Numerical Modeling of Charging and Discharging of Shell-and-Tube PCM Thermal Energy Storage Unit
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental LHSU
2.2. PCM Tested
2.3. Experimental Procedure
3. Numerical Modeling
3.1. Governing Equations
3.2. Spatial Discretization of Equations
3.3. Time Discretization
3.4. Boundary Conditions
3.5. Mesh Parameters
4. Results and Discussion
Liquid Fraction
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
Co | Courant number |
DIC | Diagonal-based incomplete Cholesky |
DILU | Diagonal-based incomplete LU preconditioner |
GAMG | Generalized geometric–algebraic multi-grid |
GS | Gauss–Seidel smoothing |
HTF | Heat transfer fluid |
LHSU | Latent heat storage unit |
nanoPCM | Nanocomposite |
PBiCG | Preconditioned bi-conjugate gradient |
PCM | Phase change material |
PISO | Pressure-Implicit with Splitting of Operators |
RES | Renewable source of energy |
References
- Letcher, T.M. Storing Energy with Special Reference to Renewable Energy Sources, 1st ed.; Elsevier: Amsterdam, The Netherlands, 2016. [Google Scholar]
- Cabeza, L.F. Advances in Thermal Energy Storage Systems: Methods and Applications; Woodhead Publishing Series in Energy; Woodhead Publishing: Cambridge, UK, 2015. [Google Scholar]
- Pielichowska, K.; Pielichowski, K. Phase change materials for thermal energy storage. Prog. Mater. Sci. 2014, 65, 67–123. [Google Scholar] [CrossRef]
- Sarbu, I.; Sebarchievici, C. A Comprehensive Review of Thermal Energy Storage. Sustainability 2018, 10, 191. [Google Scholar] [CrossRef]
- Agyenim, F.; Hewitt, N.; Eames, P.; Smyth, M. A review of materials, heat transfer and phase change problem formulation for latent heat thermal energy storage systems (LHTESS). Renew. Sustain. Energy Rev. 2010, 14, 615–628. [Google Scholar] [CrossRef]
- Gasia, J.; Diriken, J.; Bourke, M.; Van Bael, J.; Cabeza, L.F. Comparative study of the thermal performance of four different shell-and-tube heat exchangers used as latent heat thermal energy storage systems. Renew. Energy 2017, 114, 934–944. [Google Scholar] [CrossRef]
- Hendra, R.; Hamdani; Mahlia, T.M.I.; Masjuki, H.H. Thermal and melting heat transfer characteristics in a latent heat storage system using Mikro. Appl. Therm. Eng. 2005, 25, 1503–1515. [Google Scholar] [CrossRef]
- Luo, K.; Yao, F.J.; Yi, H.L.; Tan, H.P. Lattice Boltzmann simulation of convection melting in complex heat storage systems filled with phase change materials. Appl. Therm. Eng. 2015, 86, 238–250. [Google Scholar] [CrossRef]
- Esapour, M.; Hosseini, M.J.; Ranjbar, A.A.; Pahamli, Y.; Bahrampoury, R. Phase change in multi-tube heat exchangers. Renew. Energy 2016, 85, 1017–1025. [Google Scholar] [CrossRef]
- Esapour, M.; Hosseini, M.J.; Ranjbar, A.A.; Bahrampoury, R. Numerical study on geometrical specifications and operational parameters of multi-tube heat storage systems. Appl. Therm. Eng. 2016, 109, 351–363. [Google Scholar] [CrossRef]
- Al-Mudhafar, A.H.N.; Nowakowski, A.F.; Nicolleau, F.C.G.A. Thermal performance enhancement of energy storage systems via phase change materials utilising an innovative webbed tube heat exchanger. Energy Procedia 2018, 151, 57–61. [Google Scholar] [CrossRef]
- Sodhi, G.S.; Vigneshwaran, K.; Jaiswal, A.K.; Muthukumar, P. Assessment of Heat Transfer Characteristics of a Latent Heat Thermal Energy Storage System: Multi Tube Design. Energy Procedia 2019, 158, 4677–4683. [Google Scholar] [CrossRef]
- Abreha, B.G.; Mahanta, P.; Trivedi, G. Thermal performance evaluation of multi-tube cylindrical LHS system. Appl. Therm. Eng. 2020, 179, 115743. [Google Scholar] [CrossRef]
- Park, S.H.; Park, Y.G.; Ha, M.Y. A numerical study on the effect of the number and arrangement of tubes on the melting performance of phase change material in a multi-tube latent thermal energy storage system. J. Energy Storage 2020, 32, 101780. [Google Scholar] [CrossRef]
