Thermal Energy Storage in Bio-Inspired PCM-Based Systems
Abstract
1. Introduction
2. PCMs in Nature
3. Thermal Energy Conversion and Storage in Nature
4. PCMs in Bio-Inspired Systems
5. Application of Bio-Inspired PCMs
5.1. Buildings
5.2. Energy Conversion and Storage
5.3. Anti-/Deicing
5.4. Textiles
5.5. Electronics
5.6. Others
6. Future Outlooks and Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
AlN | Aluminum nitride |
AFPs | Antifreeze proteins |
BSiC | Bamboo-derived silicon carbide |
BN | Boron nitride |
CNT | Carbon nanotubes |
DE | Delignification wood |
C20 | Eicosane |
EMI | Electromagnetic |
EP | Epoxy resin |
EVA | Poly(ethylene-vinyl acetate) |
EG | Expanded graphite |
PW–MX | Flexible actuator based on a paraffin wax and Ti3C2Tx MXene |
GO | Graphene oxide |
CTAB | Hexadecyl trimethyl ammonium bromide |
h-PCMs | High-temperature phase change materials |
LHTES | Latent heat thermal energy storage |
LA | Lauric acid |
LinA | Linoleic acid |
LPG | Liquid-infused polydimethylsiloxane-graphite |
OA | Oleic acid |
PA | Palmitic acid |
PW | Paraffin wax |
PCCs | Phase change composites |
PCMs | Phase change materials |
PV | Photovoltaics |
PVT | Photovoltaic/thermal technology |
PAA | Poly(amic acid) |
PEG | Poly(ethylene glycol) |
PD | Polydopamine |
PDMS | Polydimethylsiloxane |
PVA | Poly(vinyl alcohol) |
G-CGAs | Pyramidal graphitized chitosan/graphene aerogels |
PVA/W | PVA/wood |
rGO | Reduced graphene oxide |
SNTAs | Silica nanotube aerogels |
SPCCs | Solar-responsive phase change composites |
STES | Solar–thermal energy storage |
STEG | Solar thermoelectric generator |
SA | Stearic acid |
TA | Tannic acid |
TES | Thermal energy storage |
TPE | Thermoplastic elastomer |
References
- Pielichowska, K.; Pielichowski, K. Phase Change Materials for Thermal Energy Storage. Prog. Mater. Sci. 2014, 65, 67–123. [Google Scholar] [CrossRef]
- Zalba, B.; Marin, J.M.; Cabeza, L.F.; Mehling, H. Review on Thermal Energy Storage with Phase Change: Materials, Heat Transfer Analysis and Applications. Appl. Therm. Eng. 2003, 23, 251–283. [Google Scholar] [CrossRef]
- Zhang, S.; Ocłoń, P.; Klemeš, J.J.; Michorczyk, P.; Pielichowska, K.; Pielichowski, K. Renewable Energy Systems for Building Heating, Cooling and Electricity Production with Thermal Energy Storage. Renew. Sustain. Energy Rev. 2022, 165, 112560. [Google Scholar] [CrossRef]
- Liu, L.; Zhang, Y.; Zhang, S.; Tang, B. Advanced Phase Change Materials from Natural Perspectives: Structural Design and Functional Applications. Adv. Sci. 2023, 10, 2207652. [Google Scholar] [CrossRef]
- Twaróg, R.; Szatkowski, P.; Pielichowska, K. Phase Change Materials in Electrothermal Conversion Systems: A Review. Energies 2025, 18, 569. [Google Scholar] [CrossRef]
- Pielichowska, K.; Nowicka-Dunal, K.; Pielichowski, K. Bio-Based Polymers for Environmentally Friendly Phase Change Materials. Polymers 2024, 16, 328. [Google Scholar] [CrossRef]
- Yuan, Y.; Zhang, N.; Tao, W.; Cao, X.; He, Y. Fatty Acids as Phase Change Materials: A Review. Renew. Sustain. Energy Rev. 2014, 29, 482–498. [Google Scholar] [CrossRef]
- Pielichowska, K.; Głowinkowski, S.; Lekki, J.; Biniaś, D.; Pielichowski, K.; Jenczyk, J. PEO/Fatty Acid Blends for Thermal Energy Storage Materials. Structural/Morphological Features and Hydrogen Interactions. Eur. Polym. J. 2008, 44, 3344–3360. [Google Scholar] [CrossRef]
- Cerone, M.; Smith, T.K. A Brief Journey into the History of and Future Sources and Uses of Fatty Acids. Front. Nutr. 2021, 8, 570401. [Google Scholar] [CrossRef]
- O’Neill, C.M.; Gill, S.; Hobbs, D.; Morgan, C.; Bancroft, I. Natural Variation for Seed Oil Composition in Arabidopsis Thaliana. Phytochemistry 2003, 64, 1077–1090. [Google Scholar] [CrossRef]
- O’Neill, C.M.; Morgan, C.; Hattori, C.; Brennan, M.; Rosas, U.; Tschoep, H.; Deng, P.X.; Baker, D.; Wells, R.; Bancroft, I. Towards the Genetic Architecture of Seed Lipid Biosynthesis and Accumulation in Arabidopsis Thaliana. Heredity 2012, 108, 115–123. [Google Scholar] [CrossRef] [PubMed]
- Smith, M.A.; Moon, H.; Chowrira, G.; Kunst, L. Heterologous Expression of a Fatty Acid Hydroxylase Gene in Developing Seeds of Arabidopsis Thaliana. Planta 2003, 217, 507–516. [Google Scholar] [CrossRef]
- Martins, J.; Santos, J.; da Conceicao, M. Comparative Study of Physico-Chemical Properties of Coconut Oil (Cocos nucifera L.) Obtained by Industrial and Artisanal Processes. Biotechnol. Indian J. 2020, 16, 210. [Google Scholar]
- Naik, B.; Kumarba, V. Cocoa Butter and Its Alternatives: A Reveiw. J. Bioresour. Eng. Technol. 2014, 1, 7–17. [Google Scholar]
- Servent, A.; Boulanger, R.; Davrieux, F.; Pinot, M.-N.; Tardan, E.; Forestier-Chiron, N.; Hue, C. Assessment of Cocoa (Theobroma cacao L.) Butter Content and Composition throughout Fermentations. Food Res. Int. 2018, 107, 675–682. [Google Scholar] [CrossRef] [PubMed]
