How Benzoic Acid—Driven Soil Microorganisms Influence N2O Emissions
Abstract
1. Introduction
2. Materials and Methods
2.1. Soil Sampling
2.2. Experimental Design and Set-Up
2.3. Gas Analyses
2.4. Soil Analyses
2.5. Metagenomic Sequencing
2.6. Gene Prediction, Taxonomy, and Functional Annotation
2.7. q-PCR
2.8. Statistical Analyses
3. Results
3.1. N2O Emission
3.2. Soil Parameters
3.2.1. Soil pH
3.2.2. Soil BA
3.2.3. Soil Inorganic Nitrogen
3.3. Community Structure and Composition of Microorganisms
3.4. Functions of Microorganisms
3.5. The Degradation Pathway of BA
3.6. Pathways of Soil N Cycle: Metagenomic Analysis
3.7. Effects on Bacterial and Fungal Abundances
3.8. Effects on the Abundance of Denitrification Functional Genes
4. Discussion
4.1. Impact on Soil Microorganisms
4.2. Impact on Denitrification
4.3. Implications of BA on the Soil N2O Emission
4.3.1. Indoor Incubation Versus Field Application
4.3.2. Soils with Different BA Tolerance Levels
4.3.3. Soils Under Different Water Management
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Valkama, E.; Tzemi, D.; Esparza-Robles, U.R.; Syp, A.; O’Toole, A.; Maenhout, P. Effectiveness of soil management strategies for mitigation of N2O emissions in European arable land: A meta-analysis. Eur. J. Soil Sci. 2024, 75, e13488. [Google Scholar] [CrossRef]
- Li, L.; Hong, M.; Zhang, Y.; Paustian, K. Soil N2O emissions from specialty crop systems: A global estimation and meta-analysis. Glob. Change Biol. 2024, 30, e17233. [Google Scholar] [CrossRef] [PubMed]
- Cui, X.Q.; Shang, Z.Y.; Xia, L.L.; Xu, R.T.; Adalibieke, W.; Zhan, X.Y.; Smith, P.; Zhou, F. Deceleration of cropland-N2O emissions in China and future mitigation potentials. Environ. Sci. Technol. 2022, 56, 4665–4675. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.Y.; Liu, L.; Zhang, F.; Zhang, X.Y.; Xu, W.; Liu, X.J.; Wang, Z.; Xie, Y.W. Soil nitrous oxide emissions by atmospheric nitrogen deposition over global agricultural systems. Environ. Sci. Technol. 2021, 55, 4420–4429. [Google Scholar] [CrossRef] [PubMed]
- Liao, X.; Müller, C.; Sun, H.Y.; Yuan, J.J.; Liu, D.Y.; Chen, Z.M.; He, T.H.; Jansen-Willems, A.; Luo, J.F.; Ding, W.X. Increases of N2O emissions due to enhanced nitrification in a sandy loam soil under long-term manure application. Biol. Fertil. Soils 2024, 60, 1127–1141. [Google Scholar] [CrossRef]
- He, X.; Wang, H.; Ju, X.; Yan, Z.; Zhu-Barker, X. Nitrifier denitrification can contribute to N2O emissions substantially in wet agricultural soil. Biol. Fertil. Soils 2025, 61, 971–976. [Google Scholar] [CrossRef]
- Luo, J.F.; Saggar, S.; Van Der Weerden, T.; de Klein, C. Quantification of nitrous oxide emissions and emission factors from beef and dairy cattle excreta deposited on grazed pastoral hill lands. Agric. Ecosyst. Environ. 2019, 270–271, 103–113. [Google Scholar] [CrossRef]
- Murphy, R.M.; Saunders, M.; Richards, K.G.; Krol, D.J.; Gebremichael, A.W.; Rambaud, J.; Cowan, N.; Lanigan, G.J. Nitrous oxide emission factors from an intensively grazed temperate grassland: A comparison of cumulative emissions determined by eddy covariance and static chamber methods. Agric. Ecosyst. Environ. 2022, 324, 107725. [Google Scholar] [CrossRef]
- Oenema, O.; Wrage, N.; Velthof, G.L.; van Groenigen, J.W.; Dolfing, J.; Kuikman, P.J. Trends in global nitrous oxide emissions from animal production systems. Nutr. Cycl. Agroecosyst. 2005, 72, 51–65. [Google Scholar] [CrossRef]
