Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (8,410)

Search Parameters:
Keywords = PCR sequencing

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 5077 KiB  
Article
Genomic Features and Tissue Expression Profiles of the Tyrosinase Gene Family in the Chinese Soft-Shelled Turtle (Pelodiscus sinensis)
by Yanchao Liu, Pan Liu, Tong Ren, Yang Gao, Ziman Wang, Junxian Zhu, Chen Chen, Liqin Ji, Xiaoyou Hong, Xiaoli Liu, Chengqing Wei, Xinping Zhu, Zhangjie Chu and Wei Li
Genes 2025, 16(7), 834; https://doi.org/10.3390/genes16070834 (registering DOI) - 17 Jul 2025
Abstract
In farmed animals, body color is not only an ecological trait but also an important trait that influences the commercial value of the animals. Melanin plays an important role in the formation of body color in animals, while the tyrosinase (TYR) gene family is [...] Read more.
In farmed animals, body color is not only an ecological trait but also an important trait that influences the commercial value of the animals. Melanin plays an important role in the formation of body color in animals, while the tyrosinase (TYR) gene family is a group of key enzymes that regulate melanogenesis. The Chinese soft-shelled turtle (Pelodiscus sinensis) is one of the most important reptiles in freshwater aquaculture. However, the potential role of the TYR gene family in the body color formation of P. sinensis remains unclear. This study aimed to investigate the expression and conservation of the TYR gene family in relation to body color variation in P. sinensis. Three core members of this gene family were identified from the P. sinensis genome. Following identification, the genomic features were analyzed. They shared similar physicochemical properties and conserved domains. Chromosome mapping showed that the three genes of P. sinensis were all located on the autosomes, while phylogenetic and collinearity analysis suggested that the protein functions of the three genes in the studied species were highly conserved. Amino acid sequence alignment indicated high conservation among the three TYR gene family proteins (TYR, TYRP1, and DCT) in multiple critical regions, particularly in their hydrophobic N-/C-terminal regions and cysteine/histidine-rich conserved domains. The qRT-PCR revealed that the TYR and DCT genes were highly expressed in the eyes of individuals with different body colors. The expression levels of TYR and TYRP1 genes in the skin were significantly higher in dark-colored individuals than in light-colored ones (p < 0.05). These results will lay the groundwork for functional studies and breeding programs targeting color traits in aquaculture. Full article
(This article belongs to the Section Animal Genetics and Genomics)
Show Figures

Figure 1

13 pages, 6840 KiB  
Article
Bovine Papillomavirus Genotypic Diversity and a Putative Novel Viral Type in Ecuador
by Diego J. Carvajal-Reina, Fausto Bedoya-Páez, Mónica Salomé Guerrero-Freire, Yanua Ledesma, David Vasco-Julio, Jacobus H. de Waard and Armando Reyna-Bello
Vet. Sci. 2025, 12(7), 672; https://doi.org/10.3390/vetsci12070672 (registering DOI) - 17 Jul 2025
Abstract
Bovine papillomatosis, caused by a growing group of bovine papillomaviruses (BPVs), is a disease with benign proliferative lesions (papillomas) that may progress to malignancies due to immunological, environmental, or viral factors. This study investigated BPV type diversity in cattle from the Province Santo [...] Read more.
Bovine papillomatosis, caused by a growing group of bovine papillomaviruses (BPVs), is a disease with benign proliferative lesions (papillomas) that may progress to malignancies due to immunological, environmental, or viral factors. This study investigated BPV type diversity in cattle from the Province Santo Domingo de Tsáchilas in Ecuador. Warty lesions were collected from 30 cattle across eight farms. Nucleic acids were extracted using a silicon dioxide-based method, and the partial L1 gene was amplified with PCR. DNA sequences were analyzed using maximum likelihood phylogenetics. Fifty-seven warty lesions yielded ten well-known BPV types: BPV1, BPV2, BPV4, BPV6, BPV8, BPV9, BPV10, BPV13, BPV14, and BPV42. Recently described viral types, BPV-CR2 from Costa Rica and BPV/BR-UEL08 from Brazil, were also detected, alongside a putative novel viral type, BPVEC2024-6-22.1—likely belonging to the genus Xipapillomavirus. This genus had the highest overall count. In contrast, Deltapapillomaviruses were found across all sampled farms. This study underscores BPV diversity in this localized region of Ecuador, and includes genotypes linked to cancers such as enzootic hematuria. The findings provide important epidemiological insights, contributing to vaccine development or immune therapy and improved disease management. Full article
(This article belongs to the Section Veterinary Microbiology, Parasitology and Immunology)
Show Figures

