Numerical Investigation Using Machine Learning Process Combination of Bio PCM and Solar Salt for Thermal Energy Storage Applications
Abstract
1. Introduction
2. Materials and Methods
2.1. Synthesis of Composite PCM Sample
2.2. Preparation of Composite Solar PCM Salt
2.3. Characterization of Prepared Composite PCM Salt
2.4. Uncertainty Assessment
3. Thermogravimetric Analysis of Prepared Composite Solar Salt PCM Samples
Model-Free Kinetic Methods
4. Machine Learning Methods
5. Results
5.1. Degradation Kinetic Analysis of Pure PCM and Composite Solar Salt PCM
5.2. Machine Learning for Thermal Property Prediction and Optimization
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wan, Y.; Chen, Y.; Cui, Z.; Ding, H.; Gao, S.; Han, Z.; Gao, J. A Promising Form-Stable Phase Change Material Prepared Using Cost Effective Pinecone Biochar as the Matrix of Palmitic Acid for Thermal Energy Storage. Sci. Rep. 2019, 9, 11535. [Google Scholar] [CrossRef]
- Ma, F.; Liang, Y.; Tao, Z.; Guo, X.; Guo, Q.; Liu, Z. A Novel PCM/Expanded Graphite Composite Sphere with High Thermal Conductivity and Excellent Shape Stability Used for a Packed-Bed Thermal Energy System. Diam. Relat. Mater. 2024, 145, 111102. [Google Scholar] [CrossRef]
- Saleel, C.A. A Review on the Use of Coconut Oil as an Organic Phase Change Material with Its Melting Process, Heat Transfer, and Energy Storage Characteristics. J. Therm. Anal. Calorim. 2022, 147, 4451–4472. [Google Scholar] [CrossRef]
- Tyagi, V.V.; Chopra, K.; Sharma, R.K.; Pandey, A.K.; Tyagi, S.K.; Ahmad, M.S.; Sarı, A.; Kothari, R. A Comprehensive Review on Phase Change Materials for Heat Storage Applications: Development, Characterization, Thermal and Chemical Stability. Sol. Energy Mater. Sol. Cells 2022, 234, 111392. [Google Scholar] [CrossRef]
- Yan, X.; Zhao, H.; Feng, Y.; Qiu, L.; Lin, L.; Zhang, X.; Ohara, T. Excellent Heat Transfer and Phase Transformation Performance of Erythritol/Graphene Composite Phase Change Materials. Compos. Part. B Eng. 2022, 228, 109435. [Google Scholar] [CrossRef]
- Hassan, N.; Minakshi, M.; Ruprecht, J.; Liew, W.Y.H.; Jiang, Z.-T. A Binary Salt Mixture LiCl–LiOH for Thermal Energy Storage. Materials 2023, 16, 1434. [Google Scholar] [CrossRef]
- Hassan, N.; Minakshi, M.; Liew, W.Y.H.; Amri, A.; Jiang, Z.-T. Thermal Characterization of Binary Calcium-Lithium Chloride Salts for Thermal Energy Storage at High Temperature. Energies 2023, 16, 4715. [Google Scholar] [CrossRef]
- Senthilkumar, M.; Balasubramanian, K.R.; Kottala, R.K.; Sivapirakasam, S.P.; Maheswari, L. Characterization of Form-Stable Phase-Change Material for Solar Photovoltaic Cooling. J. Therm. Anal. Calorim. 2020, 141, 2487–2496. [Google Scholar] [CrossRef]
- Ravi Kumar, K.; Balasubramanian, K.R.; Jinshah, B.S.; Abhishek, N. Experimental Analysis and Neural Network Model of MWCNTs Enhanced Phase Change Materials. Int. J. Thermophys. 2021, 43, 11. [Google Scholar] [CrossRef]
- Gür, M.; Gürgenç, E.; Coşanay, H.; Öztop, H.F. Novel Nano-Y2O3/Myristic Acid Nanocomposite PCM for Cooling Performances of Electronic Device with Various Fin Designs. J. Energy Storage 2024, 100, 113646. [Google Scholar] [CrossRef]
- Ramaraj, B.K.; Kottala, R.K. Preparation and Characterisation of Binary Eutectic Phase Change Material/Activated Porous Bio Char/Multi Walled Carbon Nano Tubes as Composite Phase Change Material. Fuller. Nanotub. Carbon. Nanostruct. 2023, 31, 75–89. [Google Scholar] [CrossRef]