- Haynes, R.J.; Williams, P.H. Nutrient cycling and soil fertility in the grazed pasture ecosystem. In Advances in Agronomy; Elsevier: Amsterdam, The Netherlands, 1993; Volume 49, pp. 119–199. [Google Scholar]
- Chiavegato, M.B.; Powers, W.; Palumbo, N. Ammonia and greenhouse gas emissions from housed Holstein steers fed different levels of diet crude protein. J. Anim. Sci. 2015, 93, 395–404. [Google Scholar] [CrossRef] [PubMed]
- Meyer, S.; Gruening, M.M.; Beule, L.; Karlovsky, P.; Joergensen, R.G.; Sundrum, A. Soil N2O flux and nitrification and denitrification gene responses to feed-induced differences in the composition of dairy cow faeces. Biol. Fertil. Soils 2021, 57, 767–779. [Google Scholar] [CrossRef]
- Nampoothiri, V.M.; Mohini, M.; Malla, B.A.; Mondal, G.; Pandita, S. Growth performance, and enteric and manure greenhouse gas emissions from Murrah calves fed diets with different forage to concentrate ratios. Anim. Nutr. 2018, 4, 215–221. [Google Scholar] [CrossRef] [PubMed]
- Zeng, J.; Wang, X.; Li, Y.; Xing, L.; Li, X.; Zhang, Q.; Liu, H.; Liu, Y.; Liu, W.; Feng, Y.; et al. Optimizing fertilization rate can maintain the greenhouse gas mitigation effect of no-tillage: A global-scale meta-analysis. Field Crops Res. 2025, 322, 109720. [Google Scholar] [CrossRef]
- Zhang, X.; Sun, H.; Wang, C.; Zhang, J.; Zhou, S. Optimizing fertilizer management mitigated net greenhouse gas emissions in a paddy rice-upland wheat rotation system: A ten-year in situ observation of the Yangtze River Delta, China. Agric. Ecosyst. Environ. 2023, 356, 108640. [Google Scholar] [CrossRef]
- Willem Van Groenigen, J.; Palermo, V.; Kool, D.M.; Kuikman, P.J. Inhibition of denitrification and N2O emission by urine-derived benzoic and hippuric acid. Soil Biol. Biochem. 2006, 38, 2499–2502. [Google Scholar] [CrossRef]
- Bertram, J.E.; Clough, T.J.; Sherlock, R.R.; Condron, L.M.; O’Callaghan, M.; Wells, N.S.; Ray, J.L. Hippuric acid and benzoic acid inhibition of urine derived N2O emissions from soil. Glob. Change Biol. 2009, 15, 2067–2077. [Google Scholar] [CrossRef]
- Clough, T.J.; Ray, J.L.; Buckthought, L.E.; Calder, J.; Baird, D.; O’Callaghan, M.; Sherlock, R.R.; Condron, L.M. The mitigation potential of hippuric acid on N2O emissions from urine patches: An in situ determination of its effect. Soil Biol. Biochem. 2009, 41, 2222–2229. [Google Scholar] [CrossRef]
- Krol, D.J.; Forrestal, P.J.; Lanigan, G.J.; Richards, K.G. In situ N2O emissions are not mitigated by hippuric and benzoic acids under denitrifying conditions. Sci. Total Environ. 2015, 511, 362–368. [Google Scholar] [CrossRef] [PubMed]
- Mao, X.; Yang, Q.; Chen, D.; Yu, B.; He, J. Benzoic acid used as food and feed additives can regulate gut functions. BioMed Res. Int. 2019, 2019, 5721585. [Google Scholar] [CrossRef] [PubMed]
- Bampidis, V.; Azimonti, G.; Bastos, M.L.; Christensen, H.; Dusemund, B.; Kouba, M.; Kos Durjava, M.; López-Alonso, M.; López Puente, S.; Marcon, F.; et al. Safety and efficacy of benzoic acid as a technological feed additive for weaned piglets and pigs for fattening. Efsa J. 2019, 17, e05527. [Google Scholar] [PubMed]
- European Commission. Commission Implementing Regulation (EU) 2020/1031 of 15 July 2020 Concerning the Authorisation of Benzoic Acid as a Feed Additive for Pigs for Fattening (Holder of Authorisation DSM Nutritional Products Ltd. Represented by DSM Nutritional Products Sp. Z o.o), OJ L 227 (2020) 21. Available online: https://eur-lex.europa.eu/eli/reg_impl/2020/1031/oj/eng (accessed on 16 July 2024).