Figure 1

16 pages, 8218 KiB  
Article
Lead Induces Mitochondrial Dysregulation in SH-SY5Y Neuroblastoma Cells via a lncRNA/circRNA–miRNA–mRNA Interdependent Networks
by Yu Wang, Xuefeng Shen, Ruili Guan, Zaihua Zhao, Tao Wang, Yang Zhou, Xiaoming Chen, Jianbin Zhang, Wenjing Luo and Kejun Du
Int. J. Mol. Sci. 2025, 26(14), 6851; https://doi.org/10.3390/ijms26146851 (registering DOI) - 17 Jul 2025
Abstract
Lead (Pb) exposure poses a significant public health concern due to its neurotoxic effects. While mitochondrial dysfunction is implicated in lead neurotoxicity, the precise molecular mechanisms, particularly the role of non-coding RNA-mediated competing endogenous RNA networks, remain underexplored. SH-SY5Y neuroblastoma cells were treated [...] Read more.
Lead (Pb) exposure poses a significant public health concern due to its neurotoxic effects. While mitochondrial dysfunction is implicated in lead neurotoxicity, the precise molecular mechanisms, particularly the role of non-coding RNA-mediated competing endogenous RNA networks, remain underexplored. SH-SY5Y neuroblastoma cells were treated with 10 μM lead acetate. Cell viability was assessed by Cell Counting Kit-8 (CCK-8). Mitochondrial ultrastructure and quantity were analyzed via transmission electron microscopy (TEM). Key mitochondrial dynamics proteins were examined by Western blot. Comprehensive transcriptome sequencing, including long non-coding RNAs (lncRNAs), circular RNAs (circRNAs), microRNAs (miRNAs) and mRNAs, was performed followed by functional enrichment and ceRNA network construction. Selected RNAs and hub genes were validated using quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR). Lead exposure significantly reduced SH-SY5Y cell viability and induced mitochondrial damage (decreased quantity, swelling, fragmentation). Western blot confirmed an imbalance in mitochondrial dynamics, as indicated by decreased mitofusin 2 (MFN2), increased total and phosphorylated dynamin-related protein 1 (DRP1). Transcriptomic analysis revealed widespread differential expression of lncRNAs, circRNAs, miRNAs, and mRNAs. Enrichment analysis highlighted mitochondrial function and oxidative stress pathways. A ceRNA network identified five key hub genes: SLC7A11, FOS, HMOX1, HGF, and NR4A1. All validated RNA and hub gene expression patterns were consistent with sequencing results. Our study demonstrates that lead exposure significantly impairs mitochondrial quantity and morphology in SH-SY5Y cells, likely via disrupted mitochondrial dynamics. We reveal the potential regulatory mechanisms of lead-induced neurotoxicity involving ceRNA networks, identifying hub genes crucial for cellular stress response. This research provides a foundational framework for developing therapeutic strategies against lead-induced neurotoxicity. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

12 pages, 3158 KiB  
Article
CRISPR/Cas12a-Based One-Tube RT-RAA Assay for PoRV Genotyping
by Mingfang Bi, Zunbao Wang, Kaijie Li, Yuhe Ren, Dan Ma and Xiaobing Mo
Int. J. Mol. Sci. 2025, 26(14), 6846; https://doi.org/10.3390/ijms26146846 - 16 Jul 2025
Abstract
Porcine rotavirus (PoRV), a primary etiological agent of viral diarrhea in piglets, frequently co-infects with other enteric pathogens, exacerbating disease severity and causing substantial economic losses. Its genetic recombination capability enables cross-species transmission potential, posing public health risks. Globally, twelve G genotypes and [...] Read more.
Porcine rotavirus (PoRV), a primary etiological agent of viral diarrhea in piglets, frequently co-infects with other enteric pathogens, exacerbating disease severity and causing substantial economic losses. Its genetic recombination capability enables cross-species transmission potential, posing public health risks. Globally, twelve G genotypes and thirteen P genotypes have been identified, with G9, G5, G3, and G4 emerging as predominant circulating strains. The limited cross-protective immunity between genotypes compromises vaccine efficacy, necessitating genotype surveillance to guide vaccine development. While conventional molecular assays demonstrate sensitivity, they lack rapid genotyping capacity and face technical limitations. To address this, we developed a novel diagnostic platform integrating reverse transcription recombinase-aided amplification (RT-RAA) with CRISPR–Cas12a. This system employs universal primers for the simultaneous amplification of G4/G5/G9 genotypes in a single reaction, coupled with sequence-specific CRISPR recognition, achieving genotyping within 50 min at 37 °C with 100 copies/μL sensitivity. Clinical validation showed a high concordance with reverse transcription quantitative polymerase chain reaction (RT-qPCR). This advancement provides an efficient tool for rapid viral genotyping, vaccine compatibility evaluation, and optimized epidemic control strategies. Full article
(This article belongs to the Special Issue Protein Design and Engineering in Biochemistry)
Show Figures

