Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (720)

Search Parameters:
Keywords = PCM thermal storage

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 1456 KiB  
Article
Numerical Modeling of Charging and Discharging of Shell-And-Tube PCM Thermal Energy Storage Unit
by Maciej Fabrykiewicz, Krzysztof Tesch and Janusz T. Cieśliński
Energies 2025, 18(14), 3804; https://doi.org/10.3390/en18143804 - 17 Jul 2025
Abstract
This paper presents the results of a numerical study on transient temperature distributions and phase fractions in a thermal energy storage unit containing phase change material (PCM). The latent heat storage unit (LHSU) is a compact shell-and-tube exchanger featuring seven tubes arranged in [...] Read more.
This paper presents the results of a numerical study on transient temperature distributions and phase fractions in a thermal energy storage unit containing phase change material (PCM). The latent heat storage unit (LHSU) is a compact shell-and-tube exchanger featuring seven tubes arranged in a staggered layout. Three organic phase change materials are investigated: paraffin LTP 56, fatty acid RT54HC, and fatty acid P1801. OpenFOAM software is utilized to solve the governing equations using the Boussinesq approximation. The discretization of the equations is performed with second-order accuracy in both space and time. The three-dimensional (3D) computational domain corresponds to the inner diameter of the LHSU. Calculations are conducted assuming constant thermal properties of the fluids. The experimental and numerical results indicate that for paraffin LTP56, the charging time is approximately 8% longer than the discharging time. In contrast, the discharging times for fatty acids RT54HC and P1801 exceed their charging times, with time delays of about 14% and 49% for RT54HC and 25% and 30% for P1801, according to experimental and numerical calculations, respectively. Full article
(This article belongs to the Special Issue Advancements in Energy Storage Technologies)
35 pages, 2895 KiB  
Review
Ventilated Facades for Low-Carbon Buildings: A Review
by Pinar Mert Cuce and Erdem Cuce
Processes 2025, 13(7), 2275; https://doi.org/10.3390/pr13072275 - 17 Jul 2025
Abstract
The construction sector presently consumes about 40% of global energy and generates 36% of CO2 emissions, making facade retrofits a priority for decarbonising buildings. This review clarifies how ventilated facades (VFs), wall assemblies that interpose a ventilated air cavity between outer cladding [...] Read more.
The construction sector presently consumes about 40% of global energy and generates 36% of CO2 emissions, making facade retrofits a priority for decarbonising buildings. This review clarifies how ventilated facades (VFs), wall assemblies that interpose a ventilated air cavity between outer cladding and the insulated structure, address that challenge. First, the paper categorises VFs by structural configuration, ventilation strategy and functional control into four principal families: double-skin, rainscreen, hybrid/adaptive and active–passive systems, with further extensions such as BIPV, PCM and green-wall integrations that couple energy generation or storage with envelope performance. Heat-transfer analysis shows that the cavity interrupts conductive paths, promotes buoyancy- or wind-driven convection, and curtails radiative exchange. Key design parameters, including cavity depth, vent-area ratio, airflow velocity and surface emissivity, govern this balance, while hybrid ventilation offers the most excellent peak-load mitigation with modest energy input. A synthesis of simulation and field studies indicates that properly detailed VFs reduce envelope cooling loads by 20–55% across diverse climates and cut winter heating demand by 10–20% when vents are seasonally managed or coupled with heat-recovery devices. These thermal benefits translate into steadier interior surface temperatures, lower radiant asymmetry and fewer drafts, thereby expanding the hours occupants remain within comfort bands without mechanical conditioning. Climate-responsive guidance emerges in tropical and arid regions, favouring highly ventilated, low-absorptance cladding; temperate and continental zones gain from adaptive vents, movable insulation or PCM layers; multi-skin adaptive facades promise balanced year-round savings by re-configuring in real time. Overall, the review demonstrates that VFs constitute a versatile, passive-plus platform for low-carbon buildings, simultaneously enhancing energy efficiency, durability and indoor comfort. Future advances in smart controls, bio-based materials and integrated energy-recovery systems are poised to unlock further performance gains and accelerate the sector’s transition to net-zero. Emerging multifunctional materials such as phase-change composites, nanostructured coatings, and perovskite-integrated systems also show promise in enhancing facade adaptability and energy responsiveness. Full article
(This article belongs to the Special Issue Sustainable Development of Energy and Environment in Buildings)
Show Figures