- Varkute, N.; Mashilkar, B.; Guthulla, S.; Jayaprakash, P.; Aaron, A.; Joy, S. Experimental and computational study of phase change material based shell and tube heat exchanger for energy storage. Mater. Today Proc. 2021, 46, 10015–10021. [Google Scholar]
- Mahdi, M.S.; Mahood, H.B.; Alammar, A.A.; Khadom, A.A. Numerical investigation of PCM melting using different tube configurations in a shell and tube latent heat thermal storage unit. Therm. Sci. Eng. Prog. 2021, 25, 101030. [Google Scholar] [CrossRef]
- Shaikh, M.; Uzair, M.; Allauddin, U. Effect of geometric configurations on charging time of latent-heat storage for solar applications. Renew. Energy 2021, 179, 262–271. [Google Scholar] [CrossRef]
- Zaglanmis, E.; Demircan, T.; Gemicioglu, B. Analysis of melting behaviours of phase change materials used in heat energy storage systems. Heat Transf. Res. 2022, 53, 31–46. [Google Scholar] [CrossRef]
- Song, L.; Wu, S.; Yu, C.; Gao, W. Thermal performance analysis and enhancement of the multi-tube latent heat storage (MTLHS) unit. J. Energy Storage 2022, 46, 103812. [Google Scholar] [CrossRef]
- Qaiser, R.; Khan, M.M.; Ahmed, H.F.; Malik, F.K.; Irfan, M.; Ahad, I.U. Performance enhancement of latent energy storage system using effective designs of tubes and shell. Energy Rep. 2022, 8, 3856–3872. [Google Scholar] [CrossRef]
- Vikas; Yadav, A.; Samir, S.; Arici, M. A comprehensive study on melting enhancement by changing tube arrangement in a multi-tube latent heat thermal energy storage system. J. Energy Storage 2022, 55, 105517. [Google Scholar] [CrossRef]
- Vikas; Yadav, A.; Samir, S. Melting dynamics analysis of a multi-tube latent heat thermal energy storage system: Numerical study. Appl. Therm. Eng. 2022, 2014, 118803. [Google Scholar] [CrossRef]
- Fabrykiewicz, M.; Cieśliński, J.T. Effect of Tube Bundle Arrangement on the Performance of PCM Heat Storage Units. Energies 2022, 15, 9343. [Google Scholar] [CrossRef]
- Cieśliński, J.; Fabrykiewicz, M.; Wiśniewski, T.; Kubiś, M.; Smolen, S.; Eicke, A.; Dutkowski, K.; Głuszek-Czarnecka, M. New empirical correlations for the viscosity of selected organic phase change materials. Arch. Thermodyn. 2023, 44, 123–139. [Google Scholar] [CrossRef]
- Yu, J.; Yang, Y.; Yang, X.; Kong, Q.; Liu, Y.; Yan, J. Effect of porous media on the heat transfer enhancement for a thermal energy storage unit. Energy Procedia 2018, 152, 984–989. [Google Scholar] [CrossRef]
- Devanuri, J.K.; Gaddala, U.M.; Kumar, V. Investigation on compatibility and thermal reliability of phase change materials for low-temperature thermal energy storage. Mater. Renew. Sustain. Energy 2020, 9, 1336. [Google Scholar] [CrossRef]
- Tesch, K. Computational Fluid Dynamics; Gdańsk Tech Publishing House: Gdańsk, Poland, 2021. (In Polish) [Google Scholar]
- Ishii, M.; Hibiki, T. Thermo-Fluid Dynamics of Two-Phase Flow; Springer: New York, NY, USA, 2006. [Google Scholar]
- Lee, W.H. A Pressure Iteration Scheme for Two-Phase Modeling; Technical Report LA-UR 79-975; Los Alamos Scientific Laboratory: Los Alamos, NM, USA, 1979. [Google Scholar]
- Kumar, M.; Krishna, D.J. Influence of Mushy Zone Constant on Thermohydraulics of a PCM. Energy Procedia 2017, 109, 314–321. [Google Scholar] [CrossRef]
- Hameter, M.; Walter, H. Influence of the Mushy Zone Constant on the Numerical Simulation of the Melting and Solidification Process of Phase Change Materials. Comput. Aided Chem. Eng. 2016, 38, 439–444. [Google Scholar]
- Brent, A.D.; Voller, V.R.; Reid, K.J. Enthalpy-porosity technique for modeling convection-diffusion phase change: Application to the melting of a pure metal. Numer. Heat Transf. 1988, 13, 297–318. [Google Scholar] [CrossRef]
- Voller, V.R.; Prakash, C. A fixed grid numerical modelling methodology for convection-diffusion mushy region phase change problems. Int. J. Heat Mass Transf. 1987, 30, 1709–1719. [Google Scholar] [CrossRef]
- OpenFOAM User Guide; OpenFOAM Foundation Ltd.: London, UK, 2015.
