Energy Efficiency in Buildings Through the Application of Phase Change Materials: An In-Depth Analysis of the Integration of Spent Coffee Grounds (SCGs)
Abstract
1. Introduction
2. Thermal Energy Storage (TES) Technology
3. Operational Processes of Phase Change Materials (PCMs)
3.1. Integration of Phase Change Materials
3.2. Fundamental Properties of Phase Change Materials
3.3. Advanced Incorporation Techniques for Phase Change Materials
3.3.1. Direct Incorporation Methods of Phase Change Materials
3.3.2. Impregnation Technique for PCM
3.3.3. Encapsulation Technique for PCM
3.3.4. Stabilization Techniques for Phase Change Materials
3.4. Change Materials: A Sustainable Approach to Heating and Cooling in Buildings
Thermophysical Properties | Kinetic Properties | Chemical Properties | Economic and Environmental Properties |
---|---|---|---|
|
|
|
|
4. Phase Change Materials: Addressing Drawbacks and Potential Enhancements
5. Commonly Adopted Fundamental Assumptions in Leading Research Studies
- Liquid PCM is considered an incompressible and Newtonian fluid.
- Natural convection of a liquid PCM is neglected.
- PCM envelope layers are assumed to be thin and have high thermal conductivity, allowing us to overlook their thermal resistance.
- Volume changes during solid–liquid phase transitions, heat loss from the TES system, and radiative heat transfer are neglected.
6. Ground-Breaking Insights and Practical Recommendations
- Improve the thermal inertia of the wall, delay heat transfer, and stabilize indoor temperatures;
- Increase energy efficiency, thereby reducing heating and cooling demands;
- Reduce greenhouse gas emissions by reducing reliance on mechanical HVAC systems;
- Promote waste recovery by incorporating organic by-products into building materials.
6.1. Spent Coffee Grounds as PCM
6.2. Hybrid Composite
7. Outlook and Emerging Trends for Future Research
- Temperature range suitability
- Appropriate PCM selection for each application
- Efficient heat transfer during charge and discharge cycles
- Managing leakage problems
- Stability and sustainability of PCMs
- Improved thermal conductivity
- Strategic location for optimal efficiency
8. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
Abbreviations | |
DSC | Differential scanning calorimeter |
DTG | Derivative thermogravimetric machine |
EG | Expanded graphite |
EP | Expanded pearlite |
EV | Expanded vermiculate |
FSPCM | Foam-stabilized PCM |
FTIR | Fourier transform infrared spectroscopy |
GDP | Gross domestic product |
HVAC | Heating, ventilation, and air conditioning |
LHS | Latent heat storage |
LTES | Latent thermal energy storage |
MUFA | Monounsaturated fatty acid |
PCM | Phase change material |
PUFA | Polyunsaturated fatty acid |
PVT | Photovoltaic–thermal |
SCG | Spent coffee ground |
SDG | Sustainable Development Goals |
SFA | Saturated fatty acid |
SHS | Sensible heat storage |
SSPCM | Shape-stabilized PCM |
TES | Thermal energy storage |
TG | Thermogravimetric |
ZEB | Net Zero Emissions in Building |
Nomenclature | |
Cp | Specific heat capacity (kJ/kg·K) |
K | Thermal conductivity (W/m·K) |
Tm | Melting temperature (°C) |
W0 | Weight of extracted oil (g) |
Wd | Weight of the dried SCGs (g) |
α | Thermal expansion coefficient |
ΔH | Latent heat for fusion (kJ/kg) |
ρ | Density (kg/m3) |
References
- Chen, Z.; Zhang, X.; Ji, J.; Lv, Y. A review of the application of hydrated salt phase change materials in building temperature control. J. Energy Storage 2022, 56, 106157. [Google Scholar] [CrossRef]
- Ritchie, H.; Roser, M.; Rosado, P. Energy. Our World in Data, 27 October 2022. Available online: https://ourworldindata.org/energy-mix (accessed on 19 September 2023).
