Phase Change Materials for Building Energy Applications
Abstract
1. Introduction
2. Paper Contributions
3. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- IEA. Technology and Innovation Pathways for Zero-Carbon-Ready Buildings by 2030—Analysis; IEA: Paris, France, 2022; Available online: https://www.iea.org/reports/technology-and-innovation-pathways-for-zero-carbon-ready-buildings-by-2030 (accessed on 27 May 2025).
- Voronkova, I.; Podlasek, A. The Use of Transparent Structures to Improve Light Comfort in Library Spaces and Minimize Energy Consumption: A Case Study of Warsaw, Poland. Energies 2024, 17, 3007. [Google Scholar] [CrossRef]
- Berardi, U.; Soudian, S. Experimental Investigation of Latent Heat Thermal Energy Storage Using PCMs with Different Melting Temperatures for Building Retrofit. Energy Build. 2019, 185, 180–195. [Google Scholar] [CrossRef]
- Bre, F.; Caggiano, A.; Koenders, E.A.B. Multiobjective Optimization of Cement-Based Panels Enhanced with Microencapsulated Phase Change Materials for Building Energy Applications. Energies 2022, 15, 5192. [Google Scholar] [CrossRef]
- Bre, F.; Lamberts, R.; Flores-Larsen, S.; Koenders, E.A.B. Multi-Objective Optimization of Latent Energy Storage in Buildings by Using Phase Change Materials with Different Melting Temperatures. Appl. Energy 2023, 336, 120806. [Google Scholar] [CrossRef]
- Lei, J.; Yang, J.; Yang, E.-H. Energy Performance of Building Envelopes Integrated with Phase Change Materials for Cooling Load Reduction in Tropical Singapore. Appl. Energy 2016, 162, 207–217. [Google Scholar] [CrossRef]
- Auzeby, M.; Wei, S.; Underwood, C.; Tindall, J.; Chen, C.; Ling, H.; Buswell, R. Effectiveness of Using Phase Change Materials on Reducing Summer Overheating Issues in UK Residential Buildings with Identification of Influential Factors. Energies 2016, 9, 605. [Google Scholar] [CrossRef]
- Zhang, J.; Cao, Z.; Huang, S.; Huang, X.; Han, Y.; Wen, C.; Honoré Walther, J.; Yang, Y. Solidification Performance Improvement of Phase Change Materials for Latent Heat Thermal Energy Storage Using Novel Branch-Structured Fins and Nanoparticles. Appl. Energy 2023, 342, 121158. [Google Scholar] [CrossRef]
- Wang, P.; Liu, Z.; Zhang, X.; Hu, M.; Zhang, L.; Fan, J. Adaptive Dynamic Building Envelope Integrated with Phase Change Material to Enhance the Heat Storage and Release Efficiency: A State-of-the-Art Review. Energy Build. 2023, 286, 112928. [Google Scholar] [CrossRef]
- Niall, D.; West, R. Development of Concrete Façade Sandwich Panels Incorporating Phase Change Materials. Energies 2024, 17, 2924. [Google Scholar] [CrossRef]
- Wang, K.; Xu, G.; Zhao, X.; Li, G.; Mai, L. Experimental Study on Phase Change Energy Storage Flooring for Low-Carbon Energy Systems in Grassland Pastoral. Energies 2024, 17, 4828. [Google Scholar] [CrossRef]
- Croitoru, C.; Bode, F.; Calotă, R.; Berville, C.; Georgescu, M. Harnessing Nanomaterials for Enhanced Energy Efficiency in Transpired Solar Collectors: A Review of Their Integration in Phase-Change Materials. Energies 2024, 17, 1239. [Google Scholar] [CrossRef]
- Arasteh, H.; Maref, W.; Saber, H.H. 3D Numerical Modeling to Assess the Energy Performance of Solid–Solid Phase Change Materials in Glazing Systems. Energies 2024, 17, 3759. [Google Scholar] [CrossRef]
- Kalair, A.; Jamei, E.; Seyedmahmoudian, M.; Mekhilef, S.; Abas, N. Building the Future: Integrating Phase Change Materials in Network of Nanogrids (NoN). Energies 2024, 17, 5862. [Google Scholar] [CrossRef]
- Gonçalves, M.; Figueiredo, A.; Vela, G.; Rebelo, F.; Almeida, R.M.S.F.; Oliveira, M.S.A.; Vicente, R. Effect of Macrocapsule Geometry on PCM Performance for Thermal Regulation in Buildings. Energies 2025, 18, 303. [Google Scholar] [CrossRef]
- Suchorowiec, K.; Bieda, M.; Szatkowska, M.; Sieradzka, M.; Kuźnia, M.; Ziąbka, M.; Pielichowska, K. From Waste to Functional Material—Carbon Aerogels from Citrus Biomass Infiltrated with Phase Change Materials for Possible Application in Solar-Thermal Energy Conversion and Storage. Energies 2025, 18, 814. [Google Scholar] [CrossRef]
- Korniejenko, K.; Nykiel, M.; Choinska, M.; Jexembayeva, A.; Konkanov, M.; Aruova, L. An Overview of Phase Change Materials and Their Applications in Pavement. Energies 2024, 17, 2292. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bre, F.; Caggiano, A.; Berardi, U. Phase Change Materials for Building Energy Applications. Energies 2025, 18, 3534. https://doi.org/10.3390/en18133534
Bre F, Caggiano A, Berardi U. Phase Change Materials for Building Energy Applications. Energies. 2025; 18(13):3534. https://doi.org/10.3390/en18133534
Chicago/Turabian StyleBre, Facundo, Antonio Caggiano, and Umberto Berardi. 2025. "Phase Change Materials for Building Energy Applications" Energies 18, no. 13: 3534. https://doi.org/10.3390/en18133534
APA StyleBre, F., Caggiano, A., & Berardi, U. (2025). Phase Change Materials for Building Energy Applications. Energies, 18(13), 3534. https://doi.org/10.3390/en18133534