Figure 1

25 pages, 5753 KiB  
Article
Effect of New Mesh Fins on the Heat Storage Performance of a Solar Phase Change Heat Accumulator
by Zihan Zhao, Jingzhi Jiang and Jingzhou An
Energies 2025, 18(14), 3718; https://doi.org/10.3390/en18143718 - 14 Jul 2025
Viewed by 162
Abstract
In view of the problems of slow heat storage process and uneven temperature distribution in the existing phase change heat accumulator, a new type of mesh fin heat accumulator was designed and developed which increased the contact area between the phase change material [...] Read more.
In view of the problems of slow heat storage process and uneven temperature distribution in the existing phase change heat accumulator, a new type of mesh fin heat accumulator was designed and developed which increased the contact area between the phase change material (PCM) and the fins, enhanced the apparent thermal conductivity of the PCM, improved the heat storage efficiency of the heat accumulator, blocked the PCM, improved the natural convection erosion of the PCM on the upper and lower parts of the heat accumulator, and melted the PCM in each area more evenly. Fluent15.0 was used to numerically simulate the heat storage process of the mesh fins heat accumulator with the finite volume method. The composite PCM prepared by adding 10% mass fraction of expanded graphite to paraffin wax was used as the heat storage material. A 2D, non-steady-state model, incompressible fluid, and the pressure-based solution method were selected. The energy model and the solidification and melting model based on the enthalpy method were used to simulate and calculate the phase change process of PCM. The PISO algorithm was used. The influences of the structural parameters of the mesh fins on the heat storage condition of the heat accumulator were investigated by numerical simulation. The results showed that with the increase in the radius R of the mesh fin, the heat storage time decreased first and then increased. With the increases in vertical fin thickness c, mesh fins thickness δ, and vertical fins number N, the heat storage time decreased. The optimal mesh fin structure parameters were R = 33.5 mm, c = 3 mm, δ = 3 mm, and N = 8, and the heat storage time was 8086 s, which is 47.8% shorter than that of the concentric tube heat accumulator. Otherwise, with the increases in vertical fin thickness c, mesh fins thickness δ, and vertical fins number N, the PCM volume decreased, which shortened PCM melting time. Full article
Show Figures

Figure 1

42 pages, 9679 KiB  
Review
Recent Research Progress on Polyurethane Solid–Solid Phase Change Materials
by Ziqiang Wang, Jingjing Xiao, Tengkun Yao and Menghao Wang
Polymers 2025, 17(14), 1933; https://doi.org/10.3390/polym17141933 - 14 Jul 2025
Viewed by 303
Abstract
Research on phase change materials (PCMs) is booming in the context of global energy structure transitions and the challenge of dealing with temperature fluctuations in engineering materials. Polyurethane solid–solid phase change materials (PUSSPCMs) show great potential for thermal energy storage and temperature regulation [...] Read more.
Research on phase change materials (PCMs) is booming in the context of global energy structure transitions and the challenge of dealing with temperature fluctuations in engineering materials. Polyurethane solid–solid phase change materials (PUSSPCMs) show great potential for thermal energy storage and temperature regulation because of their designable molecular structure, no risk of leakage, and high bulk stability. In this paper, the recent research progress on PUSSPCMs is systematically reviewed. Starting from the material system, the core preparation process of the PUSSPCMs was elucidated. At the performance improvement level, related performance studies on PUSSPCMs are systematically summarized, focusing on the introduction of dynamic covalent bonds and a nanofiller composite strategy to enhance the thermophysical properties of the materials. At the application level, innovative studies and thermomodulation advantages of PUSSPCMs in different fields are summarized. Finally, for green development, multifunctionalization, and bottlenecks in the scale-up preparation of PUSSPCMs, future research directions for balancing the performance requirements, conducting multi-scale simulations, and exploring green materials are proposed to provide theoretical references for the development and application of high-performance PUSSPCMs. Full article
(This article belongs to the Special Issue Polymer Materials for Pavement Applications)
Show Figures

