom. Control. 2024, 69, 55–68. [Google Scholar] [CrossRef]
- Gomez, T.; Herrero, I.; Rodilla, P.; Escobar, R.; Lanza, S.; de la Fuente, I.; Llorens, M.L.; Junco, P. European Union Electricity Markets: Current Practice and Future View. IEEE Power Energy Mag. 2019, 17, 20–31. [Google Scholar] [CrossRef]
- Wang, Y.; Li, Y.; Yang, Y.; Gao, Z.; Dehghanian, P.; Yang, D.; Ding, Z. Aggregated Operation Scheme for Distributed Photovoltaic and Energy Storage System Enabling Multi-Service Provision. IEEE Trans. Ind. Appl. 2024, 60, 2409–2421. [Google Scholar] [CrossRef]
- Fooladivanda, D.; Xu, H.; Domínguez-García, A.D.; Bose, S. Offer Strategies for Wholesale Energy and Regulation Markets. IEEE Trans. Power Syst. 2018, 33, 7305–7308. [Google Scholar] [CrossRef]
- Chen, S.; Ye, Z. Double-Layer Optimization and Benefit Analysis of Shared Energy Storage Investment Considering Life-Cycle Carbon Emission. Sustainability 2024, 16, 10403. [Google Scholar] [CrossRef]
- Wang, J.; Lan, J.; Wang, L.; Lin, Y.; Hao, M.; Zhang, Y.; Xiang, Y.; Qin, L. Voltage Hierarchical Control Strategy for Distribution Networks Based on Regional Autonomy and Photovoltaic-Storage Coordination. Sustainability 2024, 16, 6758. [Google Scholar] [CrossRef]
- Luo, S.; Chen, C.; Qiu, W.; Ma, J.; Yang, L.; Lin, Z. Bi-Layer Optimal Planning of Rural Distribution Network Based on KKT Condition and Big-M Method. Energy Rep. 2021, 7, 637–644. [Google Scholar] [CrossRef]
- Rahbari-Asr, N.; Chow, M.-Y. Cooperative Distributed Demand Management for Community Charging of PHEV/PEVs Based on KKT Conditions and Consensus Networks. IEEE Trans. Ind. Inform. 2014, 10, 1907–1916. [Google Scholar] [CrossRef]









| Scene | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
|---|---|---|---|---|---|---|---|---|---|---|
| Probability | 0.110 | 0.054 | 0.261 | 0.012 | 0.024 | 0.094 | 0.069 | 0.001 | 0.190 | 0.185 |
| Parameters | PVSS |
|---|---|
| Photovoltaic installed capacity (MW) | 120 |
| Energy storage capacity (MWh) | 30 |
| Maximum charging/discharging power (MW) | 10 |
| SOC range | 0.1~0.9 |
| Charging/discharging efficiency | 0.95 |
| Energy purchase bid range (USD/MWh) | 0.0~56.81 |
| Energy sale bid range (USD/MWh) | 0.0~71.01 |
| Regulation capacity bid range (USD/MW) | 0.0~18.46 |
| Parameter | Generator 1 | Generator 2 | Generator 3 | Generator 4 |
|---|---|---|---|---|
| Maximum generation output (MW) | 200 | 80 | 50 | 35 |
| Minimum generation output (MW) | 30 | 20 | 15 | 10 |
| Maximum regulation capacity (MW) | 30 | 20 | 13 | 9 |
| Regulation capacity bid (USD·MW−1) | 15.62 | 14.20 | 17.04 | 16.33 |
| Energy bid (USD·MWh−1) | 53.26 | 56.81 | 59.79 | 56.10 |
| Scenarios | Energy Market Revenue (USD) | Regulation Market Revenue (USD) | PV–Storage Operation Cost | Net Revenue/(USD) | |
|---|---|---|---|---|---|
| Maximum Value (USD) | Expected Value (USD) | ||||
| 1 | 9781.57 | — | 5138.76 | 5001.85 | 4779.72 |
| 2 | 11,767.65 | — | 6405.34 | 6244.14 | 5523.51 |
| 3 | 11,415.85 | 1717.80 | 6484.02 | 6158.93 | 6974.72 |
| Scenarios | Risk-Aversion Coefficient | Market Revenue (USD) | PV–Storage Operation Cost | CVaR | Net Revenue (USD) | |
|---|---|---|---|---|---|---|
| Maximum Value (USD) | Expected Value (USD) | |||||
| 1 | 0 | 13,133.65 | 6484.02 | 6158.93 | 6649.48 | 6974.72 |
| 2 | 0.5 | 13,016.76 | 6145.01 | 6056.38 | 6873.03 | 6960.09 |
| 3 | 20 | 12,996.02 | 6120.44 | 6048.00 | 6875.59 | 6948.02 |
| β | Electricity Market Profit (USD) | CVaR Value (USD) | Revenue Change Relative to β = 0 | CVaR Change Relative to β = 0 |
|---|---|---|---|---|
| 0 | 6974.72 | 6649.48 | 0 | 0 |
| 0.1 | 6962.65 | 6864.22 | −0.17% | 3.23% |
| 0.3 | 6961.23 | 6870.05 | −0.19% | 3.32% |
| 0.5 | 6960.09 | 6873.03 | −0.21% | 3.36% |
| 1.1 | 6959.24 | 6873.88 | −0.22% | 3.37% |
| 10 | 6955.55 | 6874.73 | −0.27% | 3.39% |
| 20 | 6948.02 | 6875.59 | −0.38% | 3.40% |
| 100 | 6948.02 | 6876.15 | −0.38% | 3.41% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Wang, X.; Lei, K.; Wu, H.; Xu, B.; Ding, J. A Conditional Value-at-Risk-Based Bidding Strategy for PVSS Participation in Energy and Frequency Regulation Ancillary Markets. Sustainability 2026, 18, 1122. https://doi.org/10.3390/su18021122
Wang X, Lei K, Wu H, Xu B, Ding J. A Conditional Value-at-Risk-Based Bidding Strategy for PVSS Participation in Energy and Frequency Regulation Ancillary Markets. Sustainability. 2026; 18(2):1122. https://doi.org/10.3390/su18021122
Chicago/Turabian StyleWang, Xiaoming, Kesong Lei, Hongbin Wu, Bin Xu, and Jinjin Ding. 2026. "A Conditional Value-at-Risk-Based Bidding Strategy for PVSS Participation in Energy and Frequency Regulation Ancillary Markets" Sustainability 18, no. 2: 1122. https://doi.org/10.3390/su18021122
APA StyleWang, X., Lei, K., Wu, H., Xu, B., & Ding, J. (2026). A Conditional Value-at-Risk-Based Bidding Strategy for PVSS Participation in Energy and Frequency Regulation Ancillary Markets. Sustainability, 18(2), 1122. https://doi.org/10.3390/su18021122