- De Grave, X.B.; Broz, J.; Van Der Aar, P.J.; Molist, F. Performance, stomach ulcers, and bone parameters of sows receiving graded dietary inclusion of benzoic acid. J. Anim. Sci. 2016, 94, 257–259. [Google Scholar] [CrossRef]
- Kluge, H.; Broz, J.; Eder, K. Effects of dietary benzoic acid on urinary pH and nutrient digestibility in lactating sows. Livest. Sci. 2010, 134, 119–121. [Google Scholar] [CrossRef]
- Dijkstra, J.; Oenema, O.; Van Groenigen, J.W.; Spek, J.W.; van Vuuren, A.M.; Bannink, A. Diet effects on urine composition of cattle and N2O emissions. Animal 2013, 7, 292–302. [Google Scholar] [CrossRef] [PubMed]
- Leyte-Lugo, M.; Britton, E.R.; Foil, D.H.; Brown, A.R.; Todd, D.A.; Rivera-Chavez, J.; Oberlies, N.H.; Cech, N. Secondary metabolites from the leaves of the medicinal plant goldenseal (Hydrastis canadensis). Phytochem. Lett. 2017, 20, 54–60. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Li, X.; Jia, Z.; Zhang, T.; Wang, X. Effect of benzoic acid on soil microbial communities associated with soilborne peanut diseases. Appl. Soil Ecol. 2017, 110, 34–42. [Google Scholar] [CrossRef]
- Qi, Y.Z.; Zhen, W.C.; Li, H.Y. Allelopathy of decomposed maize straw products on three soil-born diseases of wheat and the analysis by GC-MS. J. Integr. Agric. 2015, 14, 88–97. [Google Scholar] [CrossRef]
- Bardon, C.; Piola, F.; Bellvert, F.; Haichar, F.Z.; Comte, G.; Meiffren, G.; Pommier, T.; Puijalon, S.; Tsafack, N.; Poly, F. Evidence for biological denitrification inhibition (BDI) by plant secondary metabolites. New Phytol. 2014, 204, 620–630. [Google Scholar] [CrossRef] [PubMed]
- Bardon, C.; Piola, F.; Haichar, F.e.Z.; Meiffren, G.; Comte, G.; Missery, B.; Balby, M.; Poly, F. Identification of B-type procyanidins in Fallopia spp. involved in biological denitrification inhibition. Environ. Microbiol. 2016, 18, 644–655. [Google Scholar] [CrossRef] [PubMed]
- Bardon, C.; Poly, F.; Haichar, F.e.Z.; Le Roux, X.; Simon, L.; Meiffren, G.; Comte, G.; Rouifed, S.; Piola, F. Biological denitrification inhibition (BDI) with procyanidins induces modification of root traits, growth and N status in Fallopia x bohemica. Soil Biol. Biochem. 2017, 107, 41–49. [Google Scholar] [CrossRef]
- Galland, W.; Piola, F.; Burlet, A.; Mathieu, C.; Nardy, M.; Poussineau, S.; Blazere, L.; Gervaix, J.; Puijalon, S.; Simon, L.; et al. Biological denitrification inhibition (BDI) in the field: A strategy to improve plant nutrition and growth. Soil Biol. Biochem. 2019, 136, 107513. [Google Scholar] [CrossRef]
- Di, T.; Afzal, M.R.; Yoshihashi, T.; Deshpande, S.; Zhu, Y.; Subbarao, G.V. Further insights into underlying mechanisms for the release of biological nitrification inhibitors from sorghum roots. Plant Soil 2018, 423, 99–110. [Google Scholar] [CrossRef]