Figure 1

12 pages, 6744 KiB  
Article
Gas Void Morphology and Distribution in Solidified Pure Paraffin Within a Cubic Thermal Energy Storage Unit
by Donglei Wang, Qianqian Zhao and Rongzong Huang
Energies 2025, 18(14), 3686; https://doi.org/10.3390/en18143686 - 12 Jul 2025
Viewed by 142
Abstract
Gas voids inevitably form during the solidification of phase change materials (PCMs) due to volumetric contraction and thus deteriorate the thermal conductivity of solidified PCMs. In this work, the gas void morphology and distribution in solidified pure paraffin within a cubic thermal energy [...] Read more.
Gas voids inevitably form during the solidification of phase change materials (PCMs) due to volumetric contraction and thus deteriorate the thermal conductivity of solidified PCMs. In this work, the gas void morphology and distribution in solidified pure paraffin within a cubic thermal energy storage unit are experimentally studied. The three-dimensional structure of the solidified pure paraffin is reconstructed via computed tomography (CT) scanning with a resolution of up to 25 µm. Four distinct morphological types of gas voids are found, including irregular elliptical gas voids, elongated “needle-like” gas voids, micro gas voids, and large circular gas voids. The formation mechanisms of each type are analyzed. The morphology and distribution of gas voids indicate that the solidified pure paraffin structure is anisotropic. The effective thermal conductivity (ETC) of this solid–gas structure is numerically evaluated using lattice Boltzmann simulations, and a two-term power equation is fitted. The results show that the ETC in the vertical direction is significantly lower than in the horizontal direction and the ETC could be reduced by as much as 31.5% due to the presence of gas voids. Full article
Show Figures

Figure 1

27 pages, 7643 KiB  
Article
Enhancing Thermal Comfort in Buildings: A Computational Fluid Dynamics Study of Multi-Layer Encapsulated Phase Change Materials–Integrated Bricks for Energy Management
by Farzad Ghafoorian, Mehdi Mehrpooya, Seyed Reza Mirmotahari and Mahmood Shafiee
Fluids 2025, 10(7), 181; https://doi.org/10.3390/fluids10070181 - 10 Jul 2025
Viewed by 179
Abstract
Thermal energy storage plays a vital role in enhancing the efficiency of energy systems, particularly in building applications. Phase change materials (PCMs) have gained significant attention as a passive solution for energy management within building envelopes. This study examines the thermal performance of [...] Read more.
Thermal energy storage plays a vital role in enhancing the efficiency of energy systems, particularly in building applications. Phase change materials (PCMs) have gained significant attention as a passive solution for energy management within building envelopes. This study examines the thermal performance of encapsulated PCMs integrated into bricks as a passive cooling method, taking into account the outdoor climate conditions to enhance indoor thermal comfort throughout summer and winter seasons. A computational fluid dynamics (CFDs) analysis is performed to compare three configurations: a conventional brick, a brick with a single PCM layer, and a brick with three PCM layers. Results indicate that the three-layer PCM configuration provides the most effective thermal regulation, reducing peak indoor temperature fluctuations by up to 4 °C in summer and stabilizing indoor temperature during winter. Also, the second and third PCM layers exhibit minimal latent heat absorption, with their liquid fractions indicating that melting does not occur. As a result, these layers primarily serve as thermal insulation—limiting heat ingress in summer and reducing heat loss in winter. During summer, the absence of the first PCM layer in the single-layer configuration leads to faster thermal penetration, causing the brick to reach peak temperatures approximately two hours earlier in the afternoon and increasing the temperature by about 5 °C. Full article
(This article belongs to the Special Issue Heat Transfer in the Industry)
Show Figures