- Li, Y.; Li, P.; Zhu, Q.Z.; Li, Q.F. Preparation and Thermal Characterization of Nitrates/Expanded Graphite Composite Phase-Change Material for Thermal Energy Storage. Int. J. Thermophys. 2016, 37, 104. [Google Scholar] [CrossRef]
- Ren, Y.; Xu, C.; Yuan, M.; Ye, F.; Ju, X.; Du, X. Ca(NO3)2-NaNO3/Expanded Graphite Composite as a Novel Shape-Stable Phase Change Material for Mid- to High-Temperature Thermal Energy Storage. Energy Convers. Manag. 2018, 163, 50–58. [Google Scholar] [CrossRef]
- Zhai, M.; Duan, X.; Wen, Z.; Tang, J.; Huang, J.; Shi, F.; Zhang, J.; Wang, J.; Liu, Q. Salt-Resistant, Environment-Friendly Silk/Melanin Composite Aerogel with Directional Channel for Solar-Driven Evaporation. Colloids Surf. A Physicochem. Eng. Asp. 2024, 691, 133913. [Google Scholar] [CrossRef]
- Das, D.; Bordoloi, U.; Muigai, H.H.; Kalita, P. A Novel Form Stable PCM Based Bio Composite Material for Solar Thermal Energy Storage Applications. J. Energy Storage 2020, 30, 101403. [Google Scholar] [CrossRef]
- Zhang, H.-C.; Kang, B.; Sheng, X.; Lu, X. Novel Bio-Based Pomelo Peel Flour/Polyethylene Glycol Composite Phase Change Material for Thermal Energy Storage. Polymers 2019, 11, 2043. [Google Scholar] [CrossRef]
- NematpourKeshteli, A.; Iasiello, M.; Langella, G.; Bianco, N. Using Metal Foam and Nanoparticle Additives with Different Fin Shapes for PCM-Based Thermal Storage in Flat Plate Solar Collectors. Therm. Sci. Eng. Prog. 2024, 52, 102690. [Google Scholar] [CrossRef]
- NematpourKeshteli, A.; Iasiello, M.; Langella, G.; Bianco, N. Optimization of the Thermal Performance of a Lobed Triplex-Tube Solar Thermal Storage System Equipped with a Phase Change Material. Heliyon 2024, 10, e36105. [Google Scholar] [CrossRef]
- Kalidasan, B.; Pandey, A.; Rahman, S.; Buddhi, D.; Tyagi, V. Thermodynamic and Thermal Degradation Kinetics Analysis of Coconut Shell Biomass Based Phase Change Material. IOP Conf. Ser. Earth Environ. Sci. 2023, 1281, 012038. [Google Scholar] [CrossRef]
- Prabhu, B.; Nižetić, S.; Arıcı, M.; Nallamuthu, R. A Comprehensive Assessment on Bio-Mass Derived Form-Stabilized Composite Phase Change Materials for Solar Thermal Energy Storage Systems. J. Energy Storage 2024, 86, 111278. [Google Scholar] [CrossRef]
- Hari, B.; Suresh, S.; Kottala, R.K.; Praveenkumar, S. Synthesis and Characterization of High Thermal Conductive Leak Resistant Phase Change Material for Solar Photovoltaic Panel Cooling Applications. J. Energy Storage 2025, 122, 116656. [Google Scholar] [CrossRef]
- Venkitaraj, K.P.; Suresh, S. Experimental Thermal Degradation Analysis of Pentaerythritol with Alumina Nano Additives for Thermal Energy Storage Application. J. Energy Storage 2019, 22, 8–16. [Google Scholar] [CrossRef]
- Sun, L.; Qu, Y.; Li, S. Co-Microencapsulate of Ammonium Polyphosphate and Pentaerythritol and Kinetics of Its Thermal Degradation. Polym. Degrad. Stab. 2012, 97, 404–409. [Google Scholar] [CrossRef]
- Xiang, L.; Luo, D.; Yang, J.; Sun, X.; Qi, Y.; Qin, S. Preparation and Comparison of Properties of Three Phase Change Energy Storage Materials with Hollow Fiber Membrane as the Supporting Carrier. Polymers 2019, 11, 1343. [Google Scholar] [CrossRef]
- Kottala, R.K.; Chigilipalli, B.K.; Mukuloth, S.; Shanmugam, R.; Kantumuchu, V.C.; Ainapurapu, S.B.; Cheepu, M. Thermal Degradation Studies and Machine Learning Modelling of Nano-Enhanced Sugar Alcohol-Based Phase Change Materials for Medium Temperature Applications. Energies 2023, 16, 2187. [Google Scholar] [CrossRef]