- Lu, Y.; Zhang, X.; Ma, M.; Zu, W.; Kronzucker, H.; Shi, W. Syringic acid from rice as a biological nitrification and urease inhibitor and its synergism with 1,9-decanediol. Biol. Fertil. Soils 2022, 58, 277–289. [Google Scholar] [CrossRef]
- Zhang, Z.Y.; Wang, W.F.; Qi, J.X.; Zhang, H.Y.; Tao, F.; Zhang, R.D. Priming effects of soil organic matter decomposition with addition of different carbon substrates. J. Soils Sediments 2019, 19, 1171–1178. [Google Scholar] [CrossRef]
- Karwat, H.; Moreta, D.; Arango, J.; Nuñez, J.; Rao, I.; Rincón, Á.; Rasche, F.; Cadisch, G. Residual effect of BNI by Brachiaria humidicola pasture on nitrogen recovery and grain yield of subsequent maize. Plant Soil 2017, 420, 389–406. [Google Scholar] [CrossRef]
- Subbarao, G.; Nakahara, K.; Ishikawa, T.; Ono, H.; Yoshida, M.; Yoshihashi, T.; Zhu, Y.; Hossain, A.K.M. Biological nitrification inhibition (BNI) activity in sorghum and its characterization. Plant Soil 2012, 366, 243–259. [Google Scholar] [CrossRef]
- Wrb, I.; Schád, P.; Van Huyssteen, C.; Micheil, E. World Reference Base for Soil Resources 2014, Update 2015. 2015. Available online: https://www.fao.org/family-farming/detail/en/c/292474/ (accessed on 16 July 2024).
- Liao, W.; Liu, C.; Yuan, Y.; Gao, Z.; Nieder, R.; Roelcke, M. Trade-offs of gaseous emissions from soils under vegetable, wheat-maize and apple orchard cropping systems applied with digestate: An incubation study. J. Air Waste Manag. Assoc. 2020, 70, 108–120. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.-B.; Li, M. Autotoxicity of phenolic acids in root exudates of Andrographis paniculata (Burm. f.) Nees. Allelopath. J. 2018, 45, 153–162. [Google Scholar] [CrossRef]
- Noguchi, H.; Park, J.; Takagi, T. MetaGene: Prokaryotic gene finding from environmental genome shotgun sequences. Nucleic Acids Res. 2006, 34, 5623–5630. [Google Scholar] [CrossRef] [PubMed]
- Fu, L.; Niu, B.; Zhu, Z.; Wu, S.; Li, W. CD-HIT: Accelerated for clustering the next-generation sequencing data. Bioinformatics 2012, 28, 3150–3152. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Li, Y.; Kristiansen, K.; Wang, J. SOAP: Short oligonucleotide alignment program. Bioinformatics 2008, 24, 713–714. [Google Scholar] [CrossRef] [PubMed]
- Buchfink, B.; Xie, C.; Huson, D.H. Fast and sensitive protein alignment using DIAMOND. Nat. Methods 2015, 12, 59–60. [Google Scholar] [CrossRef] [PubMed]
- Coban, O.; De Deyn, G.B.; Van Der Ploeg, M. Soil microbiota as game-changers in restoration of degraded lands. Science 2022, 375, abe0725. [Google Scholar] [CrossRef] [PubMed]
- Purcell, A.M.; Hayer, M.; Koch, B.J.; Mau, R.L.; Blazewicz, S.J.; Dijkstra, P.; Mack, M.C.; Marks, J.C.; Morrissey, E.M.; Pett-Ridge, J.; et al. Decreased growth of wild soil microbes after 15 years of transplant-induced warming in a montane meadow. Glob. Change Biol. 2022, 28, 128–139. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Xie, Y.Z.; Ma, H.B.; Zhang, J.; Jing, L.; Wang, Y.T.; Li, J.P. Responses of soil microorganisms to simulated climate change in desert grassland in northern China. J. Water Clim. Change 2022, 13, 1842–1854. [Google Scholar] [CrossRef]