Figure 1

29 pages, 3584 KiB  
Review
Energy Efficiency in Buildings Through the Application of Phase Change Materials: An In-Depth Analysis of the Integration of Spent Coffee Grounds (SCGs)
by Abir Hmida, Fouad Erchiqui, Abdelkader Laafer and Mahmoud Bourouis
Energies 2025, 18(14), 3629; https://doi.org/10.3390/en18143629 - 9 Jul 2025
Viewed by 337
Abstract
Energy demand in the building sector has drastically increased due to rising occupant comfort requirements, accounting for 30% of the world’s final energy consumption and 26% of global carbon emissions. Thus, to improve building efficiency in heating and cooling applications, phase change material [...] Read more.
Energy demand in the building sector has drastically increased due to rising occupant comfort requirements, accounting for 30% of the world’s final energy consumption and 26% of global carbon emissions. Thus, to improve building efficiency in heating and cooling applications, phase change material (PCM)-based passive thermal management techniques have been considered due to their energy storage capabilities. This study provides a comprehensive review of the research on PCM applications, types, and encapsulation forms. Various solutions have been proposed to enhance PCM performance. In this review, the authors suggest new methods to improve PCM efficiency by using the multilayered wall technique, which involves employing two layers of a hybrid bio-composite—specifically, the hybrid hemp/wood fiber-reinforced composite with a polypropylene (PP) matrix—along with a layer of PCM made from spent coffee grounds (SCGs). Previous studies have shown that oil extracted from SCGs demonstrates good thermal and chemical stability, as it contains approximately 60–80% fatty acids, with a phase transition temperature of approximately 4.5 ± 0.72 °C and latent heat values of 51.15 ± 1.46 kJ/kg. Full article
Show Figures

Figure 1

28 pages, 8292 KiB  
Review
Thermal Energy Storage in Bio-Inspired PCM-Based Systems
by Kinga Pielichowska, Martyna Szatkowska and Krzysztof Pielichowski
Energies 2025, 18(13), 3548; https://doi.org/10.3390/en18133548 - 4 Jul 2025
Viewed by 245
Abstract
Continuous growth in energy demand is observed throughout the world, with simultaneous rapid consumption of fossil fuels. New effective technologies and systems are needed that allow for a significant increase in the use of renewable energy sources, such as the sun, wind, biomass, [...] Read more.
Continuous growth in energy demand is observed throughout the world, with simultaneous rapid consumption of fossil fuels. New effective technologies and systems are needed that allow for a significant increase in the use of renewable energy sources, such as the sun, wind, biomass, and sea tides. Currently, one of the main research challenges refers to thermal energy management, taking into account the discontinuity and intermittency of both energy supply and demand. Phase change materials (PCMs) are a useful solution in the design and manufacturing of multifunctional materials for energy storage technologies such as solar cells and photovoltaic systems. In order to design efficient PCM-based systems for energy applications, ideas and behaviors from nature should be taken account as it has created over millions of years a plethora of unique structures and morphologies in complex hierarchical materials. Inspirations for nature have been applied to improve and adjust the properties of materials for energy conversion and storage as well as in the design of advanced energy systems. Therefore, this review presents recent developments in biomimetic and bio-inspired multifunctional phase change materials for the energy storage and conversion of different types of renewable energy to thermal or electrical energy. Future outlooks are also provided to initiate integrated interdisciplinary bio-inspired efforts in the field of modern sustainable PCM technologies. Full article
Show Figures