Figure 1

18 pages, 3151 KiB  
Article
Next-Generation Sequencing Analysis in Greek Patients with Predominantly Antibody Deficiencies
by Achilleas P. Galanopoulos, Sofia Raftopoulou, Styliani Sarrou, Alexia Matziri, Stamatia Papoutsopoulou, Grigorios Stratakos, Varvara A. Mouchtouri, Martin Hölzer, Christos Hadjichristodoulou, Fani Kalala and Matthaios Speletas
Immuno 2025, 5(3), 27; https://doi.org/10.3390/immuno5030027 - 16 Jul 2025
Abstract
Predominantly antibody deficiencies (PADs) are the most prevalent types of inherited errors of immunity (IEI) and are characterized by a broad range of clinical manifestations, such as recurrent infections, autoimmunity, lymphoproliferation, atopy and malignancy. The aim of this study was to identify genetic [...] Read more.
Predominantly antibody deficiencies (PADs) are the most prevalent types of inherited errors of immunity (IEI) and are characterized by a broad range of clinical manifestations, such as recurrent infections, autoimmunity, lymphoproliferation, atopy and malignancy. The aim of this study was to identify genetic defects associated with PADs in order to improve diagnosis and personalized care. Twenty patients (male/female: 12/8, median age of disease onset: 16.5 years, range: 1–50) were analyzed by next-generation sequencing (NGS) using a custom panel of 30 genes associated with PADs and their possible disease phenotype. The detected variants were classified according to the American College of Medical Genetics and Genomics (ACMG) guidelines and inheritance, and the penetrance patterns were evaluated by PCR–Sanger sequencing. Novel and rare mutations associated with the phenotype of common variable immunodeficiency (CVID) in genes encoding the transcription factors NFKB1, NFKB2 and IKZF1/IKAROS were identified. Alphafold3 protein structure prediction was utilized to perform a comprehensive visualization strategy and further delineate the mutation-bearing domains and elucidate their potential impact on protein function. This study highlights the value of genetic testing in PADs and will guide further research and improvement in diagnosis and treatment. Full article
Show Figures

Figure 1

23 pages, 3053 KiB  
Article
MICA+ Tumor Cells Modulate Macrophage Phenotype and Function via PPAR/EHHADH-Mediated Fatty Acid Metabolism in Hepatocellular Carcinoma (HCC)
by Jingquan Huang, Yumeng Teng, Peng Yan, Yan Yang, Shixun Lin, Qiulin Wu, Qiang Du, Xicai Li, Ming Yao, Jianjun Li, Yubin Huang, Xiaoyong Cai, David A. Geller and Yihe Yan
Cancers 2025, 17(14), 2365; https://doi.org/10.3390/cancers17142365 - 16 Jul 2025
Abstract
Background: Tumor-associated macrophages (TAMs) play a crucial role in the tumor microenvironment (TME), and the metabolic activities of both tumor cells and TAMs have an impact on the TME. Moreover, the expression of MICA in tumor cells is closely associated with immune cells [...] Read more.
Background: Tumor-associated macrophages (TAMs) play a crucial role in the tumor microenvironment (TME), and the metabolic activities of both tumor cells and TAMs have an impact on the TME. Moreover, the expression of MICA in tumor cells is closely associated with immune cells in hepatocellular carcinoma (HCC). However, it remains unclear whether MICA expression correlates with TAMs and influences the switch in macrophage phenotype by mediating metabolic alterations. Methods: Various biostatistical tools, qPCR, and IHC staining experiments were utilized to analyze data from The Cancer Genome Atlas (TCGA) and collected HCC tumor tissues. Single-cell RNA sequencing (scRNA-seq) analyses and a co-culture model of HCC cells with macrophages were performed to validate the findings from the biostatistical analyses. Results: Through the intersection of differentially expressed genes (DEGs), metabolism-related genes (MRGs), and co-expression genes (CEGs) with MICA in HCC, the EHHADH gene was identified. Gene set enrichment analyses were conducted to further confirm the role of EHHADH. EHHADH expression is decreased in HCC tumors and can serve as a prognostic biomarker for HCC. Expressions of MICA and EHHADH exhibited significant correlations with various phenotypic macrophages and exerted opposing effects on M1-like and M2-like macrophages infiltrating HCC. The underlying metabolic and molecular mechanisms revealed that MICA in tumor cells induced M2-like polarization through the PPAR/EHHADH pathway, which regulates the fatty acid oxidation (FAO) in macrophages. Conclusions: The metabolic gene EHHADH, which is associated with MICA, led to alterations in M2-like macrophages by promoting heightened fatty acid uptake and augmenting levels of FAO within macrophages. Full article
(This article belongs to the Section Tumor Microenvironment)
Show Figures