- Prasanth Kumar, P.K.; Gopala Krishna, A.G. Physico-Chemical Characteristics and Nutraceutical Distribution of Crude Palm Oil and Its Fractions. Grasas Aceites 2014, 65, e018. [Google Scholar] [CrossRef]
- Montoya, C.; Cochard, B.; Flori, A.; Cros, D.; Lopes, R.; Cuellar, T.; Espeout, S.; Syaputra, I.; Villeneuve, P.; Pina, M.; et al. Genetic Architecture of Palm Oil Fatty Acid Composition in Cultivated Oil Palm (Elaeis Guineensis Jacq.) Compared to Its Wild Relative E. Oleifera (H.B.K) Cortés. PLoS ONE 2014, 9, e95412. [Google Scholar] [CrossRef]
- Monfreda, M.; Gobbi, L.; Grippa, A. Blends of Olive Oil and Sunflower Oil: Characterisation and Olive Oil Quantification Using Fatty Acid Composition and Chemometric Tools. Food Chem. 2012, 134, 2283–2290. [Google Scholar] [CrossRef]
- Hernández, M.L.; Sicardo, M.D.; Martínez-Rivas, J.M. Differential Contribution of Endoplasmic Reticulum and Chloroplast ω-3 Fatty Acid Desaturase Genes to the Linolenic Acid Content of Olive (Olea europaea) Fruit. Plant Cell Physiol. 2016, 57, 138–151. [Google Scholar] [CrossRef]
- Bybordi, A.; Tabatabaei, S.J.; Ahmedov, A. Effects of Salinity on Fatty Acid Composition of Canola (Brassica napus L.). J. Food Agric. Environ. 2010, 8, 113–115. [Google Scholar]
- Millao, S.; Quilaqueo, M.; Contardo, I.; Rubilar, M. Enhancing the Oxidative Stability of Beeswax–Canola Oleogels: Effects of Ascorbic Acid and Alpha-Tocopherol on Their Physical and Chemical Properties. Gels 2025, 11, 43. [Google Scholar] [CrossRef] [PubMed]
- Zahran, H.A.; Tawfeuk, H.Z. Physicochemical Properties of New Peanut (Arachis hypogaea L.) Varieties. OCL 2019, 26, 19. [Google Scholar] [CrossRef]
- Mondal, N.; Bhat, K.V.; Srivastava, P.S. Variation in Fatty Acid Composition in Indian Germplasm of Sesame. J. Am. Oil Chem. Soc. 2010, 87, 1263–1269. [Google Scholar] [CrossRef]
- Pekel, A.Y.; Çalık, A.; Alataş, M.S.; Kuter, E.; Cengiz, Ö.; Omurtag, G.Z.; İnan, G. Evaluation of Correlations Between Nutrients, Fatty Acids, Heavy Metals, and Deoxynivalenol in Corn (Zea mays L.). J. Appl. Poult. Res. 2019, 28, 94–107. [Google Scholar] [CrossRef]
- Ivanov, D.; Lević, J.D.; Sredanović, S.A. Fatty Acid Composition of Various Soybean Products. Agric. Food Sci. 2010, 2, 65–70. [Google Scholar]
- Akkaya, M.R. Fatty Acid Compositions of Sunflowers (Helianthus annuus L.) Grown in East Mediterranea Region. Riv. Ital. Delle Sostanze Grasse 2018, 95, 239–247. [Google Scholar]
- Dowd, M.K.; Boykin, D.L.; Meredith, W.R.; Campbell, T.; Bourland, F.M.; Gannaway, J.R.; Glass, K.M.; Zhang, J. Fatty Acid Profiles of Cottonseed Genotypes from the National Cotton Variety Trials. J. Cotton Sci. 2010, 14, 64–73. [Google Scholar]
- Liu, L.; Guan, L.-L.; Yang, Y.-X. A Review of Fatty Acids and Genetic Characterization of Safflower (Carthamus tinctorius L.) Seed Oil. World J. Tradit. Chin. Med. 2016, 2, 48–52. [Google Scholar] [CrossRef]
- Fernández-Martinez, J.; del Rio, M.; de Haro, A. Survey of Safflower (Carthamus tinctorius L.) Germplasm for Variants in Fatty Acid Composition and Other Seed Characters. Euphytica 1993, 69, 115–122. [Google Scholar] [CrossRef]
- Popa, V.-M.; Gruia, A.; Raba, D.N.; Dumbrava, D.; Moldovan, C.; Bordean, D.; Mateescu, C. Fatty acids composition and oil characteristics of Linseed (Linum usitatissimum L.) From Romania. J. Agroaliment. Process. Technol. 2012, 18, 136–140. [Google Scholar]
- Cardenas, M.; Carpio, C.; Morales, D.; Álvarez, M.; Silva, M.; Carrillo, W. Content of Nutrients Component and Fatty Acids in Chia Seeds (Salvia hispanica L.) Cultivated in Ecuador. Asian J. Pharm. Clin. Res. 2018, 11, 387–390. [Google Scholar] [CrossRef]
- Yalcin, H.; Kavuncuoglu, H.; Ekici, L.; Sagdic, O. Determination of Fatty Acid Composition, Volatile Components, Physico-Chemical and Bioactive Properties of Grape (Vitis vinifera) Seed and Seed Oil. J. Food Process. Preserv. 2017, 41, e12854. [Google Scholar] [CrossRef]
- Yunusova, S.G.; Khatmulina, L.I.; Fedorov, N.I.; Ermolaeva, N.A.; Galkin, E.G.; Yunusov, M.S. Polyunsaturated Fatty Acids from Several Plant Species of the Family Boraginaceae. Chem. Nat. Compd. 2012, 48, 361–366. [Google Scholar] [CrossRef]
- Chen, J.; Zhu, F. Characterization of Physicochemical Properties, Fatty Acids, Flavor Volatiles and Phenolic Compounds of Avocado Varieties. Food Chem. 2025, 482, 143533. [Google Scholar] [CrossRef]
- Ahmed, I.A.M.; Al Juhaimi, F.; Özcan, M.M.; Uslu, N.; Karrar, E. The Effect of the Plant Parts (Leaf, Flower, Stem and Seed) on Antioxidant Activity, Bioactive Compounds, Fatty Acids and Mineral Contents of Chaste (Vitex agnus-castus L.) Plant. J. Food Sci. Technol. 2025. [Google Scholar] [CrossRef]
