Gas Void Morphology and Distribution in Solidified Pure Paraffin Within a Cubic Thermal Energy Storage Unit
Abstract
1. Introduction
2. Methods
2.1. Experimental Setup
2.2. Lattice Boltzmann Model
3. Results and Discussion
3.1. Gas Void Morphology and Distribution
3.2. Effective Thermal Conductivity
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Nomenclature
CT | computed tomography |
ETC | effective thermal conductivity |
GPU | graphics processing unit |
gas specific heat capacity in lattice units | |
solid specific heat capacity in lattice units | |
solid specific heat capacity [ ] | |
latent heat of phase transition [ ] | |
phase transition temperature [ ] | |
gas thermal conductivity in lattice units | |
solid thermal conductivity in lattice units | |
solid thermal conductivity [ ] | |
liquid density [ ] | |
solid density [ ] |
References
- Yang, X.; Guo, Z.; Liu, Y.; Jin, L.; He, Y. Effect of inclination on the thermal response of composite phase change materials for thermal energy storage. Appl. Energy 2019, 238, 22–33. [Google Scholar] [CrossRef]
- Huang, Z.; Li, Q.; Qiu, Y. Enhancements in thermal properties of binary alkali chloride salt by Al2O3 nanoparticles for thermal energy storage. Energy 2024, 301, 131584. [Google Scholar] [CrossRef]
- Martínez Figueira, N.; Salgado Sánchez, P.; Bello, A.; Olfe, K.; Rodriguez, J. Effect of surface heat exchange on phase change materials melting with thermocapillary flow in microgravity. Phys. Fluids 2023, 35, 084115. [Google Scholar] [CrossRef]
- Afaynou, I.; Faraji, H.; Choukairy, K.; Arshad, A.; Arici, M. Heat transfer enhancement of phase-change materials (PCMs) based thermal management systems for electronic components: A review of recent advances. Int. Commun. Heat Mass Transf. 2023, 143, 106690. [Google Scholar] [CrossRef]
- Rehman, T.-U.; Ali, H.M.; Saieed, A.; Pao, W.; Ali, M. Copper foam/PCMs based heat sinks: An experimental study for electronic cooling systems. Int. J. Heat Mass Transf. 2018, 127, 381–393. [Google Scholar] [CrossRef]
- Ramakrishnan, S.; Wang, X.; Sanjayan, J.; Wilson, J. Thermal performance of buildings integrated with phase change materials to reduce heat stress risks during extreme heatwave events. Appl. Energy 2017, 194, 410–421. [Google Scholar] [CrossRef]
- Gao, Y.; Meng, X. A comprehensive review of integrating phase change materials in building bricks: Methods, performance and applications. J. Energy Storage 2023, 62, 106913. [Google Scholar] [CrossRef]
- Chan, Y.; Hoke, T.; Meredith, K.; Chen, X. Annual simulation of phase change materials for enhanced energy efficiency and thermal performance of buildings in southern california. Energies 2025, 18, 847. [Google Scholar] [CrossRef]
- Niall, D.; West, R. Development of concrete façade sandwich panels incorporating phase change materials. Energies 2024, 17, 2924. [Google Scholar] [CrossRef]
- Mobedi, M.; Hooman, K.; Tao, W.-Q. Solid-Liquid Thermal Energy Storage: Modeling and Applications; CRC Press: Boca Raton, FL, USA, 2022. [Google Scholar]
- Yang, X.; Lu, Z.; Bai, Q.; Zhang, Q.; Jin, L.; Yan, J. Thermal performance of a shell-and-tube latent heat thermal energy storage unit: Role of annular fins. Appl. Energy 2017, 202, 558–570. [Google Scholar] [CrossRef]
- Kazemi, A.; Izadi, M.; Assareh, E.; Ershadi, A. Melting process of Carreau non-Newtonian nano-phase change material inside cylindrical energy storage system: Effect of thermal fins. Phys. Fluids 2023, 35, 087116. [Google Scholar] [CrossRef]
- Khedher, N.B.; Mahdi, J.M.; Dulaimi, A.; Chatroudi, I.S.; Tiji, M.E.; Ibrahem, R.K.; Yvaz, A.; Talebizadehsardari, P. On the application of novel arc-shaped fins in a shell-and-tube type of latent heat storage for energy charge enhancement. J. Energy Storage 2023, 73, 108697. [Google Scholar] [CrossRef]