Figure 1

19 pages, 2160 KiB  
Article
Genetic Diversity and Phylogenetic Analysis Among Multidrug-Resistant Pseudomonas spp. Isolated from Solid Waste Dump Sites and Dairy Farms
by Tuhina Das, Arkaprava Das, Neha Das, Rittika Mukherjee, Mousumi Saha, Dipanwita Das and Agniswar Sarkar
Acta Microbiol. Hell. 2025, 70(3), 30; https://doi.org/10.3390/amh70030030 - 16 Jul 2025
Abstract
The excessive use of antimicrobials drives the emergence of multidrug resistance (MDR) in bacterial strains, which harbor resistance genes to survive under diverse drug pressures. Such resistance can result in life-threatening infections. The predominance of MDR Pseudomonas spp. poses significant challenges to public [...] Read more.
The excessive use of antimicrobials drives the emergence of multidrug resistance (MDR) in bacterial strains, which harbor resistance genes to survive under diverse drug pressures. Such resistance can result in life-threatening infections. The predominance of MDR Pseudomonas spp. poses significant challenges to public health and environmental sustainability, particularly in ecosystems affected by human activities. Characterizing MDR Pseudomonas spp. is crucial for developing effective diagnostic tools and biosecurity protocols, with broader implications for managing other pathogenic bacteria. Strains were diagnosed through 16S rRNA PCR and sequencing, complemented by phylogenetic analysis to evaluate local and global evolutionary connections. Antibiotic susceptibility tests revealed extensive resistance across multiple classes, with MIC values surpassing clinical breakpoints. This study examined the genetic diversity, resistance potential, and phylogenetic relationships among Pseudomonas aeruginosa strain DG2 and Pseudomonas fluorescens strain FM3, which were isolated from solid waste dump sites (n = 30) and dairy farms (n = 22) in West Bengal, India. Phylogenetic analysis reveals distinct clusters that highlight significant geographic linkages and genetic variability among the strains. Significant biofilm production under antibiotic exposure markedly increased resistance levels. RAPD-PCR profiling revealed substantial genetic diversity among the isolates, indicating variations in their genetic makeup. In contrast, SDS-PAGE analysis provided insights into the protein expression patterns that are activated by stress, which are closely linked to MDR. This dual approach offers a clearer perspective on their adaptive responses to environmental stressors. This study underscores the need for vigilant monitoring of MDR Pseudomonas spp. in anthropogenically impacted environments to mitigate risks to human and animal health. Surveillance strategies combining phenotypic and molecular approaches are essential to assess the risks posed by resilient pathogens. Solid waste and dairy farm ecosystems emerge as critical reservoirs for the evolution and dissemination of MDR Pseudomonas spp. Full article
Show Figures

Figure 1

20 pages, 2542 KiB  
Article
How Benzoic Acid—Driven Soil Microorganisms Influence N2O Emissions
by Xinxing Zhang, Yinuo Zhao, Zhaoya Chen, Yelong Song, Wenhua Liao and Zhiling Gao
Agronomy 2025, 15(7), 1709; https://doi.org/10.3390/agronomy15071709 - 16 Jul 2025
Abstract
Urine-derived and plant-derived benzoic acid can accumulate within soil, and it likely changes the soil microbial community as well as N2O emissions; however, its mechanism is not clear. This study conducted an incubation experiment to monitor N2O emissions under [...] Read more.
Urine-derived and plant-derived benzoic acid can accumulate within soil, and it likely changes the soil microbial community as well as N2O emissions; however, its mechanism is not clear. This study conducted an incubation experiment to monitor N2O emissions under low moisture (40% water-filled pore space (WFPS)) and high moisture (85% WFPS) conditions. Metagenomic sequencing and q-PCR methods were used to determine the link between N2O emissions and the composition and functions of soil microbiota. Benzoic acid (BA) was found to significantly, yet dose-dependently, impact N2O emissions; that is, low BA concentrations increased N2O, whereas high BA decreased N2O. However, this was only found under high moisture conditions. In contrast, BA had little impact on N2O emissions under low moisture conditions. Under high moisture conditions, BA increased the gene copy number of bacteria and fungi, and decreased the ratio of bacteria to fungi. Similarly, BA significantly increased the abundance of denitrification functional genes, but reduced the (NirS + NirK)-to-NosZ ratio at the peak of emission. This is in agreement with the observation of the increased relative abundance of genes encoding N2O reductase (EC 1.7.2.4) and NO3 heterotrophic reductase (EC 1.7.1.15, EC 1.7.2.2) in the metagenomic analysis. In summary, high concentrations of benzoic acid reduce N2O emissions by promoting the reduction of N2O. This study revealed the impact of BA on soil microbiota and highlighted the favorable conditions and underlying mechanism behind BA’s significant impact on soil N2O emissions. This study’s novelty lies in the fact that it deepens our understanding of the complicated role of root exudates and metabolites of animals and plants in soil. Full article
(This article belongs to the Section Agroecology Innovation: Achieving System Resilience)
Show Figures