- Issa, R.I. Solution of the implicitly discretised fluid ow equations by operator-splitting. J. Comput. Phys. 1986, 62, 40–65. [Google Scholar] [CrossRef]
- Fabrykiewicz, M.; Cieśliński, J.T. Experimental investigation of thermal energy storage in shell-and-multi-tube unit with nano-enhanced phase change material. Appl. Therm. Eng. 2024, 246, 122881. [Google Scholar] [CrossRef]
Property | LTP56 | RT54HC | P1801 | |||
---|---|---|---|---|---|---|
Solid | Liquid | Solid | Liquid | Solid | Liquid | |
λ [W/(mK)] | 0.237 | 0.152 | 0.210 | 0.151 | 0.198 | 0.157 |
cp [kJ/(kgK)] | 2.48 | 2.34 | 1.83 | 2.07 | 2.01 | 2.12 |
μ [mPas] | - | 9.83 | - | 10.95 | - | 13.13 |
ht [kJ/kg] | 189.6 | 195.4 | 181.9 | |||
hs [kJ/kg] | 182.2 | 200.1 | 181.4 | |||
[K] | 323.8 | 326.3 | 326.5 | |||
[K] | 335.6 | 336.3 | 338.1 | |||
[K] | 325 | 324.7 | 325.8 | |||
[K] | 318.4 | 316.8 | 318.7 | |||
ρ [kg/m3] | 850 | 800 | 850 | 800 | 920 | 850 |
β [1/K] | - | 0.00068 | - | 0.00075 | - | 0.000815 |
Mesh 1 | Mesh 2 | Mesh 3 | |
---|---|---|---|
Elements | 28,119 | 68,333 | 139,791 |
Nodes | 25,455 | 60,216 | 129,208 |
Calculation time [s] | 7521 | 7858 | 18,279 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fabrykiewicz, M.; Tesch, K.; Cieśliński, J.T. Numerical Modeling of Charging and Discharging of Shell-and-Tube PCM Thermal Energy Storage Unit. Energies 2025, 18, 3804. https://doi.org/10.3390/en18143804
Fabrykiewicz M, Tesch K, Cieśliński JT. Numerical Modeling of Charging and Discharging of Shell-and-Tube PCM Thermal Energy Storage Unit. Energies. 2025; 18(14):3804. https://doi.org/10.3390/en18143804
Chicago/Turabian StyleFabrykiewicz, Maciej, Krzysztof Tesch, and Janusz T. Cieśliński. 2025. "Numerical Modeling of Charging and Discharging of Shell-and-Tube PCM Thermal Energy Storage Unit" Energies 18, no. 14: 3804. https://doi.org/10.3390/en18143804
APA StyleFabrykiewicz, M., Tesch, K., & Cieśliński, J. T. (2025). Numerical Modeling of Charging and Discharging of Shell-and-Tube PCM Thermal Energy Storage Unit. Energies, 18(14), 3804. https://doi.org/10.3390/en18143804