- Balasubramanian, K.R.; Ravi Kumar, K.; Sathiya Prabhakaran, S.P.; Jinshah, B.S.; Abhishek, N. Thermal Degradation Studies and Hybrid Neural Network Modelling of Eutectic Phase Change Material Composites. Int. J. Energy Res. 2022, 46, 15733–15755. [Google Scholar] [CrossRef]
- Lu, Y.; Wang, S.; Zhang, C.; Chen, R.; Dui, H.; Mu, R. Adaptive Maintenance Window-Based Opportunistic Maintenance Optimization Considering Operational Reliability and Cost. Reliab. Eng. Syst. Saf. 2024, 250, 110292. [Google Scholar] [CrossRef]
- Sorour, S.S.; Saleh, C.A.; Shazly, M. A Review on Machine Learning Implementation for Predicting and Optimizing the Mechanical Behaviour of Laminated Fiber-Reinforced Polymer Composites. Heliyon 2024, 10, e33681. [Google Scholar] [CrossRef]
- Shahbaz, P.; Sharma, S.; Ajori, S. Machine Learning Approach on the Prediction of Mechanical Characteristics of Pristine, Boron Doped and Nitrogen Doped Graphene. Phys. Scr. 2023, 98, 126001. [Google Scholar] [CrossRef]
- Zuccarini, C.; Ramachandran, K.; Jayaseelan, D.D. Material Discovery and Modeling Acceleration via Machine Learning. APL Mater. 2024, 12, 090601. [Google Scholar] [CrossRef]
- Jung, S.G.; Jung, G.; Cole, J.M. Gradient Boosted and Statistical Feature Selection Workflow for Materials Property Predictions. J. Chem. Phys. 2023, 159, 194106. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.; Wu, H.; Wu, X.; Xiang, Z.; Huang, S.; Chen, M. Data-Driven Bi-Directional Lattice Property Customization and Optimization. Materials 2024, 17, 5599. [Google Scholar] [CrossRef] [PubMed]
- Guo, P.; Moghaddas, S.A.; Liu, Y.; Meng, W.; Li, V.C.; Bao, Y. Applications of Machine Learning Methods for Design and Characterization of High-Performance Fiber-Reinforced Cementitious Composite (HPFRCC): A Review. J. Sustain. Cem.-Based Mater. 2025, 1–24. [Google Scholar] [CrossRef]
- Liu, Z.; Li, X.; Dai, W.; Liu, J.-J.; Lin, M.-J. Naphthalenediimide and Perylenediimide Based Donor-Acceptor Crystalline Hybrid Materials: Structures and Applications. Coord. Chem. Rev. 2025, 526, 216350. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, L.; Zhong, A.; Huang, G.; Wu, F.; Li, D.; Teng, M.; Wang, J.; Han, D. Deep Red PhOLED from Dimeric Salophen Platinum(II) Complexes. Dye. Pigment. 2019, 162, 590–598. [Google Scholar] [CrossRef]
- Jia, Y.; Chen, G.; Zhao, L. Defect Detection of Photovoltaic Modules Based on Improved VarifocalNet. Sci. Rep. 2024, 14, 15170. [Google Scholar] [CrossRef]
- Yu, Y.; Li, S.; Lu, J.; Xi, F.; Chen, X.; Wu, D.; Ma, W.; Deng, R. Green Recycling of End-of-Life Photovoltaic Modules via Deep-Eutectic Solvents. Chem. Eng. J. 2024, 499, 155933. [Google Scholar] [CrossRef]
- Zheng, H.; Li, Y.; Shi, D.; Cheng, X.; Gong, S.; Wang, X. Preparation and Thermal Property of Unusual Morphology NaNO3 Modified by Solution Combustion for Thermal Energy Storage. J. Energy Storage 2020, 29, 101366. [Google Scholar] [CrossRef]
- Ji, M.; Lv, L.; Liu, J.; Rong, Y.; Zhou, H. NaNO3-KNO3/EG/Al2O3 Shape-Stable Phase Change Materials for Thermal Energy Storage over a Wide Temperature Range: Sintering Temperature Study. Sol. Energy 2023, 258, 325–338. [Google Scholar] [CrossRef]
- Kumar, K.R.; Balasubramanian, K.R.; Kumar, G.P.; Bharat Kumar, C.; Cheepu, M.M. Experimental Investigation of Nano-Encapsulated Molten Salt for Medium-Temperature Thermal Storage Systems and Modeling of Neural Networks. Int. J. Thermophys. 2022, 43, 145. [Google Scholar] [CrossRef]