- Kuczyński, T.; Staszczuk, A.; Gortych, M. Comparison of heavy building envelopes and PCM: Impact on indoor temperature peaks and cooling energy use during heat events. Energy 2025, 325, 136213. [Google Scholar] [CrossRef]
- IEA. Electricity 2025—Analysis. IEA. 14 February 2025. Available online: https://www.iea.org/reports/electricity-2025 (accessed on 12 April 2025).
- IEA. Space Cooling—Energy System. IEA. 2023. Available online: https://www.iea.org/energy-system/buildings/space-cooling (accessed on 4 July 2023).
- Advances in Cold-Climate-Responsive Building Envelope Design: A Comprehensive Review. Available online: https://www.mdpi.com/2075-5309/14/11/3486 (accessed on 21 April 2025).
- Faraj, K.; Khaled, M.; Faraj, J.; Hachem, F.; Castelain, C. Phase change material thermal energy storage systems for cooling applications in buildings: A review. Renew. Sustain. Energy Rev. 2020, 119, 109579. [Google Scholar] [CrossRef]
- Huang, Y.X.; Shu, Z.Y.; Liu, Z.Q.; Cai, Y.; Wang, W.W.; Zhao, F.Y. Transient cooling performance and parametric characteristic of active–passive coupling cooling system integrated air-conditioner, PV-PCM envelope, and ice storage. Energy Build. 2025, 329, 115296. [Google Scholar] [CrossRef]
- Xu, Y.; Zhao, B.; Yu, J.; Yin, X.; Chang, W.S.; Guo, H. Integrating phase-change materials to reduce overheating risk in residential buildings in cold regions of China. Constr. Build. Mater. 2025, 475, 141153. [Google Scholar] [CrossRef]
- IEA. Buildings—Energy System. IEA. 2023. Available online: https://www.iea.org/energy-system/buildings (accessed on 24 June 2024).
- Xu, X.; Mumford, T.; Zou, P.X.W. Life-cycle building information modelling (BIM) engaged framework for improving building energy performance. Energy Build. 2021, 231, 110496. [Google Scholar] [CrossRef]
- Abdulmunem, A.R.; Samin, P.M.; Sopian, K.; Hoseinzadeh, S.; Al-Jaber, H.A.; Garcia, D.A. Waste chicken feathers integrated with phase change materials as new inner insulation envelope for buildings. J. Energy Storage 2022, 56, 106130. [Google Scholar] [CrossRef]
- IEA. Policy database—Data & Statistics. IEA. 4 July 2023. Available online: https://www.iea.org/policies (accessed on 4 July 2023).
- European Comission. 2030 Climate & Energy Framework. 19 September 2023. Available online: https://climate.ec.europa.eu/eu-action/climate-strategies-targets/2030-climate-energy-framework_en (accessed on 19 September 2023).
- National Development and Reform Commission (NDRC), National Energy Administration. China 13th Five-Year Plan for Energy Development|Green Policy Platform. December 2016. (In Chinese). Available online: https://www.greenpolicyplatform.org/national-documents/china-13th-five-year-plan-energy-development-chinese (accessed on 19 September 2023).
- Li, Y.; Nord, N.; Xiao, Q.; Tereshchenko, T. Building heating applications with phase change material: A comprehensive review. J. Energy Storage 2020, 31, 101634. [Google Scholar] [CrossRef]
- Hmida, A.; Slimani, M.E.A.; El Haj Assad, M.; Ben Ali, O. Solar Photovoltaic Thermal Collector as a Cogeneration Energy System: Conception and Recent Development in the Mediterranean Region. In The Handbook of Environmental Chemistry; Springer: Berlin/Heidelberg, Germany, 2023; pp. 1–36. [Google Scholar] [CrossRef]
- Yuan, P.; Duanmu, L.; Wang, Z.; Gao, S.; Zheng, H. Thermal performance of solar-biomass energy heating system coupled with thermal storage floor and radiators in northeast China. Appl. Therm. Eng. 2024, 236, 121458. [Google Scholar] [CrossRef]
- Chen, Y.; Feng, L.; Li, X.; Zoghi, M.; Javaherdeh, K. Exergy-economic analysis and multi-objective optimization of a multi-generation system based on efficient waste heat recovery of combined wind turbine and compressed CO2 energy storage system. Sustain. Cities Soc. 2023, 96, 104714. [Google Scholar] [CrossRef]
- Levitz, E. Can Extremely Reflective White Paint Save the Planet? Intelligencer. 15 July 2023. Available online: https://nymag.com/intelligencer/2023/07/can-extremely-reflective-white-paint-save-the-planet.html (accessed on 19 September 2023).