Figure 1

11 pages, 2777 KiB  
Article
Bioinformatics Analysis and Functional Verification of Phytoene Synthase Gene PjPSY1 of Panax japonicus C. A. Meyer
by Tingting Tang, Rui Jin, Xilun Huang, E Liang and Lai Zhang
Curr. Issues Mol. Biol. 2025, 47(7), 551; https://doi.org/10.3390/cimb47070551 - 16 Jul 2025
Abstract
Phytoene synthase (PSY) is a multimeric enzyme that serves as the first enzyme in carotenoid synthesis within plant tissues and plays a crucial role in the production of carotenoids in plants. To understand the function of the PSY gene in Panax japonicus C. [...] Read more.
Phytoene synthase (PSY) is a multimeric enzyme that serves as the first enzyme in carotenoid synthesis within plant tissues and plays a crucial role in the production of carotenoids in plants. To understand the function of the PSY gene in Panax japonicus C. A. Meyer. fruit, the gene’s transcript was obtained by analyzing the transcriptome sequencing data of Panax japonicus fruit. The CDS sequence of the gene was cloned from Panax japonicus fruit using the RT-PCR cloning technique and named PjPSY1, which was then subjected to biosynthetic analysis and functional verification. The results showed that the open reading frame of the gene was 1269 bp, encoding 423 amino acids, with a protein molecular mass of 47,654.67 KDa and an isoelectric point (pI) of 8.63; the protein encoded by these amino acids was hydrophilic and localized in chloroplasts, and its three-dimensional structure was predicted by combining the pymol software to annotate the N site of action and active centre of the protein. Phylogenetic analysis demonstrated that PjPSY1 had the closest affinity to DcPSY from Daucus carota. Overexpression of PjPSY1 led to a significant increase in the content of carotenoid-related monomers in Arabidopsis thaliana, with Violaxanthin being synthesized in transgenic Arabidopsis thaliana but not in wild-type Arabidopsis thaliana. The PjPSY1 clone obtained in this study was able to promote carotenoid synthesis in the fruits of Panax japonicus, revealing that the mode of action of PjPSY1 in the carotenoid biosynthesis pathway of Panax japonicus fruits has a positive regulatory effect. Full article
(This article belongs to the Section Bioinformatics and Systems Biology)
Show Figures

Figure 1

15 pages, 2270 KiB  
Article
Progress in Our Understanding of the Cross-Protection Mechanism of CTV-VT No-SY Isolates Against Homologous SY Isolates
by Grazia Licciardello, Giuseppe Scuderi, Marcella Russo, Marina Bazzano, Giuseppe Paradiso, Moshe Bar-Joseph and Antonino F. Catara
Pathogens 2025, 14(7), 701; https://doi.org/10.3390/pathogens14070701 - 16 Jul 2025
Abstract
The Citrus tristeza virus (CTV), a member of the Closterovirus genus, is considered a serious threat to citrus trees grafted onto sour orange (SO) rootstock. In the Mediterranean area, the most prevalent CTV strains are VT and T30. The VT strain includes both [...] Read more.
The Citrus tristeza virus (CTV), a member of the Closterovirus genus, is considered a serious threat to citrus trees grafted onto sour orange (SO) rootstock. In the Mediterranean area, the most prevalent CTV strains are VT and T30. The VT strain includes both mild and severe isolates, some of them associated with seedling yellows (SY) syndrome. Mild CTV-VT isolates that do not induce SY symptoms (no-SY) show minor variations in their Orf1a, p23, and p33 genes, with a single nucleotide polymorphism at position 161 of the p23 gene. These isolates can repress superinfection with homologous severe isolates. The aim of this study was to investigate the mechanism of cross-protection by means of biological indexing, real-time RT-PCR high-resolution melting (HRM), and p23 gene amplicon sequencing. Four no-SY CTV-VT isolates were inoculated onto SO seedlings and Hamlin sweet orange trees grafted on SO. These plants were later challenged with two homologous CTV-VT SY isolates and remained asymptomatic. The biological evaluation of the infection process in superinfected plants was investigated via inoculation of the bark on SO seedlings that were also asymptomatic. A parallel HRM analysis of midvein RNA extracts revealed that the melting temperature (Tm) of the no-SY isolates was statistically lower than that of the SY isolates. The Tm values of RNAs extracts from superinfected plants were not statistically different from those of the no-SY isolates. This suggests that the SY isolates failed to establish infection or replicate in plants pre-inoculated with no-SY isolates. This blockage of replication resembles superinfection exclusion, with attractive perspectives to prevent SY damage in field applications. Full article
Show Figures