Figure 1

3 pages, 155 KiB  
Editorial
Phase Change Materials for Building Energy Applications
by Facundo Bre, Antonio Caggiano and Umberto Berardi
Energies 2025, 18(13), 3534; https://doi.org/10.3390/en18133534 - 4 Jul 2025
Viewed by 245
Abstract
This editorial introduces the Special Issue entitled “Phase Change Materials for Building Energy Applications”, which gathers nine original research articles focused on advancing thermal energy storage solutions in the built environment. The selected contributions explore the application of phase change materials (PCMs) across [...] Read more.
This editorial introduces the Special Issue entitled “Phase Change Materials for Building Energy Applications”, which gathers nine original research articles focused on advancing thermal energy storage solutions in the built environment. The selected contributions explore the application of phase change materials (PCMs) across a range of building components and systems, including façades, flooring, glazing, and pavements, aimed at enhancing energy efficiency, reducing peak loads, and improving thermal comfort. This Special Issue highlights both experimental and numerical investigations, ranging from nanomaterial-enhanced PCMs and solid–solid PCM glazing systems to full-scale applications and the modeling of encapsulated PCM geometries. Collectively, these studies reflect the growing potential of PCMs to support sustainable, low-carbon construction and provide new insights into material design, system optimization, and energy resilience. We thank all contributing authors and reviewers for their valuable input and hope that this Special Issue serves as a resource for ongoing innovation in the field. Full article
(This article belongs to the Special Issue Phase Change Materials for Building Energy Applications)
15 pages, 2537 KiB  
Article
A Comparative Experimental Analysis of a Cold Latent Thermal Storage System Coupled with a Heat Pump/Air Conditioning Unit
by Claudio Zilio, Giulia Righetti, Dario Guarda, Francesca Martelletto and Simone Mancin
Energies 2025, 18(13), 3485; https://doi.org/10.3390/en18133485 - 2 Jul 2025
Viewed by 257
Abstract
The decarbonization of residential cooling systems requires innovative solutions to overcome the mismatch between the renewable energy availability and demand. Integrating latent thermal energy storage (LTES) with heat pump/air conditioning (HP/AC) units can help balance energy use and enhance efficiency. However, the dynamic [...] Read more.
The decarbonization of residential cooling systems requires innovative solutions to overcome the mismatch between the renewable energy availability and demand. Integrating latent thermal energy storage (LTES) with heat pump/air conditioning (HP/AC) units can help balance energy use and enhance efficiency. However, the dynamic behavior of such integrated systems, particularly under low-load conditions, remains underexplored. This study investigates a 5 kW HP/AC unit coupled with an 18 kWh LTES system using a bio-based Phase Change Material (PCM) with a melting temperature of 9 °C. Two configurations were tested: charging the LTES using either a thermostatic bath or the HP/AC unit. Key parameters such as the stored energy, temperature distribution, and cooling capacity were analyzed. The results show that, under identical conditions (2 °C inlet temperature, 16 L/min flow rate), the energy stored using the HP/AC unit was only 6.3% lower than with the thermostatic bath. Nevertheless, significant cooling capacity fluctuations occurred with the HP/AC unit due to compressor modulation and anti-frost cycles. The compressor frequency varied from 75 Hz to 25 Hz, and inefficient on-off cycling appeared in the final phase, when the power demand dropped below 1 kW. These findings highlight the importance of integrated system design and control strategies. A co-optimized HP/AC–LTES setup is essential to avoid performance degradation and to fully exploit the benefits of thermal storage in residential cooling. Full article
Show Figures

Figure 1

22 pages, 2284 KiB  
Article
Advanced Numerical Validation of Integrated Electrochemical-Thermal Models for PCM-Based Li-Ion Battery Thermal Management System
by Mahdieh Nasiri and Hamid Hadim
Energies 2025, 18(13), 3386; https://doi.org/10.3390/en18133386 - 27 Jun 2025
Viewed by 344
Abstract
In this investigation, a comprehensive validation framework for an integrated electrochemical-thermal model that addresses critical thermal management challenges in lithium-ion batteries (LIBs) is presented. The two-dimensional numerical model combines the Newman–Tiedemann–Gu–Kim (NTGK) electrochemical-thermal battery framework with the enthalpy-porosity approach for phase change material [...] Read more.
In this investigation, a comprehensive validation framework for an integrated electrochemical-thermal model that addresses critical thermal management challenges in lithium-ion batteries (LIBs) is presented. The two-dimensional numerical model combines the Newman–Tiedemann–Gu–Kim (NTGK) electrochemical-thermal battery framework with the enthalpy-porosity approach for phase change material (PCM) battery thermal management systems (BTMSs). Rigorous validation against benchmarks demonstrates the model’s exceptional predictive capability across a wide range of operating conditions. Simulated temperature distribution and voltage capacity profiles at multiple discharge rates show excellent agreement with the experimental data, accurately capturing the underlying electrochemical-thermal mechanisms. Incorporating Capric acid (with a phase transition range of 302–305 K) as the PCM, the thermal management model demonstrates significantly improved accuracy over existing models in the literature. Notable error reductions include a 78.3% decrease in the Mean Squared Error (0.477 vs. 2.202), a 53.4% reduction in the Root Mean Squared Error (0.619 vs. 1.483), and a 55.5% drop in the Mean Absolute Percentage Error. Statistical analysis further confirms the model’s robustness, with a high coefficient of determination (R2 = 0.968858) and well-distributed residuals. Liquid fraction evolution analysis highlights the PCM’s ability to absorb thermal energy effectively during high-discharge operations, enhancing thermal regulation. This validated model provides a reliable foundation for the design of next-generation BTMS, aiming to improve the safety, performance, and lifespan of LIBs in advanced energy storage applications where thermal stability is critical. Full article
(This article belongs to the Special Issue Highly Efficient Thermal Energy Storage (TES) Technologies)
Show Figures