- Huang, J.; Li, M.; Fan, D. Core-shell particles for devising high-performance full-day radiative cooling paint. Appl. Mater. Today 2021, 25, 101209. [Google Scholar] [CrossRef]
- Aksoy, U.T.; Inalli, M. Impacts of some building passive design parameters on heating demand for a cold region. Build. Environ. 2006, 41, 1742–1754. [Google Scholar] [CrossRef]
- Li, Y.; Huang, G. Development of an integrated low-carbon heating system for outdoor swimming pools for winter application. E3S Web Conf. 2019, 111, 03031. [Google Scholar] [CrossRef]
- Wang, G.; Li, X.; Chang, C.; Ju, H. Multi-objective passive design and climate effects for office buildings integrating phase change material (PCM) in a cold region of China. J. Energy Storage 2024, 82, 110502. [Google Scholar] [CrossRef]
- Ao, C.; Yan, S.; Zhao, X.; Zhang, N.; Wu, Y. Design optimization of a novel annular fin on a latent heat storage device for building heating. J. Energy Storage 2023, 64, 107124. [Google Scholar] [CrossRef]
- Harlé, T.; Hebert, R.L.; Nguyen, G.T.M.; Ledésert, B.A. A composite of cross-linked polyurethane as solid–solid phase change material and plaster for building application. Energy Build. 2022, 262, 111945. [Google Scholar] [CrossRef]
- Tyagi, V.V.; Chopra, K.; Kalidasan, B.; Chauhan, A.; Stritih, U.; Anand, S.; Pandey, A.; Sarı, A.; Kothari, R. Phase change material based advance solar thermal energy storage systems for building heating and cooling applications: A prospective research approach. Sustain. Energy Technol. Assess. 2021, 47, 101318. [Google Scholar] [CrossRef]
- Anter, A.G.; Sultan, A.A.; Hegazi, A.A.; El Bouz, M.A. Thermal performance and energy saving using phase change materials (PCM) integrated in building walls. J. Energy Storage 2023, 67, 107568. [Google Scholar] [CrossRef]
- Mehrizi, A.A.; Karimi-Maleh, H.; Naddafi, M.; Karimi, F. Application of bio-based phase change materials for effective heat management. J. Energy Storage 2023, 61, 106859. [Google Scholar] [CrossRef]
- Cao, V.D.; Pilehvar, S.; Salas-Bringas, C.; Szczotok, A.M.; Bui, T.Q.; Carmona, M.; Rodriguez, J.F.; Kjøniksen, A.-L. Thermal analysis of geopolymer concrete walls containing microencapsulated phase change materials for building applications. Sol. Energy 2019, 178, 295–307. [Google Scholar] [CrossRef]
- Mukram, T.A.; Daniel, J. A review of novel methods and current developments of phase change materials in the building walls for cooling applications. Sustain. Energy Technol. Assess. 2022, 49, 101709. [Google Scholar] [CrossRef]
- Harmen, Y.; Chhiti, Y.; El Fiti, M.; Salihi, M.; Jama, C. Eccentricity analysis of annular multi-tube storage unit with phase change material. J. Energy Storage 2023, 64, 107211. [Google Scholar] [CrossRef]
- Saylam Canım, D.; Maçka Kalfa, S. Development of a new pumice block with phase change material as a building envelope component. J. Energy Storage 2023, 61, 106706. [Google Scholar] [CrossRef]
- Simon, F.; Ruiz-Valero, L.; Girard, A.; Galleguillos, H. Experimental and Numerical Analysis of a PCM-Integrated Roof for Higher Thermal Performance of Buildings. J. Therm. Sci. 2024, 33, 522–536. [Google Scholar] [CrossRef]
- Inside, K. What are phase change materials? KulKote Inside. 21 July 2023. Available online: https://kulkote-inside.com/technical/what-are-pcms (accessed on 28 September 2023).