Figure 1

13 pages, 12136 KiB  
Article
Comparative Analysis of Differentially Expressed Long Non-Coding RNA in Pre- and Postmenopausal Fibroids
by Tsai-Der Chuang, Shawn Rysling, Nhu Ton, Daniel Baghdasarian and Omid Khorram
Int. J. Mol. Sci. 2025, 26(14), 6798; https://doi.org/10.3390/ijms26146798 - 16 Jul 2025
Abstract
Uterine fibroids (leiomyomas) are benign tumors whose growth is influenced by estrogen and progesterone. This study aimed to compare the profiles of differentially expressed long non-coding RNAs (lncRNAs) in fibroids from postmenopausal and premenopausal women to identify hormone-responsive lncRNAs. RNA sequencing was performed [...] Read more.
Uterine fibroids (leiomyomas) are benign tumors whose growth is influenced by estrogen and progesterone. This study aimed to compare the profiles of differentially expressed long non-coding RNAs (lncRNAs) in fibroids from postmenopausal and premenopausal women to identify hormone-responsive lncRNAs. RNA sequencing was performed on six pairs of fibroid (Fib) and adjacent myometrium (Myo) tissues from postmenopausal women. Out of 7876 normalized lncRNAs, 3684 were differentially expressed (≥1.5-fold), with 1702 upregulated and 1982 downregulated in Fib. Comparative analysis with a previously published premenopausal dataset identified 741 lncRNAs that were altered based on their menopausal status, including 62 lncRNAs that were uniquely dysregulated in postmenopausal samples. Overall, 9 lncRNAs were selected for validation by PCR in an expanded cohort of 31 postmenopausal and 84 premenopausal paired samples. Several lncRNAs, including LINC02433, LINC01449, SNHG12, H19, and HOTTIP, were upregulated in premenopausal Fib but not in postmenopausal ones, while ZEB2-AS1 displayed the opposite pattern. CASC15 and MIAT were elevated in Fib from both groups, although the increase was less pronounced in the postmenopausal group. LINC01117 was significantly downregulated in postmenopausal Fib, with no change observed in premenopausal samples. Additionally, analysis based on MED12 mutation status revealed that lncRNAs such as LINC01449, CASC15, and MIAT showed limited or reduced differential expression (mutation-positive vs. mutation-negative) in postmenopausal patients compared to the premenopausal group. These findings indicate that lncRNA expression in fibroids is modulated by menopausal status, likely reflecting hormonal influence. Hormone-responsive lncRNAs may play key roles in fibroid pathogenesis and represent potential targets for therapeutic intervention. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

21 pages, 2089 KiB  
Article
Neuropilin-1: A Conserved Entry Receptor for SARS-CoV-2 and a Potential Therapeutic Target
by Vivany Maydel Sierra-Sánchez, Citlali Margarita Blancas-Napoles, Aina Daniela Sánchez-Maldonado, Indira Medina, Rodrigo Romero-Nava, Fengyang Huang, Enrique Hong, Asdrúbal Aguilera-Méndez, Sergio Adrian Ocampo-Ortega and Santiago Villafaña
Biomedicines 2025, 13(7), 1730; https://doi.org/10.3390/biomedicines13071730 - 15 Jul 2025
Viewed by 122
Abstract
Background/Objectives: Neuropilin-1 (NRP1) is a key co-receptor for SARS-CoV-2, complementing the ACE2 receptor. Several investigations have documented highly conserved sequences in this receptor, supporting the implication of NRP1 as a key mediator in SARS-CoV-2 cellular entry mechanisms. Methods: To investigate this [...] Read more.
Background/Objectives: Neuropilin-1 (NRP1) is a key co-receptor for SARS-CoV-2, complementing the ACE2 receptor. Several investigations have documented highly conserved sequences in this receptor, supporting the implication of NRP1 as a key mediator in SARS-CoV-2 cellular entry mechanisms. Methods: To investigate this hypothesis, we examined 104,737 SARS-CoV-2 genome fastas from GISAID genomic data, corresponding to isolates collected between 2020 and 2025 in Mexico. Specifically, we focused on the RRAR motif, a known furin-binding site for NRP-1 and the binding site for ACE2 with the spike protein. Our analysis revealed high conservation (>98%) of the RRAR domain compared to a rapidly diminishing ACE2-binding domain. A complementary analysis, using Data from Gene Expression Omnibus (GEO, GSE150316), showed that NRP1 expression in lung tissue remains relatively stable, whereas ACE2 displayed high inter-individual variability and lower abundance compared to NRP1. Based on this evidence, we designed two humans–rats NRP1 siRNAs that were tested in vivo using a melittin-induced lung injury model. Results: The RT-PCR assays confirmed an effective NRP1 knockdown, and the siRNA-treated group showed a significant reduction in the lesions severity. These findings highlight NRP1 as a stable and relevant therapeutic target and suggest the protective potential of siRNA-mediated gene silencing. Conclusions: The evidence presented here supports the rational design of NRP1-directed therapies for multiple circulating SARS-CoV-2 variants in Mexico. Full article
(This article belongs to the Section Cell Biology and Pathology)
Show Figures