Figure 1

21 pages, 5735 KiB  
Article
Numerical Investigation Using Machine Learning Process Combination of Bio PCM and Solar Salt for Thermal Energy Storage Applications
by Ravi Kumar Kottala, Sankaraiah Mogaligunta, Makham Satyanarayana Gupta, Seepana Praveenkumar, Ramakrishna Raghutu, Kiran Kumar Patro, Achanta Sampath Dakshina Murthy and Dharmaiah Gurram
Symmetry 2025, 17(7), 998; https://doi.org/10.3390/sym17070998 - 25 Jun 2025
Viewed by 317
Abstract
TGA kinetic analysis can assess the thermal stability and degradation properties of PCMs by calculating activation energies and onset degradation temperatures, which are critical elements when developing optimal PCM composition and assessing long-term performance in thermal energy storage applications. In this study, we [...] Read more.
TGA kinetic analysis can assess the thermal stability and degradation properties of PCMs by calculating activation energies and onset degradation temperatures, which are critical elements when developing optimal PCM composition and assessing long-term performance in thermal energy storage applications. In this study, we utilize a thermogravimetric analyzer to examine the thermal stability of both solar salt phase change material (i.e., commonly used in medium-temperature applications) (NaNO3 + KNO3) and a composite eutectic PCM mixture (i.e., PCM with 20% biochar). The activation energies of both the pure solar salt and composite solar salt PCM sample were evaluated using a variety of different kinetic models such as Kissinger–Akahira–Sunose (KAS), Flynn–Wall–Ozawa (FWO), and Starink. For pure PCM, the mean activation energies calculated using the KAS, FWO, and Starink methods are 581.73 kJ/mol, 570.47 kJ/mol, and 581.31 kJ/mol, respectively. Conversely, for the composite solar salt PCM sample, the calculated experimental average activation energies are 51.67 kJ/mol, 62.124 kJ/mol, and 51.383 kJ/mol. Additionally, various machine learning models, such as linear regression, decision tree regression, gradient boosting regression, random forest regression, polynomial regression, Gaussian process regression, and KNN regression models, are developed to predict the degradation behaviour of pure and composite solar salts under different loading rates. In the machine learning models, the mass loss of the samples is the output variable and the input features are PCM type, heating rate, and temperature. The machine learning models had a great prediction performance based on experimental TGA data, with KNN regression outperforming the other models by achieving the lowest RMSE of 0.0318 and the highest R2 score of 0.977. Full article
Show Figures

Figure 1

28 pages, 5108 KiB  
Article
Glauber’s Salt Composites for HVAC Applications: A Study on the Use of the T-History Method with a Modified Data Evaluation Methodology
by Veeresh Ayyagari, Amir Shooshtari and Michael Ohadi
Materials 2025, 18(13), 2998; https://doi.org/10.3390/ma18132998 - 24 Jun 2025
Viewed by 345
Abstract
Phase change materials (PCMs) can be utilized in buildings for peak load shifting in air conditioning systems, and the use of salt hydrate-based PCMs can reduce the cost of thermal energy storage devices. Glauber’s salt is an economical salt hydrate PCM with a [...] Read more.
Phase change materials (PCMs) can be utilized in buildings for peak load shifting in air conditioning systems, and the use of salt hydrate-based PCMs can reduce the cost of thermal energy storage devices. Glauber’s salt is an economical salt hydrate PCM with a melting point of around 32 °C. However, the desired melting range typically falls between 18 and 22 °C for building air conditioning applications. Although many researchers have characterized Glauber’s salt and its composites with modified melting points, enthalpy–temperature curves for composites of Glauber’s salt and NaCl are unavailable. In this study, we report the melting and solidification enthalpy–temperature curves for two different composites of Glauber’s salt and NaCl with a melting point of 21 °C obtained by the T-history method. Both composites contain NaCl to suppress the melting point, borax to reduce supercooling, and sodium polyacrylate as a thickener to enhance cyclic stability. The first composite with 12 wt.% NaCl demonstrated 139 kJ·kg−1 of latent heat of fusion, and the second composite with 9 wt.% NaCl demonstrated 171 kJ·kg−1. Both the composites have high volumetric energy densities compared to their organic counterparts with similar melting points. Full article
(This article belongs to the Special Issue Smart Materials and Devices in Heat and Mass Transfer)
Show Figures