- Al-Yasiri, Q.; Szabó, M. Incorporation of phase change materials into building envelope for thermal comfort and energy saving: A comprehensive analysis. J. Build. Eng. 2021, 36, 102122. [Google Scholar] [CrossRef]
- Baylis, C.; Cruickshank, C.A. Parametric analysis of phase change materials within cold climate buildings: Effects of implementation location and properties. Energy Build. 2024, 303, 113822. [Google Scholar] [CrossRef]
- Bilal, A.S.S.; Bhutta, S.M.; Mesum, I.U.; Waseem, M.; Munir, M.U.; Almaary, K.S.; Fatima, R. PCM-integrated windows for enhanced passive cooling: An experimental and numerical investigation. Heat Mass Transf. 2025, 61, 27. [Google Scholar] [CrossRef]
- Mao, S.; Liu, Y.; Wu, X.; Zhang, L.; Chen, J.; Zhou, T. Thermal energy storage performance, application and challenge of phase change materials: A review. Energy Storage Sav. 2025, in press. [CrossRef]
- Khakpour, Y.; Seyed-Yagoobi, J. Evaporating Liquid Film Flow in the Presence of Micro-Encapsulated Phase Change Materials: A Numerical Study. J. Heat Transf. 2015, 137, 021501. [Google Scholar] [CrossRef]
- Nader, N.A.; Bulshlaibi, B.; Jamil, M.; Suwaiyah, M.; Uzair, M. Application of Phase-Change Materials in Buildings. Am. J. Energy Eng. 2015, 3, 46. [Google Scholar] [CrossRef]
- Jin Ong, P.; Leow, Y.; Yun Debbie Soo, X.; Chua, M.H.; Ni, X.; Suwardi, A.; Tan, C.K.I.; Zheng, R.; Wei, F.; Xu, J.; et al. Valorization of Spent coffee Grounds: A sustainable resource for Bio-based phase change materials for thermal energy storage. Waste Manag. 2023, 157, 339–347. [Google Scholar] [CrossRef]
- Sawadogo, M.; Duquesne, M.; Belarbi, R.; Hamami, A.E.A.; Godin, A. Review on the Integration of Phase Change Materials in Building Envelopes for Passive Latent Heat Storage. Appl. Sci. 2021, 11, 9305. [Google Scholar] [CrossRef]
- Laasri, I.A.; Charai, M.; Es-sakali, N.; Mghazli, M.O.; Outzourhit, A. Evaluating passive PCM performance in building envelopes for semi-arid climate: Experimental and numerical insights on hysteresis, sub-cooling, and energy savings. J. Build. Eng. 2024, 98, 111161. [Google Scholar] [CrossRef]
- Ding, Y.; Klemeš, J.J.; Zhao, P.; Zeng, M.; Wang, Q. Numerical study on 2-stage phase change heat sink for cooling of photovoltaic panel. Energy 2022, 249, 123679. [Google Scholar] [CrossRef]
- Jia, C.; Geng, X.; Liu, F.; Gao, Y. Thermal behavior improvement of hollow sintered bricks integrated with both thermal insulation material (TIM) and Phase-Change Material (PCM). Case Stud. Therm. Eng. 2021, 25, 100938. [Google Scholar] [CrossRef]
- Laaouatni, A.; Martaj, N.; Bennacer, R.; Lachi, M.; El Omari, M.; El Ganaoui, M. Thermal building control using active ventilated block integrating phase change material. Energy Build. 2019, 187, 50–63. [Google Scholar] [CrossRef]
- Mahdaoui, M.; Hamdaoui, S.; Ait Msaad, A.; Kousksou, T.; El Rhafiki, T.; Jamil, A.; Ahachad, M. Building bricks with phase change material (PCM): Thermal performances. Constr. Build. Mater. 2021, 269, 121315. [Google Scholar] [CrossRef]
- Mechouet, A.; Oualim, E.M.; Mouhib, T. Effect of mechanical ventilation on the improvement of the thermal performance of PCM-incorporated double external walls: A numerical investigation under different climatic conditions in Morocco. J. Energy Storage 2021, 38, 102495. [Google Scholar] [CrossRef]