- Khedher, N.B.; Togun, H.; Abed, A.M.; Mohammed, H.I.; Mahdi, J.M.; Ibrahem, R.K.; Yaïci, W.; Talebizadehsardari, P.; Keshmiri, A. Comprehensive analysis of melting enhancement by circular Y-shaped fins in a vertical shell-and-tube heat storage system. Eng. Appl. Comput. Fluid Mech. 2023, 17, 2227682. [Google Scholar] [CrossRef]
- Mesalhy, O.; Lafdi, K.; Elgafy, A.; Bowman, K. Numerical study for enhancing the thermal conductivity of phase change material (PCM) storage using high thermal conductivity porous matrix. Energy Convers. Manag. 2005, 46, 847–867. [Google Scholar] [CrossRef]
- Yao, Y.; Wu, H.; Gao, Z.; Liu, Z. Pore-scale visualization and measurement of paraffin solidification in high porosity open-cell copper foam. Int. J. Therm. Sci. 2019, 135, 94–103. [Google Scholar] [CrossRef]
- Andreozzi, A.; Asinari, P.; Barletta, A.; Bianco, V.; Bocanegra, J.A.; Brandão, P.V.; Buonomo, B.; Cappabianca, R.; Celli, M.; Chiavazzo, E. Heat transfer and thermal energy storage enhancement by foams and nanoparticles. Energies 2023, 16, 7421. [Google Scholar] [CrossRef]
- Amini, Y.; Hekmat, F. Improving the thermal performance of a spherical latent thermal energy storage using innovative fins and porous media. Phys. Fluids 2025, 37, 017160. [Google Scholar] [CrossRef]
- Khodadadi, J.M.; Hosseinizadeh, S.F. Nanoparticle-enhanced phase change materials (NEPCM) with great potential for improved thermal energy storage. Int. Commun. Heat Mass Transf. 2007, 34, 534–543. [Google Scholar] [CrossRef]
- Zhang, P.; Ma, Z.W.; Wang, R.Z. An overview of phase change material slurries: MPCS and CHS. Renew. Sust. Energy Rev. 2010, 14, 598–614. [Google Scholar] [CrossRef]
- Sheikholeslami, M.; Jafaryar, M.; Shafee, A.; Babazadeh, H. Acceleration of discharge process of clean energy storage unit with insertion of porous foam considering nanoparticle enhanced paraffin. J. Clean. Prod. 2020, 261, 121206. [Google Scholar] [CrossRef]
- Zhang, X.; Cui, W.; Yang, S.; Wu, Z.; Xiong, Z.; Zhang, S. Influence of inclined non-uniform fins on the melting of phase change materials under constant-power heating condition. Energies 2025, 18, 1733. [Google Scholar] [CrossRef]
- Zhang, P.; Wang, Y.; Qiu, Y.; Yan, H.; Wang, Z.; Li, Q. Novel composite phase change materials supported by oriented carbon fibers for solar thermal energy conversion and storage. Appl. Energy 2024, 358, 122546. [Google Scholar] [CrossRef]
- Soltani, H.; Soltani, M.; Karimi, H.; Nathwani, J. Optimization of shell and tube thermal energy storage unit based on the effects of adding fins, nanoparticles and rotational mechanism. J. Clean. Prod. 2022, 331, 129922. [Google Scholar] [CrossRef]
- Morris, D.G.; Foote, J.P.; Olszewski, M. Development of Encapsulated Lithium Hydride Thermal Energy Storage for Space Power Systems; Technical Report; Oak Ridge National Lab. (ORNL): Oak Ridge, TN, USA, 1987. [Google Scholar]
- Sulfredge, C.D.; Chow, L.C.; Tagavi, K.A. Void formation in radial solidification of cylinders. J. Sol. Energy Eng. 1992, 114, 32–39. [Google Scholar] [CrossRef]
- Sulfredge, C.D.; Chow, L.C.; Tagavi, K.A. Solidification void formation in tubes: Role of liquid shrinkage and bubble nucleation. Exp. Heat Transf. 1992, 5, 147–160. [Google Scholar] [CrossRef]
- Sulfredge, C.D. Fundamentals of Solidification Shrinkage Void Formation. Ph.D. Thesis, University of Kentucky, Lexington, KY, USA, 1993. [Google Scholar]
- Sulfredge, C.D.; Chow, L.C.; Tagavi, K.A. Void formation in unidirectional freezing from above. Exp. Heat Transf. 1993, 6, 1–16. [Google Scholar] [CrossRef]