- Lei, F.; Zheng, M.; Zhang, T.; Wang, S.; Li, B.; He, D.; Zhang, S.; Zhou, L.; Zhang, Q.; Hu, Z. Physicochemical Analysis of Beef Tallow and Its Liquid Fraction, Comparing Frying Performance with High Oleic Acid Rapeseed Oil and Rice Bran Oil. Food Chem. 2025, 476, 143515. [Google Scholar] [CrossRef] [PubMed]
- Yildirim, H.; İzol, E.; Bengü, A.Ş. Fatty Acids In Bee Products And Their Biochemical Importance. In Recent Advances in Biotechnology and Biochemistry; Orient Publications: New Delhi, India, 2025. [Google Scholar]
- Ahmad Nizar, N.N.; Nazrim Marikkar, J.M.; Hashim, D.M. Differentiation of Lard, Chicken Fat, Beef Fat and Mutton Fat by GCMS and EA-IRMS Techniques. J. Oleo Sci. 2013, 62, 459–464. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, G.F.; Ríos Pinto, L.F.; Maciel Filho, R.; Fregolente, L.V. A Review on Lipid Production from Microalgae: Association between Cultivation Using Waste Streams and Fatty Acid Profiles. Renew. Sustain. Energy Rev. 2019, 109, 448–466. [Google Scholar] [CrossRef]
- Pielichowski, K.; Flejtuch, K. Differential Scanning Calorimetry Study of Blends of Poly(Ethylene Glycol) with Selected Fatty Acids. Macromol. Mater. Eng. 2003, 288, 259–264. [Google Scholar] [CrossRef]
- Hasan, A.; Sayigh, A.A. Some Fatty Acids as Phase Change Thermal Energy Storage Materials. Renew. Energy 1994, 4, 69–76. [Google Scholar] [CrossRef]
- Kaygusuz, K.; Sarı, A. Thermal Energy Storage Performance of Fatty Acids as a Phase Change Material. Energy Sources Part A 2006, 28, 105–116. [Google Scholar] [CrossRef]
- Pielichowski, K.; Flejtuch, K. Binary Blends of Polyethers with Fatty Acids: A Thermal Characterization of the Phase Transitions. J. Appl. Polym. Sci. 2003, 90, 861–870. [Google Scholar] [CrossRef]
- Su, Y.; Shen, J.; Chen, X.; Xu, X.; Shi, S.; Wang, X.; Zhou, F.; Huang, X. Bio-Based Eutectic Composite Phase Change Materials with Enhanced Thermal Conductivity and Excellent Shape Stabilization for Battery Thermal Management. J. Energy Storage 2024, 100, 113712. [Google Scholar] [CrossRef]
- Li, A.; Yang, Y.; Ren, Y.; Wan, Y.; Wu, W.; Zhang, H. Bio-Based Composite Phase Change Material Utilizing Wood Fiber and Coconut Oil for Thermal Management in Building Envelopes. J. Clean. Prod. 2024, 469, 143177. [Google Scholar] [CrossRef]
- Souissi, M.; Trigui, A.; Jedidi, I.; Loukil, M.S.; Abdelmouleh, M. Bio-Based Composite as Phase Change Material Including Spent Coffee Grounds and Beeswax Paraffin. Korean J. Chem. Eng. 2023, 40, 2342–2355. [Google Scholar] [CrossRef]
- Nicolalde, J.F.; Martinez-Gómez, J.; Guerrero, V.H.; Chico-Proano, A. Experimental Performance of Avocado Seed Oil as a Bio-Based Phase Change Material for Refrigeration Applications. Int. J. Refrig. 2024, 168, 632–647. [Google Scholar] [CrossRef]
- Ji, X.; Jiang, Y.; Liu, T.; Lin, S.; Du, A. MXene Aerogel-Based Phase Change Film for Synergistic Thermal Management Inspired by Antifreeze Beetles. Cell Rep. Phys. Sci. 2022, 3, 100815. [Google Scholar] [CrossRef]
- Sheng, S.; Zhu, Z.; Wang, Z.; Hao, T.; He, Z.; Wang, J. Bioinspired Solar Anti-Icing/de-Icing Surfaces Based on Phase-Change Materials. Sci. China Mater. 2022, 65, 1369–1376. [Google Scholar] [CrossRef]
- Zachariassen, K.E.; Kristiansen, E. Ice Nucleation and Antinucleation in Nature. Cryobiology 2000, 41, 257–279. [Google Scholar] [CrossRef]
- August, A.; Kneer, A.; Reiter, A.; Wirtz, M.; Sarsour, J.; Stegmaier, T.; Barbe, S.; Gresser, G.T.; Nestler, B. A Bionic Approach for Heat Generation and Latent Heat Storage Inspired by the Polar Bear. Energy 2019, 168, 1017–1030. [Google Scholar] [CrossRef]
- Chen, X. Biomimetic Phase Change Materials for Extreme Thermal Management. Matter 2022, 5, 2495–2497. [Google Scholar] [CrossRef]
- Liu, D.; Lei, C.; Wu, K.; Fu, Q. A Multidirectionally Thermoconductive Phase Change Material Enables High and Durable Electricity via Real-Environment Solar–Thermal–Electric Conversion. ACS Nano 2020, 14, 15738–15747. [Google Scholar] [CrossRef]
- Ding, M.; Li, S.; Guo, L.; Jing, L.; Gao, S.-P.; Yang, H.; Little, J.M.; Dissanayake, T.U.; Li, K.; Yang, J.; et al. Metal Ion-Induced Assembly of MXene Aerogels via Biomimetic Microtextures for Electromagnetic Interference Shielding, Capacitive Deionization, and Microsupercapacitors. Adv. Energy Mater. 2021, 11, 2101494. [Google Scholar] [CrossRef]
- Li, K.; Chang, T.-H.; Li, Z.; Yang, H.; Fu, F.; Li, T.; Ho, J.S.; Chen, P.-Y. Biomimetic MXene Textures with Enhanced Light-to-Heat Conversion for Solar Steam Generation and Wearable Thermal Management. Adv. Energy Mater. 2019, 9, 1901687. [Google Scholar] [CrossRef]