Figure 1

19 pages, 2086 KiB  
Article
Cord Blood Exosomal miRNAs from Small-for-Gestational-Age Newborns: Association with Measures of Postnatal Catch-Up Growth and Insulin Resistance
by Marta Díaz, Tania Quesada-López, Francesc Villarroya, Abel López-Bermejo, Francis de Zegher, Lourdes Ibáñez and Paula Casano-Sancho
Int. J. Mol. Sci. 2025, 26(14), 6770; https://doi.org/10.3390/ijms26146770 - 15 Jul 2025
Viewed by 45
Abstract
Small-for-gestational-age (SGA) infants who experience a marked postnatal catch-up, mainly in weight, are at risk for developing metabolic disorders; however, the underlying mechanisms are imprecise. Exosomes and their cargo (including miRNAs) mediate intercellular communication and may contribute to altered crosstalk among tissues. [...] Read more.
Small-for-gestational-age (SGA) infants who experience a marked postnatal catch-up, mainly in weight, are at risk for developing metabolic disorders; however, the underlying mechanisms are imprecise. Exosomes and their cargo (including miRNAs) mediate intercellular communication and may contribute to altered crosstalk among tissues. We assessed the miRNA profile in cord blood-derived exosomes from 10 appropriate-for-gestational-age (AGA) and 10 SGA infants by small RNA sequencing; differentially expressed miRNAs with a fold change ≥2.4 were validated by RT-qPCR in 40 AGA and 35 SGA infants and correlated with anthropometric, body composition (DXA) and endocrine–metabolic parameters at 4 and 12 mo. miR-1-3p, miR-133a-3p and miR-206 were down-regulated, whereas miR-372-3p, miR-519d-3p and miR-1299 were up-regulated in SGA infants. The target genes of these miRNAs related to insulin, RAP1, TGF beta and neurotrophin signaling. Receiver operating characteristic analysis disclosed that these miRNAs predicted with accuracy the 0–12 mo changes in body mass index and in total and abdominal fat and lean mass. In conclusion, the exosomal miRNA profile at birth differs between AGA and SGA infants and associates with measures of catch-up growth, insulin resistance and body composition through late infancy. Further follow-up of this population will disclose whether these associations persist into childhood, puberty and adolescence. Full article
(This article belongs to the Section Molecular Endocrinology and Metabolism)
Show Figures