- Revankar, S.T.; Croy, T. Visualization study of the shrinkage void distribution in thermal energy storage capsules of different geometry. Exp. Therm. Fluid Sci. 2007, 31, 181–189. [Google Scholar] [CrossRef]
- Chiew, J.; Chin, C.S.; Toh, W.D.; Gao, Z.; Jia, J. Low-temperature macro-encapsulated phase change material based thermal energy storage system without air void space design. Appl. Therm. Eng. 2018, 141, 928–938. [Google Scholar] [CrossRef]
- Janghel, D.; Saha, S.K.; Karagadde, S. Effect of shrinkage void on thermal performance of pure and binary phase change materials based thermal energy storage system: A semi-analytical approach. Appl. Therm. Eng. 2020, 167, 114706. [Google Scholar] [CrossRef]
- Chen, L.; Wang, L.; Wang, Y.; Chen, H.; Lin, X. Influence of phase change material volume shrinkage on the cyclic process of thermal energy storage: A visualization study. Appl. Therm. Eng. 2022, 203, 117776. [Google Scholar] [CrossRef]
- Sutradhar, J.; Kothari, R.; Sahu, S.K. Melting and solidification analysis of phase change material-metal foam composite with expansion/shrinkage void in rectangular system. J. Energy Storage 2022, 47, 103596. [Google Scholar] [CrossRef]
- Xu, D.; Qu, Z.; An, L.; Xu, H.; Yang, Q.; Luo, Z.; Pan, H. Pore-scale study on the effects of randomly distributed void cavities on the thermal performance of composite phase change materials. J. Energy Storage 2022, 55, 105715. [Google Scholar] [CrossRef]
- Janghel, D.; Karagadde, S.; Saha, S.K. Measurement of shrinkage void and identification of solid-liquid phases in phase change materials: Ultrasound-based approach and simulated predictions. Appl. Therm. Eng. 2023, 223, 120048. [Google Scholar] [CrossRef]
- Gao, Z.; Yao, Y.; Wu, H. A visualization study on the unconstrained melting of paraffin in spherical container. Appl. Therm. Eng. 2019, 155, 428–436. [Google Scholar] [CrossRef]
- Liu, M.; Fan, L.; Zhu, Z.; Feng, B.; Zhang, H.; Zeng, Y. A volume-shrinkage-based method for quantifying the inward solidification heat transfer of a phase change material filled in spherical capsules. Appl. Therm. Eng. 2016, 108, 1200–1205. [Google Scholar] [CrossRef]
- Huang, R.; Wu, H. Phase interface effects in the total enthalpy-based lattice Boltzmann model for solid–liquid phase change. J. Comput. Phys. 2015, 294, 346–362. [Google Scholar] [CrossRef]
- Huang, R.; Wu, H. Total enthalpy-based lattice Boltzmann method with adaptive mesh refinement for solid-liquid phase change. J. Comput. Phys. 2016, 315, 65–83. [Google Scholar] [CrossRef]
Properties | Values |
---|---|
Phase transition temperature, | |
Latent heat of phase transition, | |
Solid thermal conductivity, | |
Solid specific heat capacity, | |
Solid density, | |
Liquid density, |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, D.; Zhao, Q.; Huang, R. Gas Void Morphology and Distribution in Solidified Pure Paraffin Within a Cubic Thermal Energy Storage Unit. Energies 2025, 18, 3686. https://doi.org/10.3390/en18143686
Wang D, Zhao Q, Huang R. Gas Void Morphology and Distribution in Solidified Pure Paraffin Within a Cubic Thermal Energy Storage Unit. Energies. 2025; 18(14):3686. https://doi.org/10.3390/en18143686
Chicago/Turabian StyleWang, Donglei, Qianqian Zhao, and Rongzong Huang. 2025. "Gas Void Morphology and Distribution in Solidified Pure Paraffin Within a Cubic Thermal Energy Storage Unit" Energies 18, no. 14: 3686. https://doi.org/10.3390/en18143686
APA StyleWang, D., Zhao, Q., & Huang, R. (2025). Gas Void Morphology and Distribution in Solidified Pure Paraffin Within a Cubic Thermal Energy Storage Unit. Energies, 18(14), 3686. https://doi.org/10.3390/en18143686