- Brul, S.; Coote, P. Preservative agents in foods—Mode of action and microbial resistance mechanisms. Int. J. Food Microbiol. 1999, 50, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Freese, E.; Sheu, C.W.; Galliers, E. Function of lipophilic acids as antimicrobial food additives. Nature 1973, 241, 321–325. [Google Scholar] [CrossRef] [PubMed]
- Wright, J.D. Fungal degradation of benzoic acid and related compounds. World J. Microbiol. Biotechnol. 1993, 9, 9–16. [Google Scholar] [CrossRef] [PubMed]
- Xiang, W.; Wei, X.; Tang, H.; Li, L.; Huang, R. Complete genome sequence and biodegradation characteristics of benzoic acid-degrading bacterium Pseudomonas sp. SCB32. BioMed Res. Int. 2020, 2020, 6146104. [Google Scholar] [CrossRef] [PubMed]
- Luo, X.; Qian, H.; Wang, L.; Han, S.; Wen, S.; Wang, B.; Huang, Q.; Chen, W. Fertilizer types shaped the microbial guilds driving the dissimilatory nitrate reduction to ammonia process in a Ferralic Cambisol. Soil Biol. Biochem. 2020, 141, 107677. [Google Scholar] [CrossRef]
- Shi, X.; Wang, J.; Mueller, C.; Hu, H.-W.; He, J.-Z.; Wang, J.; Huang, Z. Dissimilatory nitrate reduction to ammonium dominates soil nitrate retention capacity in subtropical forests. Biol. Fertil. Soils 2020, 56, 785–797. [Google Scholar] [CrossRef]
- Gao, Y.; Mania, D.; Mousavi, S.A.; Lycus, P.; Arntzen, M.O.; Woliy, K.; Lindstrom, K.; Shapleigh, J.P.; Bakken, L.R.; Frostegard, A. Competition for electrons favours N2O reduction in denitrifying Bradyrhizobium isolates. Environ. Microbiol. 2021, 23, 2244–2259. [Google Scholar] [CrossRef] [PubMed]
- Shan, J.; Sanford, R.A.; Chee-Sanford, J.; Ooi, S.K.; Loffler, F.E.; Konstantinidis, K.T.; Yang, W.H. Beyond denitrification: The role of microbial diversity in controlling nitrous oxide reduction and soil nitrous oxide emissions. Glob. Change Biol. 2021, 27, 2669–2683. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Tang, Z.; Song, Z.; Chen, W.; Tian, D.; Tang, S.; Wang, X.; Wang, J.; Liu, W.; Wang, Y.; et al. Variations and controlling factors of soil denitrification rate. Glob. Change Biol. 2022, 28, 2133–2145. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Zheng, X.; Li, Y.; Yu, J.; Ding, H.; Sveen, T.R.; Zhang, Y. Soil moisture determines nitrous oxide emission and uptake. Sci. Total Environ. 2022, 822, 153566. [Google Scholar] [CrossRef] [PubMed]
- Pan, B.B.; Xia, L.L.; Wang, E.L.; Zhang, Y.S.; Mosier, A.; Chen, D.L.; Lam, S.K. A global synthesis of soil denitrification: Driving factors and mitigation strategies. Agric. Ecosyst. Environ. 2022, 327, 107850. [Google Scholar] [CrossRef]