Figure 1

40 pages, 1622 KiB  
Review
A Review of Phase-Change Material-Based Thermal Batteries for Sustainable Energy Storage of Solar Photovoltaic Systems Coupled to Heat Pumps in the Building Sector
by Shafquat Rana and Joshua M. Pearce
Energies 2025, 18(13), 3265; https://doi.org/10.3390/en18133265 - 22 Jun 2025
Viewed by 455
Abstract
Buildings account for about a third of global energy and it is thus imperative to eliminate the use of fossil fuels to power and provide for their thermal needs. Solar photovoltaic (PV) technology can provide power and with electrification, heating/cooling, but there is [...] Read more.
Buildings account for about a third of global energy and it is thus imperative to eliminate the use of fossil fuels to power and provide for their thermal needs. Solar photovoltaic (PV) technology can provide power and with electrification, heating/cooling, but there is often a load mismatch with the intermittent solar supply. Electric batteries can overcome this challenge at high solar penetration rates but are still capital-intensive. A promising solution is thermal energy storage (TES), which has a low cost per unit of energy. This review provides an in-depth analysis of TES but specifically focuses on phase change material (PCM)-based TES, and its significance in the building sector. The classification, characterization, properties, applications, challenges, and modeling of PCM-TES are detailed. Finally, the potential for integrating TES with PV and heat pump (HP) technologies to decarbonize the residential sector is detailed. Although many studies show proof of carbon reduction for the individual and coupled systems, the integration of PV+HP+PCM-TES systems as a whole unit has not been developed to achieve carbon neutrality and facilitate net zero emission goals. Overall, there is still a lack of available literature and experimental datasets for these complex systems which are needed to develop models for global implementation as well as studies to quantify their economic and environmental performance. Full article
Show Figures

Graphical abstract

22 pages, 9227 KiB  
Review
Review: The Application of MXene in Thermal Energy Storage Materials for Efficient Solar Energy Utilization
by Han Sun, Yingai Jin and Firoz Alam
Materials 2025, 18(12), 2839; https://doi.org/10.3390/ma18122839 - 16 Jun 2025
Viewed by 388
Abstract
Two-dimensional transition metal carbides/nitrides (MXenes) have shown potential in biosensors, cancer theranostics, microbiology, electromagnetic interference shielding, photothermal conversion, and thermal energy storage due to their unique electronic structure, ability to absorb a wide range of light, and tunable surface chemistry. In spite of [...] Read more.
Two-dimensional transition metal carbides/nitrides (MXenes) have shown potential in biosensors, cancer theranostics, microbiology, electromagnetic interference shielding, photothermal conversion, and thermal energy storage due to their unique electronic structure, ability to absorb a wide range of light, and tunable surface chemistry. In spite of the growing interest in MXenes, there are relatively few studies on their applications in phase-change materials for enhancing thermal conductivity and weak photo-responsiveness between 0 °C and 150 °C. Thus, this study aims to provide a current overview of recent developments, to examine how MXenes are made, and to outline the combined effects of different processes that can convert light into heat. This study illustrates the mechanisms that include enhanced broadband photon harvesting through localized surface plasmon resonance, electron–phonon coupling-mediated nonradiative relaxation, and interlayer phonon transport that optimizes thermal diffusion pathways. This study emphasizes that MXene-engineered 3D thermal networks can greatly improve energy storage and heat conversion, solving important problems with phase-change materials (PCMs), like poor heat conductivity and low responsiveness to light. This study also highlights the real-world issues of making MXene-based materials on a large scale, and suggests future research directions for using them in smart thermal management systems and solar thermal grid technologies. Full article
Show Figures

Figure 1

Back to TopTop