- Navarro, L.; De Gracia, A.; Castell, A.; Álvarez, S.; Cabeza, L.F. Design of a Prefabricated Concrete Slab with PCM Inside the Hollows. Energy Procedia 2014, 57, 2324–2332. [Google Scholar] [CrossRef]
- Veerakumar, C.; Sreekumar, A. Phase change material based cold thermal energy storage: Materials, techniques and applications—A review. Int. J. Refrig. 2016, 67, 271–289. [Google Scholar] [CrossRef]
- Cao, X.; Wang, Y.; Luo, K.; Wang, L.; Liu, X.; Luan, Y. Energy-Saving potential of radiative cooling and phase change materials in hot Climates: A numerical study. Appl. Therm. Eng. 2025, 268, 125971. [Google Scholar] [CrossRef]
- Feldman, D.; Banu, D.; Hawes, D.; Ghanbari, E. Obtaining an energy storing building material by direct incorporation of an organic phase change material in gypsum wallboard. Sol. Energy Mater. 1991, 22, 231–242. [Google Scholar] [CrossRef]
- Alfy Kamel, J.; Mouris Mina, E.; Moneeb Elsabbagh, A.M. New graphical method for assessing the integration of phase change materials into building envelope. Ain Shams Eng. J. 2023, 14, 102141. [Google Scholar] [CrossRef]
- Sharshir, S.W.; Joseph, A.; Elsharkawy, M.; Hamada, M.A.; Kandeal, A.; Elkadeem, M.R.; Thakur, A.K.; Ma, Y.; Moustapha, M.E.; Rashad, M.; et al. Thermal energy storage using phase change materials in building applications: A review of the recent development. Energy Build. 2023, 285, 112908. [Google Scholar] [CrossRef]
- Sun, W.; Zhang, Y.; Ling, Z.; Fang, X.; Zhang, Z. Experimental investigation on the thermal performance of double-layer PCM radiant floor system containing two types of inorganic composite PCMs. Energy Build. 2020, 211, 109806. [Google Scholar] [CrossRef]
- Huang, Y.; Alekhin, V.N.; Hu, W.; Pu, J. Adaptability Analysis of Hollow Bricks with Phase-Change Materials Considering Thermal Performance and Cold Climate. Available online: https://www.mdpi.com/2075-5309/15/4/590 (accessed on 21 April 2025).
- Hu, Z.; Li, W.; Yang, C.; Huang, H.; Guo, Y.; Ge, F.; Zhang, Y. Thermal performance of an active casing pipe macro-encapsulated PCM wall for space cooling and heating of residential building in hot summer and cold winter region in China. Constr. Build. Mater. 2024, 422, 135831. [Google Scholar] [CrossRef]
- Jeong, S.G.; Jeon, J.; Lee, J.H.; Kim, S. Optimal preparation of PCM/diatomite composites for enhancing thermal properties. Int. J. Heat Mass Transf. 2013, 62, 711–717. [Google Scholar] [CrossRef]
- Shohan, A.A.A.; Ganesan, H.; Alsulamy, S.; Kumar, A.; Almujibah, H.R.; Petrounias, P.; Jeyan, J.V.M.L. Developments on energy-efficient buildings using phase change materials: A sustainable building solution. Clean Techn. Environ. Policy 2024, 26, 263–289. [Google Scholar] [CrossRef]
- Bordoloi, U.; Das, D.; Kashyap, D.; Patwa, D.; Bora, P.; Muigai, H.H.; Kalita, P. Synthesis and comparative analysis of biochar based form-stable phase change materials for thermal management of buildings. J. Energy Storage 2022, 55, 105801. [Google Scholar] [CrossRef]
- Aghoei, M.M.; Astanbous, A.; Khaksar, R.Y.; Moezzi, R.; Behzadian, K.; Annuk, A.; Gheibi, M. Phase change materials (PCM) as a passive system in the opaque building envelope: A simulation-based analysis. J. Energy Storage 2024, 101, 113625. [Google Scholar] [CrossRef]