- Kottala, R.K.; Balasubramanian, K.R.; Jinshah, B.S.; Divakar, S.; Chigilipalli, B.K. Experimental Investigation and Machine Learning Modelling of Phase Change Material-Based Receiver Tube for Natural Circulated Solar Parabolic Trough System under Various Weather Conditions. J. Therm. Anal. Calorim. 2023, 148, 7101–7124. [Google Scholar] [CrossRef]
Thermophysical Property | Value | ||
---|---|---|---|
Sodium Nitrate (NaNO3) [38] | Potassium Nitrate (KNO3) [39] | Eutectic PCM (Solar Salt) NaNO3 (60%) + KNO3 (40%) [40] | |
Melting-point temperature (°C) | 306 | 334 | 222 |
Latent heat value (kJ/kg) | 177 | 85–100 | 110 |
Thermal conductivity (W/mK) | 0.5–0.7 | 0.5–0.7 | 0.5 |
Specific heat capacity (kJ/kgK) | 1.1 (@solid state); 1.8–2.0 (@liquid state) | 1.1–1.3 (@solid state); 1.7–1.9 (@liquid state) | 1.3–1.6 (@solid state); 1.5–1.65 (@liquid state) |
Measrement Varable | Instrument Used | Uncertainty Value |
---|---|---|
Mass of NaNO3, KNO3, and biochar | Shimadzu UniBloc high-precision weighing balance | 0.4 mg |
Degradation onset temperature (°C) | TGA 4000 Perkin Elmer | 0.03 °C |
Conversion () | Temperature (°C) | ||
---|---|---|---|
15 °C/min | 25 °C/min | 30 °C/min | |
0.1 | 367.57 | 361.92 | 489.79 |
0.2 | 743.74 | 747.70 | 758.75 |
0.3 | 771.88 | 776.08 | 784.12 |
0.4 | 795.44 | 799.64 | 807.11 |
0.5 | 817.26 | 820.84 | 828.53 |
0.6 | 837.00 | 839.09 | 847.21 |
0.7 | 853.72 | 854.18 | 862.56 |
0.8 | 867.17 | 868.49 | 876.04 |
0.9 | 878.44 | 879.85 | 884.34 |
Conversion () | Temperature (°C) | |||
---|---|---|---|---|
10 °C/min | 15 °C/min | 20 °C/min | 25 °C/min | |
0.1 | 34.66 | 49.89 | 37.66 | 35.28 |
0.2 | 307.81 | 323.04 | 310.81 | 308.43 |
0.3 | 450.36 | 544.68 | 548.21 | 546.23 |
0.4 | 525.23 | 586.93 | 591.25 | 593.25 |
0.5 | 545.62 | 602.43 | 608.58 | 610.25 |
0.6 | 560.45 | 614.68 | 620.58 | 625.56 |
0.7 | 571.50 | 627.68 | 631.41 | 636.86 |
0.8 | 604.58 | 645.18 | 648.26 | 655.24 |
0.9 | 644.83 | 709.68 | 710.65 | 720.12 |
Model | RMSE | R2 |
---|---|---|
Linear regression | 0.0982 | 0.6454 |
Decision tree regression | 0.0725 | 0.8456 |
Gradient boost regression | 0.0713 | 0.8846 |
Random forest regression | 0.0706 | 0.8866 |
Polynomial regression | 0.0517 | 0.9393 |
Gaussion process regression | 0.0385 | 0.9662 |
KNN regression | 0.0318 | 0.9770 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kottala, R.K.; Mogaligunta, S.; Gupta, M.S.; Praveenkumar, S.; Raghutu, R.; Patro, K.K.; Murthy, A.S.D.; Gurram, D. Numerical Investigation Using Machine Learning Process Combination of Bio PCM and Solar Salt for Thermal Energy Storage Applications. Symmetry 2025, 17, 998. https://doi.org/10.3390/sym17070998
Kottala RK, Mogaligunta S, Gupta MS, Praveenkumar S, Raghutu R, Patro KK, Murthy ASD, Gurram D. Numerical Investigation Using Machine Learning Process Combination of Bio PCM and Solar Salt for Thermal Energy Storage Applications. Symmetry. 2025; 17(7):998. https://doi.org/10.3390/sym17070998
Chicago/Turabian StyleKottala, Ravi Kumar, Sankaraiah Mogaligunta, Makham Satyanarayana Gupta, Seepana Praveenkumar, Ramakrishna Raghutu, Kiran Kumar Patro, Achanta Sampath Dakshina Murthy, and Dharmaiah Gurram. 2025. "Numerical Investigation Using Machine Learning Process Combination of Bio PCM and Solar Salt for Thermal Energy Storage Applications" Symmetry 17, no. 7: 998. https://doi.org/10.3390/sym17070998
APA StyleKottala, R. K., Mogaligunta, S., Gupta, M. S., Praveenkumar, S., Raghutu, R., Patro, K. K., Murthy, A. S. D., & Gurram, D. (2025). Numerical Investigation Using Machine Learning Process Combination of Bio PCM and Solar Salt for Thermal Energy Storage Applications. Symmetry, 17(7), 998. https://doi.org/10.3390/sym17070998