- Xu, Q.; Liu, X.; Luo, Q.; Yao, H.; Tian, Y.; Wang, J.; Lv, S.; Xuan, Y.; Farid, M. Bioinspired Spectrally Selective Phase-Change Composites for Enhanced Solar Thermal Energy Storage. Adv. Funct. Mater. 2025, 35, 2412066. [Google Scholar] [CrossRef]
- Huang, M.J.; Hewitt, N.J. An Experimental Investigation into the Use of Biomimetic Methods for Thermal Regulation and Heat Retention with PCMs in Buildings. Renew. Energy 2024, 236, 121435. [Google Scholar] [CrossRef]
- Qiu, C.; Jiang, H.; Liu, P.; Jiang, C.; Ji, X.; Zhang, Y.; Sun, W.; Guo, X. An Ultrastrong Wood-Based Phase Change Material for Efficient Photothermal Conversion and Thermal Energy Conservation. Compos. B Eng. 2024, 279, 111460. [Google Scholar] [CrossRef]
- Wang, F.; Zhang, G.; Shi, X.; Dong, Y.; Xun, Y.; Zhang, A. Biomimetically Calabash-Inspired Phase Change Material Capsule: Experimental and Numerical Analysis on Thermal Performance and Flow Characteristics. J. Energy Storage 2022, 52, 104859. [Google Scholar] [CrossRef]
- Feng, S.; Qin, X.; Hu, D. Biomimetic Design of Flexible Wood Film Combined with Thermochromism and Self-Luminescence for Enhanced Energy-Saving. J. Energy Storage 2023, 74, 109536. [Google Scholar] [CrossRef]
- Yu, J.; Liu, X.; Rao, Z. Biomimetic Phase Change Capsules with Conch Shell Structures for Improving Thermal Energy Storage Efficiency. J. Energy Storage 2024, 90, 111725. [Google Scholar] [CrossRef]
- Halder, S.; Wang, J.; Fang, Y.; Qian, X.; Imam, M.A. Cenosphere-Based PCM Microcapsules with Bio-Inspired Coating for Thermal Energy Storage in Cementitious Materials. Mater. Chem. Phys. 2022, 291, 126745. [Google Scholar] [CrossRef]
- Yao, H.; Liu, X.; Li, J.; Luo, Q.; Tian, Y.; Xuan, Y. Chloroplast-Granum Inspired Phase Change Capsules Accelerate Energy Storage of Packed-Bed Thermal Energy Storage System. Energy 2023, 284, 128563. [Google Scholar] [CrossRef]
- Gao, L.; Deng, Y.; Liu, S.; Ren, F.; Wan, M.P.; Yang, L. Design and Optimization of a Bionic-Lotus Root Inspired Shell-and-Tube Latent Heat Thermal Energy Storage Unit. Int. J. Heat Mass Transf. 2024, 226, 125437. [Google Scholar] [CrossRef]
- Lu, P.; Chen, W.; Fan, J.; Ghaban, R.; Zhu, M. Thermally Triggered Nanocapillary Encapsulation of Lauric Acid in Polystyrene Hollow Fibers for Efficient Thermal Energy Storage. ACS Sustain. Chem. Eng. 2018, 6, 2656–2666. [Google Scholar] [CrossRef]
- Ren, T.; Yao, H. Okra Functional Biomimetic Composite Phase Change Materials Integrated with High Thermal Conductivity, Remarkable Latent Heat, and Multicycle Stability for High Temperature Thermal Energy Storage. Energy 2024, 308, 132934. [Google Scholar] [CrossRef]
- Huang, Y.; Deng, Z.; Chen, Y.; Zhang, C. Performance Investigation of a Biomimetic Latent Heat Thermal Energy Storage Device for Waste Heat Recovery in Data Centers. Appl. Energy 2023, 335, 120745. [Google Scholar] [CrossRef]
- Jiang, S.; Huang, Y. Investigation on the Heat Discharge Performance of a Bioinspired Latent Heat Exchanger with Leaf-like Fins. Sustain. Energy Technol. Assess. 2023, 57, 103187. [Google Scholar] [CrossRef]
- Cui, T.; Zheng, Y.; Hu, M.; Lin, B.; Wang, J.; Cai, W.; Fei, B.; Zhu, J.; Hu, Y. Biomimetic Multifunctional Graphene-Based Coating for Thermal Management, Solar De-Icing, and Fire Safety: Inspired from the Antireflection Nanostructure of Compound Eyes. Small 2024, 20, 2312083. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.; Li, T.; Lei, F.; Lyu, S.; Yang, Y.; Li, B.; Han, H.; Wu, B.; Huang, J.; Zhang, C.; et al. Fast Self-Healing Superhydrophobic Thermal Energy Storage Coatings Fabricated by Bio-Based Beeswax and Artificially Cultivated Diatom Frustules. ACS Appl. Mater. Interfaces 2021, 13, 48088–48100. [Google Scholar] [CrossRef]
- Ismail, A.; Bahmani, M.; Wang, X.; Aday, A.; Odukomaiya, A.; Wang, J. Enabling Thermal Energy Storage in Structural Cementitious Composites with a Novel Phase Change Material Microcapsule Featuring an Inorganic Shell and a Bio-Inspired Silica Coating. J. Energy Storage 2024, 83, 110677. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, Y.-X.; Zhang, M.; Zhao, X.; Li, T. Enhanced Thermal Performance of Shell and Tube Phase Change Heat Accumulator with Novel Biomimetic Spider Web Fins. Appl. Therm. Eng. 2023, 233, 121224. [Google Scholar] [CrossRef]
- Dong, Y.; Wang, F.; Zhang, Y.; Shi, X.; Zhang, A.; Shuai, Y. Experimental and Numerical Study on Flow Characteristic and Thermal Performance of Macro-Capsules Phase Change Material with Biomimetic Oval Structure. Energy 2022, 238, 121830. [Google Scholar] [CrossRef]
- Cui, Y.; Gong, H.; Wang, Y.; Li, D.; Bai, H. A Thermally Insulating Textile Inspired by Polar Bear Hair. Adv. Mater. 2018, 30, 1706807. [Google Scholar] [CrossRef]