- Yan, Q.; Yang, H.H.; Yan, L.; Zhang, K.Q.; Li, J.J.; Wang, F. Quantifying soil N2O emissions from soil and anaerobically digested swine manure, nitrification and denitrification using N-15 isotope labeling method. Environ. Sci. Pollut. Res. 2021, 28, 32015–32025. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Song, B.; Yao, Y.; Wu, H.; Hu, J.; Zhao, L. Aromatic plants play an important role in promoting soil biological activity related to nitrogen cycling in an orchard ecosystem. Sci. Total Environ. 2014, 472, 939–946. [Google Scholar] [CrossRef] [PubMed]
- Piotrowska-Dlugosz, A.; Dlugosz, J.; Gryta, A.; Frac, M. Responses of N-cycling enzyme activities and functional diversity of soil microorganisms to soil depth, pedogenic processes and cultivated plants. Agronomy 2022, 12, 264. [Google Scholar] [CrossRef]
- Guo, C.; Wang, H.; Zou, D.; Wang, Y.; Han, X. A novel amended nitrification inhibitor confers an enhanced suppression role in the nitrification of ammonium in soil. J. Soils Sediments 2022, 22, 831–843. [Google Scholar] [CrossRef]
- Lan, T.; Li, M.; He, X.; Deng, O.; Zhou, W.; Luo, L.; Chen, G.; Yuan, S.; Ling, J.; Zeng, M.; et al. Effects of synthetic nitrification inhibitor (3,4-dimethylpyrazole phosphate; DMPP) and biological nitrification inhibitor (methyl 3-(4-hydroxyphenyl) propionate; MHPP) on the gross N nitrification rate and ammonia oxidizers in two contrasting soils. Biol. Fertil. Soils 2022, 58, 333–344. [Google Scholar] [CrossRef]
- Lan, T.; Xie, N.; Chen, C.; He, X.; Deng, O.; Zhou, W.; Chen, G.; Ling, J.; Huang, R.; Tian, Z.; et al. Effects of biological nitrification inhibitor in regulating NH3 volatilization and fertilizer nitrogen recovery efficiency in soils under rice cropping. Sci. Total Environ. 2022, 838, 155857. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Jones, D.L.; Wang, J.Y.; Cardenas, L.M.; Chadwick, D.R. Relative efficacy and stability of biological and synthetic nitrification inhibitors in a highly nitrifying soil: Evidence of apparent nitrification inhibition by linoleic acid and linolenic acid. Eur. J. Soil Sci. 2021, 72, 2356–2371. [Google Scholar] [CrossRef]
- Saud, S.; Wang, D.; Fahad, S. Improved nitrogen use efficiency and greenhouse gas emissions in agricultural soils as producers of biological nitrification inhibitors. Front. Plant Sci. 2022, 13, 854195. [Google Scholar] [CrossRef] [PubMed]
- Kool, D.M.; Hoffland, E.; Hummelink, E.W.J.; van Groenigen, J.W. Increased hippuric acid content of urine can reduce soil N2O fluxes. Soil Biol. Biochem. 2006, 38, 1021–1027. [Google Scholar] [CrossRef]
- West, J.R.; Whitman, T. Disturbance by soil mixing decreases microbial richness and supports homogenizing community assembly processes. FEMS Microbiol. Ecol. 2022, 98, fiac089. [Google Scholar] [CrossRef] [PubMed]