Figure 1

10 pages, 1099 KiB  
Communication
Fluorescent In Situ Hybridization Testing Allows the Diagnosis of NRG1 Gene Fusions in Lung and Pancreas Cancers with No Other Identified Oncogenic Driver
by Clara Bastard, Charline Caumont, Laura Samaison, Isabelle Quintin-Roué, Laurent Doucet, Pascale Marcorelles, Cédric Le Maréchal, Jean-Philippe Merlio, David Cappellen and Arnaud Uguen
Cancers 2025, 17(14), 2347; https://doi.org/10.3390/cancers17142347 - 15 Jul 2025
Viewed by 49
Abstract
Some pancreatic ductal-type (PDADK) and lung adenocarcinomas (LADK) lacking other molecular drivers are reported to harbor NRG1 fusions as potential novel therapeutic targets. We investigated the feasibility of a fluorescent in situ hybridization (FISH)-based diagnosis of NRG1 fusions in a case series of [...] Read more.
Some pancreatic ductal-type (PDADK) and lung adenocarcinomas (LADK) lacking other molecular drivers are reported to harbor NRG1 fusions as potential novel therapeutic targets. We investigated the feasibility of a fluorescent in situ hybridization (FISH)-based diagnosis of NRG1 fusions in a case series of PDADK and LADK lacking other identified oncogenic drivers. First, among a case series of PDADK, KRAS analyses (PCR followed in PCR-negative cases by RNA sequencing—RNAseq) found 27/162 (16.7%) KRAS wild-type cases, among which 1/162 (0.6%) NRG1 fusion was diagnosed using FISH. Secondly, among a case series of LDAK, 191/446 (42.8%) cases had no molecular alterations in EGFR, KRAS, BRAF, HER2, MET, ALK, ROS1 and RET according to NGS and FISH analyses and, among them, 4/446 (0.9%) cases had NRG1 fusions using FISH. Finally, four additional cases out of the two previously mentioned cases series (1 PDADK and 3 LADK) with NRG1 fusions diagnosed by first-line RNAseq were also concluded as NRG1 FISH-positive. The NRG1 FISH tests for the nine NRG1 FISH-positive cases resulted in 50% to 80% of positive tumor nuclei, all with single 3′-NRG1 FISH signals. In our series, of the 22 cases analyzed with both NRG1 FISH (positivity criterion of at least 15% of tumor nuclei with a split between the 5′- and the 3′- parts of the probes and/or isolated single 3′-NRG1 signal) and RNAseq, 17 cases were FISH– RNAseq– and 5 cases were FISH+ RNAseq+ (no FISH+ RNAseq– or FISH– RNAseq+ cases in our study) resulting in 100% sensibility and specificity for the NRG1 FISH test. In the case of no access to RNAseq, NRG1 FISH consists of a valuable tool searching for NRG1 fusions in patients with advanced cancers. Full article
(This article belongs to the Section Cancer Biomarkers)
Show Figures

Figure 1

14 pages, 2015 KiB  
Article
Transcriptome Analysis Elucidates the Mechanism of an Endophytic Fungus Cladosporium sp. ‘BF-F’ in Enhancing the Growth of Sesuvium portulacastrum
by Dan Wang, Wenbin Zhang, Dinging Cao and Xiangying Wei
Agriculture 2025, 15(14), 1522; https://doi.org/10.3390/agriculture15141522 - 15 Jul 2025
Viewed by 94
Abstract
Plant growth-promoting rhizobacteria (PGPR) are beneficial rhizosphere microorganisms for plants. They can promote plant absorption of nutrients, inhibit pathogenic microorganisms, enhance plant tolerance to abiotic and biotic stresses, and improve plant growth. Isolating new beneficial microbes and elucidating their promoting mechanisms can facilitate [...] Read more.
Plant growth-promoting rhizobacteria (PGPR) are beneficial rhizosphere microorganisms for plants. They can promote plant absorption of nutrients, inhibit pathogenic microorganisms, enhance plant tolerance to abiotic and biotic stresses, and improve plant growth. Isolating new beneficial microbes and elucidating their promoting mechanisms can facilitate the development of microbial fertilizers. This study combined transcriptome sequencing and related experiments to analyze the mechanism by which the endophytic fungus ‘BF-F’ promotes the growth of Sesuvium portulacastrum. We inoculated the ‘BF-F’ fungus beside S. portulacastrum seedlings as the experimental group. Meanwhile, S. portulacastrum seedlings not inoculated with ‘BF-F’ were set as the control group. After inoculation for 0 d, 7 d, 14 d, 21 d, and 28 d, the plant height and the number of roots were measured. Furthermore, transcriptome sequencing on the roots and leaves of the S. portulacastrum was conducted. Differentially expressed genes were screened, and KEGG enrichment analysis was performed. Nitrogen metabolism-related genes were selected, and qRT-PCR was conducted on these genes. Furthermore, we analyzed the metabolomics of ‘BF-F’ and its hormone products. The results showed that inoculation of ‘BF-F’ significantly promoted the growth of S. portulacastrum. After ‘BF-F’ inoculation, a large number of genes in S. portulacastrum were differentially expressed. The KEGG pathway enrichment results indicated that the ‘BF-F’ treatment affected multiple metabolic pathways in S. portulacastrum, including hormone signal transduction and nitrogen metabolism. The auxin signaling pathway was enhanced because of a decrease in AUX expression and an increase in ARF expression. Contrary to the auxin signal transduction pathway, the zeatin (ZT) signaling pathway was suppressed after the ‘BF-F’ treatment. ‘BF-F’ increased the expression of genes related to nitrogen metabolism (NRT, AMT, NR, and GAGOT), thereby promoting the nitrogen content in S. portulacastrum. The metabolites of ‘BF-F’ were analyzed, and we found that ‘BF-F’ can synthesize IAA and ZT, which are important for plant growth. Overall, ‘BF-F’ can produce IAA and enhance the nitrogen use efficiency of plants, which could have the potential to be used for developing a microbial fertilizer. Full article
(This article belongs to the Section Crop Genetics, Genomics and Breeding)
Show Figures

Figure 1

Back to TopTop