- Shao, Z.; Wang, Y.; Bai, H. A Superhydrophobic Textile Inspired by Polar Bear Hair for Both in Air and Underwater Thermal Insulation. Chem. Eng. J. 2020, 397, 125441. [Google Scholar] [CrossRef]
- Du, A.; Wang, H.; Zhou, B.; Zhang, C.; Wu, X.; Ge, Y.; Niu, T.; Ji, X.; Zhang, T.; Zhang, Z.; et al. Multifunctional Silica Nanotube Aerogels Inspired by Polar Bear Hair for Light Management and Thermal Insulation. Chem. Mater. 2018, 30, 6849–6857. [Google Scholar] [CrossRef]
- Wang, Y.; Cui, Y.; Shao, Z.; Gao, W.; Fan, W.; Liu, T.; Bai, H. Multifunctional Polyimide Aerogel Textile Inspired by Polar Bear Hair for Thermoregulation in Extreme Environments. Chem. Eng. J. 2020, 390, 124623. [Google Scholar] [CrossRef]
- Liang, Y.; Tao, Z.; Guo, Q.; Liu, Z. Sponge Gourd-Bioinspired Phase Change Material with High Thermal Conductivity and Excellent Shape-Stability. J. Energy Storage 2021, 39, 102634. [Google Scholar] [CrossRef]
- Cao, J.; Zhou, Z.; Song, Q.; Chen, K.; Su, G.; Zhou, T.; Zheng, Z.; Lu, C.; Zhang, X. Ultrarobust Ti3C2Tx MXene-Based Soft Actuators via Bamboo-Inspired Mesoscale Assembly of Hybrid Nanostructures. ACS Nano 2020, 14, 7055–7065. [Google Scholar] [CrossRef]
- Xiao, X.; Ma, H.; Zhang, X. Flexible Photodriven Actuator Based on Gradient–Paraffin-Wax-Filled Ti3C2Tx MXene Film for Bionic Robots. ACS Nano 2021, 15, 12826–12835. [Google Scholar] [CrossRef]
- Chang, C.; Nie, X.; Li, X.; Tao, P.; Fu, B.; Wang, Z.; Xu, J.; Ye, Q.; Zhang, J.; Song, C.; et al. Bioinspired Roll-to-Roll Solar-Thermal Energy Harvesting within Form-Stable Flexible Composite Phase Change Materials. J. Mater. Chem. A Mater. 2020, 8, 20970–20978. [Google Scholar] [CrossRef]
- Deng, J.; Li, J.; Chen, P.; Fang, X.; Sun, X.; Jiang, Y.; Weng, W.; Wang, B.; Peng, H. Tunable Photothermal Actuators Based on a Pre-Programmed Aligned Nanostructure. J. Am. Chem. Soc. 2016, 138, 225–230. [Google Scholar] [CrossRef]
- Li, X.; Zhang, J.; Liu, Y.; Xu, Y.; Xie, Y.; Hu, T.; Fu, B.; Song, C.; Shang, W.; Tao, P.; et al. Fish-Inspired Dynamic Charging for Ultrafast Self-Protective Solar-Thermal Energy Storage. Sci. Adv. 2025, 10, eadr8445. [Google Scholar] [CrossRef]
- Liu, Y.; Lv, Z.; Zhou, J.; Cui, Z.; Li, W.; Yu, J.; Chen, L.; Wang, X.; Wang, M.; Liu, K.; et al. Muscle-Inspired Formable Wood-Based Phase Change Materials. Adv. Mater. 2024, 36, 2406915. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.-Y.; Shu, C.; Wang, X.; Min, P.; Li, C.; Gao, F.-L.; Li, X.; Yu, Z.-Z. Bioinspired Intelligent Solar-Responsive Thermally Conductive Pyramidal Phase Change Composites with Radially Oriented Layered Structures toward Efficient Solar–Thermal–Electric Energy Conversion. Adv. Funct. Mater. 2023, 33, 2302527. [Google Scholar] [CrossRef]
- Sheng, S.; Zhang, Z.; Zhao, Z.; Ning, Y.; Yu, C.; Liu, K.; Jiang, L. Photo/Electro-Thermal Superhydrophobic Wood with Phase Change Materials for Highly Efficient Anti-/Deicing. Adv. Funct. Mater. 2025, 2424897. [Google Scholar] [CrossRef]
- Stegmaier, T.; Linke, M.; Planck, H. Bionics in Textiles: Flexible and Translucent Thermal Insulations for Solar Thermal Applications. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2009, 367, 1749–1758. [Google Scholar] [CrossRef]
- Guo, Y.; Li, K.; Hou, C.; Li, Y.; Zhang, Q.; Wang, H. Fluoroalkylsilane-Modified Textile-Based Personal Energy Management Device for Multifunctional Wearable Applications. ACS Appl. Mater. Interfaces 2016, 8, 4676–4683. [Google Scholar] [CrossRef]
- Hsu, P.-C.; Liu, X.; Liu, C.; Xie, X.; Lee, H.R.; Welch, A.J.; Zhao, T.; Cui, Y. Personal Thermal Management by Metallic Nanowire-Coated Textile. Nano Lett. 2015, 15, 365–371. [Google Scholar] [CrossRef]
- Bu, X.; Bai, H. Recent Progress of Bio-Inspired Camouflage Materials: From Visible to Infrared Range. Chem. Res. Chin. Univ. 2023, 39, 19–29. [Google Scholar] [CrossRef]
- Mäthger, L.M.; Senft, S.L.; Gao, M.; Karaveli, S.; Bell, G.R.R.; Zia, R.; Kuzirian, A.M.; Dennis, P.B.; Crookes-Goodson, W.J.; Naik, R.R.; et al. Bright White Scattering from Protein Spheres in Color Changing, Flexible Cuttlefish Skin. Adv. Funct. Mater. 2013, 23, 3980–3989. [Google Scholar] [CrossRef]
- Mäthger, L.M.; Roberts, S.B.; Hanlon, R.T. Evidence for Distributed Light Sensing in the Skin of Cuttlefish, Sepia officinalis. Biol. Lett. 2010, 6, 600–603. [Google Scholar] [CrossRef]
- Zhao, N.; Wang, Z.; Cai, C.; Shen, H.; Liang, F.; Wang, D.; Wang, C.; Zhu, T.; Guo, J.; Wang, Y.; et al. Bioinspired Materials: From Low to High Dimensional Structure. Adv. Mater. 2014, 26, 6994–7017. [Google Scholar] [CrossRef] [PubMed]
- Tao, P.; Shang, W.; Song, C.; Shen, Q.; Zhang, F.; Luo, Z.; Yi, N.; Zhang, D.; Deng, T. Bioinspired Engineering of Thermal Materials. Adv. Mater. 2015, 27, 428–463. [Google Scholar] [CrossRef] [PubMed]