- Laughlin, R.J.; Stevens, R.J. Evidence for fungal dominance of denitrification and codenitrification in a grassland soil. Soil Sci. Soc. Am. J. 2002, 66, 1540–1548. [Google Scholar] [CrossRef]
- Deubel, A.; Gransee, A.; Merbach, W. Transformation of organic rhizodepositions by rhizosphere bacteria and its influence on the availability of tertiary calcium phosphate. J. Plant Nutr. Soil Sci. 2000, 163, 387–392. [Google Scholar] [CrossRef]
- Siciliano, S.D.; Germida, J.J. Degradation of chlorinated benzoic acid mixtures by plant-bacteria associations. Environ. Toxicol. Chem. 1998, 17, 728–733. [Google Scholar]
- Tan, X.; Shao, D.; Gu, W. Effects of temperature and soil moisture on gross nitrification and denitrification rates of a Chinese lowland paddy field soil. Paddy Water Environ. 2018, 16, 687–698. [Google Scholar] [CrossRef]
Treatment | CK | B1 | B2 | B3 |
---|---|---|---|---|
NO3−-N (kg ha−1) | 100 | 100 | 100 | 100 |
BA (mmol kg−1 dry soil) | 0 | 1 | 2 | 4 |
Gene | Primer | Primer Sequence (5′–3′) | Gene Length | Quantitative PCR Reaction Procedure |
---|---|---|---|---|
16s | Eub338_Eub806 | ACTCCTACGGGAGGCAGCAG | 460 | 95 °C for 3 min × 1 cycle; 95 °C for 30 s, 58 °C for 30 s, 72 °C for 40 s × 35 cycles. |
ITS | ITS1F_ITS2R | CTTGGTCATTTAGAGGAAGTAA | 300 | 95 °C for 3 min × 1 cycle; 95 °C for 30 s, 58 °C for 30 s, 72 °C for 40 s × 35 cycles. |
nirK | nirKF1a | GGMATGGTKCCSTGGCA | 515 | 95 °C for 3 min × 1 cycle; 95 °C for 30 s, 56 °C for 30 s, 72 °C for 40 s × 35 cycles. |
nirKR3 | GCCTCGATCAGRTTRTGG | |||
nirS | nirSCd3 | GTSAACGTSAAGGARACSGG | 422 | 95 °C for 3 min × 1 cycle; 95 °C for 30 s, 58 °C for 30 s, 72 °C for 40 s × 35 cycles. |
nirSR3 | GASTTCGGRTGSGTCTTGA | |||
nosZ | nosZ-F | CGCRACGGCAASAAGGTSMSSGT | 267 | 95 °C for 3 min × 1 cycle; 95 °C for 30 s, 56 °C for 30 s, 72 °C for 40 s × 35 cycles. |
nosZ-R | CAKRTGCAKSGCRTGGCAGAA |
Items | pH | BA | NO3−-N | NH4+-N |
---|---|---|---|---|
Bacterium | 0.732 ** | 0.825 ** | 0.591 * | 0.588 * |
Fungi | 0.764 ** | 0.834 ** | 0.365 | 0.270 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, X.; Zhao, Y.; Chen, Z.; Song, Y.; Liao, W.; Gao, Z. How Benzoic Acid—Driven Soil Microorganisms Influence N2O Emissions. Agronomy 2025, 15, 1709. https://doi.org/10.3390/agronomy15071709
Zhang X, Zhao Y, Chen Z, Song Y, Liao W, Gao Z. How Benzoic Acid—Driven Soil Microorganisms Influence N2O Emissions. Agronomy. 2025; 15(7):1709. https://doi.org/10.3390/agronomy15071709
Chicago/Turabian StyleZhang, Xinxing, Yinuo Zhao, Zhaoya Chen, Yelong Song, Wenhua Liao, and Zhiling Gao. 2025. "How Benzoic Acid—Driven Soil Microorganisms Influence N2O Emissions" Agronomy 15, no. 7: 1709. https://doi.org/10.3390/agronomy15071709
APA StyleZhang, X., Zhao, Y., Chen, Z., Song, Y., Liao, W., & Gao, Z. (2025). How Benzoic Acid—Driven Soil Microorganisms Influence N2O Emissions. Agronomy, 15(7), 1709. https://doi.org/10.3390/agronomy15071709