- Lyu, J.; Liu, Z.; Wu, X.; Li, G.; Fang, D.; Zhang, X. Nanofibrous Kevlar Aerogel Films and Their Phase-Change Composites for Highly Efficient Infrared Stealth. ACS Nano 2019, 13, 2236–2245. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Lyu, J.; Fang, D.; Zhang, X. Nanofibrous Kevlar Aerogel Threads for Thermal Insulation in Harsh Environments. ACS Nano 2019, 13, 5703–5711. [Google Scholar] [CrossRef]
- Li, G.; Hong, G.; Dong, D.; Song, W.; Zhang, X. Multiresponsive Graphene-Aerogel-Directed Phase-Change Smart Fibers. Adv. Mater. 2018, 30, 1801754. [Google Scholar] [CrossRef]
- Hasan, M.S.; Nosonovsky, M. Lotus Effect and Friction: Does Nonsticky Mean Slippery? Biomimetics 2020, 5, 28. [Google Scholar] [CrossRef]
- Song, C.; Zheng, Y. Chapter 2. Biological Surface: Lotus Leaves and Butterfly Wings. In Self-Cleaning Coatings: Structure, Fabrication and Application; The Royal Society of Chemistry: London, UK, 2016; pp. 25–52. [Google Scholar]
- Liu, X.; Chen, M.; Xu, Q.; Gao, K.; Dang, C.; Li, P.; Luo, Q.; Zheng, H.; Song, C.; Tian, Y.; et al. Bamboo Derived SiC Ceramics-Phase Change Composites for Efficient, Rapid, and Compact Solar Thermal Energy Storage. Sol. Energy Mater. Sol. Cells 2022, 240, 111726. [Google Scholar] [CrossRef]
- Tahan Latibari, S.; Sadrameli, S.M. Carbon Based Material Included-Shaped Stabilized Phase Change Materials for Sunlight-Driven Energy Conversion and Storage: An Extensive Review. Sol. Energy 2018, 170, 1130–1161. [Google Scholar] [CrossRef]
- Tao, Y.; Xie, X.; Lv, W.; Tang, D.-M.; Kong, D.; Huang, Z.; Nishihara, H.; Ishii, T.; Li, B.; Golberg, D.; et al. Towards Ultrahigh Volumetric Capacitance: Graphene Derived Highly Dense but Porous Carbons for Supercapacitors. Sci. Rep. 2013, 3, 2975. [Google Scholar] [CrossRef]
Plant | Fatty Acid | Source | |||||
---|---|---|---|---|---|---|---|
16:0 | 18:0 | 18:1 | 18:2 | α-18:3 | Other | ||
Thale cress (Arabidopsis thaliana) seeds | 9.6(10); 8.9(11); 8.7(12) | 2.7(10); 2.8(11); 2.8(12) | 10.8(10); 12.2(11); 15.6(12) | 32.8(10); 32.7(11); 29.2(12) | 21.2(10); 21.1(11); 21.91(12) | 15.2(10); 35.8(11); 18.4(12) | [10,11,12] |
Coconut (Cocos nucifera) | 8.85 *; 8.70 ** | 3.39 *; 2.59 ** | 5.65 *; 7.7 ** | 0.94 *; 1.34 ** | − | 75.27 *; 78.67 ** | [13] |
Cocoa butter (Theobroma cacao) | 24.5–33.7(14); 27.19(15.1); 27.43(15.2); 28.30(15.3) | 33.7–40.2(14); 36.04(15.1); 36.20(15.2); 35.71(15.3) | 26.3–35(14); 33.64(15.1); 33.87(15.2); 33.47(15.3) | 1.7–3(14); 3.13(15.1); 2.49(15.2); 2.52(15.3) | 0–1(14); - | 2.6–11.6(14); - | [14,15] |
Palm (Elaeis guineensis) | 41.8 ± 0.35(16); 40.5(17) | 3.5 ± 0.08(16); 5.2(17) | 37.4 ± 0.40(16); 43.5(17) | 14.1 ± 0.06(16); 9.3(17) | −(16); 0.2(17) | 3.3 ± 0.04(16); 1(17) | [16,17] |
Olive (Olea europaea) | 12.09(18); 17.87 ± 0.05(19.1); 8.97 ± 0.03(19.2); 16.42 ± 0.07(19.3) | 3.01(18); 1.78 ± 0.07(19.1); 3.67 ± 0.02(19.2); 1.65 ± 0.02(19.3) | 72.77(18); 61.82 ± 0.05(19.1); 70.32 ± 0.15(19.2); 64.94 ± 0.14(19.3) | 72.77(18); 15.17 ± 0.05(19.1); 17.04 ± 0.12(19.2); 14.36 ± 0.06(19.3) | −(18); 0.90 ± 0.00(19.1); –(19.2); 0.71 ± 0.01(19.3) | 2.66(18); 2.25 ± 0.03(19.1); –(19.2); 1.93 ± 0.01(19.3) | [18,19] |
Canola (Brassica napus) | 5.21 ± 0.06 | 2.34 ± 0.07 | 66.79 ± 0.09 | 16.58 ± 12 | 6.48 ± 0.02 | 2.60 ± 0.16 | [20] |
Canola (Brassica napus) oil | <7 | <7 | 50–60 | − | 6–14 | − | [21] |
Peanut (Arachis hypogea) | 8.0–13.5(18); 15.00 ± 0.25(22) | 2.0–5.0(18); −(22) | 35.0–70.0(18); 55.47 ± 1.34(22) | 15.0–48.0(18); 24.01 ± 0.33(22) | −(18); 1.31 ± 0.02(22) | 4.9–11.3(18); 4.21 ± 0.33(22) | [18,22] |
Sesame (Sesamum spp.) | 12.27(23.1); 9.06(23.2); 10.94(23.3) | − | 47.44(23.1); 46.86(23.2); 43.95(23.3) | 39.10(23.1); 42.25(23.2); 43.41(23.3) | 0.61(23.1); 0.58(23.2); 0.50(23.3) | 0.58(23.1); 1.25(23.2); 1.20(23.3) | [23] |
Corn (Zea mays) | 10.0–15.0(18); 10.90(24) | 1.5–3.0(18); 1.49(24) | 23.0–41.0(18); 28.68(24) | 41.0–63.0(18); 57.75(24) | −(18); 1.19(24) | 1–3.5(18); −(24) | [18,24] |
Soybean (Glycine max) | 3.28 ± 0.12(25.1); 16.95 ± 0.09(25.2) | 2.34 ± 0.23(25.1); 5.15 ± 0.32(25.2) | 20.47 ± 0.51(25.1); 16.02 ± 0.21(25.2) | 16.02 ± 0.21(25.1); 47.57 ± 0.15(25.2) | 47.57 ± 0.15(25.1); 12.11 ± 0.17(25.2) | 0.71 ± 0.4(25.1); 2.21 ± 0.89(25.2) | [25] |
Sunflower (Helianthus annuus) | 5.0–8.0(18); 5.0–7.6(26) | 2.5–7.0(18); 2.7–6.5(26) | 15.0–40.0(18); 14.0–39.4(26) | 40.0–74.0(18); 48.3–74.0(26) | −(18); 0–0.3(26) | 0.5–2.9(18); −(26) | [18,26] |
Cottonseed (Gossypium spp.) | 23.9 | 23.9 | 18.07 | 52.5 | 0.20 | 1.42 | [27] |
Safflower (Carthamus tinctorius) | 6–8(28); 3–5(29.1); 5–6(29.2) | 2–3(28); 1–2(29.1); 1–2(29.2) | 16–20(28); 5–7(29.1); 75–80(29.2) | 71–75(28); 87–89(29.1); 14–18(29.2) | − | − | [28,29] |
Flax (Linum usitatissimum) | 6.58 | 4.43 | 18.51 | 17.25 | 53.21 | − | [30] |
Chia (Salvia hispanica) | 8.55 ± 0.02 | 3.38 ± 0.01 | 10.24 ± 0.01 | 18.69 ± 0.03 | 54.08 ± 0.01 | 5.88 ± 0.03 | [31] |
Grape seed (Vitis vinifera) | 6.0–8.0(18); 9.56 ± 0.01(32.1); 7.93 ± 0.01(32.2) | 3.0–6.0(18); 3.81 ± 0.01(32.1); 5.34 ± 0.02(32.2) | 3.0–6.0(18); 17.98 ± 0.00(32.1); 13.13 ± 0.01(32.2) | 60.0–76.0(18); 66.69 ± 0.03(32.1); 72.28 ± 0.01(32.2) | −(18); −(32.1); −(32.2) | 0–1.7(18); 1.94 ± 0.05(32.1); 1.29 ± 0.04(32.2) | [18,32] |
Rice (Oryza) | 17.0–22.0 | 1.0–2.5 | 30.0–45.0 | 35.0–50.0 | − | 1.5-4.2 | [18] |
Hound’s tongue (Cynoglossum officinale) | 6.8 | 1.6 | 30.3 | 28.1 | 3.8 | 29.4 | [33] |
Viper’s bugloss (Echium vulgare) | 8.1 | 3.4 | 15.0 | 22.2 | 37.8 | 13,5 | [33] |
European stickseed (Lappula squarrosa) | 5.4 | 1.9 | 14.9 | 12.6 | 36.2 | 29 | [33] |
Avocado seed (Persea americana) | 13.87 ± 0.24(34.1); 15.73 ± 0.04(34.2) | 0.93 ± 0.09(34.1); 1.26 ± 0.05(34.2) | 17.94 ± 0.12(34.1); 1.26 ± 0.05(34.2) | 37.26 ± 0.13(34.1); 28.54 ± 0.10(34.2) | 37.26 ± 0.13(34.1); 7.64 ± 0.05(34.2) | 25.06 ± 1.29(34.1); 26.74 ± 1.31(34.2) | [34] |
Chaste tree (Vitex agnus-castus) leave | 11.19 ± 0.42 | 2.77 ± 0.03 | 16.62 ± 0.22 | 37.68 ± 0.57 | 15.06 ± 0.11 | 13.72 ± 2.01 | [35] |
Chaste tree (Vitex agnus-castus) seed | 6.46 ± 0.07 | 4.63 ± 0.00 | 17.72 ± 0.11 | 65.21 ± 0.16 | 3.34 ± 0.01 | 2.22 ± 0.71 | [35] |
Chaste tree (Vitex agnus-castus) stem | 10.75 ± 0.05 | 2.55 ± 0.00 | 17.32 ± 0.07 | 53.21 ± 0.46 | 11.72 ± 0.14 | 3.93 ± 0.69 | [35] |
Chaste tree (Vitex agnus-castus) flower | 13.93 ± 0.62 | 3.25 ± 0.03 | 22.29 ± 0.17 | 37.85 ± 0.59 | 11.86 ± 0.09 | 10.26 ± 2.89 | [35] |
Beef tallow (sebum)—post frying | 28.22 ± 0.21 | 28.22 ± 0.21 | 30.78 ± 0.28 | 1.24 ± 0.01 | 0.07 ± 0.00 | 12.63 ± 0.33 | [36] |
Beeswax (Cera alba) | + | + | − | − | − | + | [37] |
Honey bee (Apis mellifera) | + | − | + | − | + | + | [37] |
Royal jelly (Apis mellifera secretion) | + | − | + | + | + | + | [37] |
Bio-Inspiration | Application | PCM | Material | Heat of Melting [J/g] | Tm [°C] | Thermal Conduct. [W/m·K] | Ref. |
---|---|---|---|---|---|---|---|
Antifreeze beetles | Thermal management of building materials | Paraffin | MXene/bacterial cellulose aerogels modified with methyltrimethoxysilane coating | 89.02 | 20–26 | 0.0241 | [52] |
Antifreeze beetles | Detachable building layers | Paraffin | Surface-modified MXene/bacterial- cellulose aerogel infiltrated with PCM | 67.1 | 4.393 | - | [48] |
Conifer trees | Solar energy harvesting | PEG | graphene oxide/boron nitride scaffold | 147.5 | 55 | 2.94 | [53] |
Texas lizard | Electromagnetic (EMI) shielding | - | Mg2+-Ti3C2Tx MXene aerogels | - | - | - | [54] |
Black scale textures of bitis rhinoceros | Solar steam-generation devices | - | 2D-material nanocoatings, including Ti3C2Tx MXene, reduced graphene oxide (rGO), and molybdenum disulfide (MoS2) | - | - | - | [55] |
Polar bear | High-temperature solar thermal storage technologies and a wide range of related applications. | Dipentaerythritol | SiC/PCMs/ plasmonic nanoparticle coating composite | 195.1 | 224 | 14 | [56] |
Plant leaves | Photovoltaic/thermal technology (PVT) system application for both temperature regulation and heat retention | Parafin-A28 and A36 | PCM/EG | 265; 250 | 28; 36 | 3 | [57] |
Muscle fascicle | Building load-bearing, photothermal conversion devices, and energy-saving | polyurethane with TA and FeCl3 | thermowood-2K, thermowood-4K, and thermowood-6K | 95.4 | 59 | 0.353 | [58] |
Calabash | Upgrade the capability of thermal energy storage (TES) | n-octadecane | 3D-printed n-octadecane capsulated into translucent photosensitive resin with thickness of 2 mm | 243.5 (PCM) | 28.2 (PCM) | 0.12 (resin); 0.1505 (PCM) | [59] |
Eucalyptus wood | Energy-saving materials in buildings | Tetradecanol-eicosanol (0.85, 0.15) | DE-SrAl2O4:Eu2+, Dy3+ (PLO-8C) | 155.5 | 29.9 | - | [60] |
Mitochondria and conch | Green energy | Paraffin wax | Different fin structures from cupper with phase change capsules | 163.39 (bionic-conch); 92.95 (bionic-mitochondrial) | 77.34 (bionic-conch); 79.30 (bionic-mitochondrial) | 0.25 (PCM) | [61] |
Mussels | Cement-based building materials | n-octadecane | Ceno-PCM, PD-Ceno-PCM, and cement mortar integrated with them; ceno-unbroken cenosphere, PD-polydopamine coating, | 205.04 (PCM); 107.52 (Ceno-PCM); 100.89 (PD-Ceno-PCM); | 27.42 (PCM); 29.87 (Ceno-PCM); 30.5 (PD-Ceno-PCM); | - | [62] |
Chloroplast-granum | Packed-bed thermal energy storage system | RT64 paraffin | Phase change capsules | 240.21 (PCM) | 63.26 (PCM) | 0.2 (PCM in 164 °C) | [63] |
Lotus-root | Industrial applications | n-octadecane | Shell-and-tube LHTES unit (single-tube type), a multi-tube type, and an inverted bionic-lotus root type (inverse bionic lotus root) | 241.3 (PCM) | 28 (PCM) | 0.35 (solid); 0.149 (liquid) | [64] |
Internal transportation of water (or sap) from roots to leaves through channels in a tree | Solar energy storage, thermal regulating textiles, and thermal therapy devices | LA | LA in polystyrene hollow fibers infiltrated in 50 and 60 °C | 180.2 (PCM); 147.1 (50 °C); 81.6 (60 °C) | 45.6 (the 1st cycle) to 46.0 (the 100th cycle) for the 50 °C; 46.2 (the 1st cycle) to 45.6 for the 60 °C | - | [65] |
Okra seed storage process | High temperature thermal energy storage | NaCl, Na2CO3 -binary molten salts | h-CPCMs (combination of the h-PCMs and porous SiC ceramic skeletons—was obtained using okra as a template) | 422 J/g (including latent and sensible heat) under 500–700 °C) | 638 | 17 to 31 (determined by the porosity of the skeleton) | [66] |
Palmate leaf | Storage device; cooling system | LA | Heat transfer fluid tubes and fins infiltrated by PCM | 178 (PCM) | 42 (PCM) | 0.15 (PCM) | [67] |
Maple leaf | Latent heat exchanger | RT58, MA, SA | Heat transfer fluid tubes and fins infiltrated by PCM | - | - | - | [68] |
Insects ocular structures | Outdoor equipment, high-rise buildings, and aerospace vessels. | - | PDMS/SiO2 film on the graphene surface | - | - | - | [69] |
Beeswax | Thermal management of electronic devices, energy-saving buildings, smart textiles, thermal energy harvesting systems, self-cleaning surfaces | Beeswax | Diatom frustule/beeswax | 112.57 | 59.20 | - | [70] |
Marine microorganism-based silica production | Building materials | A biobased PCM—PureTemp 29 | Cenosphere-based PCM microcapsules | 119.27 | 30.02 | 0.25/0.15 | [71] |
Spider web | Shell and tube phase change heat accumulator | Paraffin | Simulation of paraffin inside shell and tube phase change heat accumulator with novel biomimetic spider web fins | - | - | - | [72] |
Animal egg | Energy storage | n-octadecane | Bionic-oval, sphere, and ellipse-geometric parameters of PCM capsules; PCM capsule is made of translucent photosensitive resin | 243.5 (PCM) | 28.2 (PCM) | 0.1505 (PCM); 0.4 (resin) | [73] |
Afro-alpine plant species Lobelia telekii | Anti-icing/de-icing applications | Tetradecane | EG/paraffin/ PDMS | 106 | 5.32 | - | [49] |
Polar bear hair | Material for thermal insulation and personal thermal management | - | Hybrid textile from silkworm cocoons modified by chitosan | - | - | 21.86 ± 1.98 | [74] |
Polar bear hair | Thermoregulating textiles applicable to thermal insulation both in air and underwater | - | Hybrid textile from silkworm cocoons modified by chitosan; hydrophobic treatment of textiles was carried out by coating a layer of fluorinated SiO2 nanoparticles onto the surface | - | - | 22 (the foam) | [75] |
Polar bear hair | Thermal insulation, daylighting and UV protection applied in outer space or at high latitudes | - | Silica nanotube aerogels | - | - | 30.25 to 32.67 (in 26 °C) | [76] |
Polar bear hair | Thermoregulating textiles (or protective clothing) | - | Polyimide aerogel textile | - | - | 0.0364 (25 °C) to 0.1607 (300 °C)—textile; 0.055 (25 °C) to 0.1055 (300 °C)—foam | [77] |
Sponge gourd | Thermal energy storage especially in the temperature control of electronic devices | Paraffin wax | EG impregnated with PW as the core and graphene oxide as the shell | 157.8 | 39.2 | 2.36 | [78] |
Bamboo | Smart actuators | - | Ti3C2Tx MXene-Based | - | - | - | [79] |
Earthworm | Bionic robot | Paraffin wax | Flexible actuator based on a paraffin wax and Ti3C2Tx MXene film composite | - | 62 | 2.84 | [80] |
Dynamic thermoregulation behavior of butterfly wings | Wearable thermotherapy and other flexible solar–thermal applications | Paraffin with ceresin; SA | Reduced graphene oxide-coated polyurethane sponge | 223.4 | 68.1 | 0.47 | [81] |
Pine cone | Photomechanical actuation | PW | PW was melted and then spin-coated onto a commercial Kapton film | - | - | - | [82] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pielichowska, K.; Szatkowska, M.; Pielichowski, K. Thermal Energy Storage in Bio-Inspired PCM-Based Systems. Energies 2025, 18, 3548. https://doi.org/10.3390/en18133548
Pielichowska K, Szatkowska M, Pielichowski K. Thermal Energy Storage in Bio-Inspired PCM-Based Systems. Energies. 2025; 18(13):3548. https://doi.org/10.3390/en18133548
Chicago/Turabian StylePielichowska, Kinga, Martyna Szatkowska, and Krzysztof Pielichowski. 2025. "Thermal Energy Storage in Bio-Inspired PCM-Based Systems" Energies 18, no. 13: 3548. https://doi.org/10.3390/en18133548
APA StylePielichowska, K., Szatkowska, M., & Pielichowski, K. (2025). Thermal Energy Storage in Bio-Inspired PCM-Based Systems. Energies, 18(13), 3548. https://doi.org/10.3390/en18133548