- Karaoulis, A. Investigation of Energy Performance in Conventional and Lightweight Building Components with the use of Phase Change Materials (PCMS): Energy Savings in Summer Season. Procedia Environ. Sci. 2017, 38, 796–803. [Google Scholar] [CrossRef]
- Chandel, S.S.; Agarwal, T. Review of cooling techniques using phase change materials for enhancing efficiency of photovoltaic power systems. Renew. Sustain. Energy Rev. 2017, 73, 1342–1351. [Google Scholar] [CrossRef]
- Garg, H.; Pandey, B.; Saha, S.K.; Singh, S.; Banerjee, R. Design and analysis of PCM based radiant heat exchanger for thermal management of buildings. Energy Build. 2018, 169, 84–96. [Google Scholar] [CrossRef]
- Saffari, M.; de Gracia, A.; Ushak, S.; Cabeza, L.F. Passive cooling of buildings with phase change materials using whole-building energy simulation tools: A review. Renew. Sustain. Energy Rev. 2017, 80, 1239–1255. [Google Scholar] [CrossRef]
- Stritih, U.; Tyagi, V.V.; Stropnik, R.; Paksoy, H.; Haghighat, F.; Joybari, M.M. Integration of passive PCM technologies for net-zero energy buildings. Sustain. Cities Soc. 2018, 41, 286–295. [Google Scholar] [CrossRef]
- Ahangari, M.; Maerefat, M. An innovative PCM system for thermal comfort improvement and energy demand reduction in building under different climate conditions. Sustain. Cities Soc. 2019, 44, 120–129. [Google Scholar] [CrossRef]
- Ascione, F.; Bianco, N.; De Masi, R.F.; Mastellone, M.; Vanoli, G.P. Phase Change Materials for Reducing Cooling Energy Demand and Improving Indoor Comfort: A Step-by-Step Retrofit of a Mediterranean Educational Building. Energies 2019, 12, 3661. [Google Scholar] [CrossRef]
- Jin, X.; Medina, M.A.; Zhang, X. Numerical analysis for the optimal location of a thin PCM layer in frame walls. Appl. Therm. Eng. 2016, 103, 1057–1063. [Google Scholar] [CrossRef]
- Evola, G.; Marletta, L.; Sicurella, F. A methodology for investigating the effectiveness of PCM wallboards for summer thermal comfort in buildings. Build. Environ. 2013, 59, 517–527. [Google Scholar] [CrossRef]
- Almeida, F.; Zhang, D.; Fung, A.; Leong, W. Investigation of Multilayered Phase-Change-Material Modeling in ESP-R. In Proceedings of the International High Performance Buildings Conference, West Lafayette, IN, USA, 12–15 July 2010; Available online: https://docs.lib.purdue.edu/ihpbc/47 (accessed on 3 July 2023).
- Pasupathy, A.; Velraj, R. Effect of double layer phase change material in building roof for year round thermal management. Energy Build. 2008, 40, 193–203. [Google Scholar] [CrossRef]
- Ait Laasri, I.; Es-Sakali, N.; Outzourhit, A.; Oualid Mghazli, M. Investigation of the impact of phase change materials at different building envelope placements in a semi-arid climate. Mater. Today Proc. 2023, 251. [Google Scholar] [CrossRef]
- Souayfane, F.; Fardoun, F.; Biwole, P.H. Phase change materials (PCM) for cooling applications in buildings: A review. Energy Build. 2016, 129, 396–431. [Google Scholar] [CrossRef]
- Jin, X.; Zhang, X. Thermal analysis of a double layer phase change material floor. Appl. Therm. Eng. 2011, 31, 1576–1581. [Google Scholar] [CrossRef]
- Rehman, A.U.; Sheikh, S.R.; Kausar, Z.; Grimes, M.; McCormack, S.J. Experimental Thermal Response Study of Multilayered, Encapsulated, PCM-Integrated Building Construction Materials. Available online: https://www.mdpi.com/1996-1073/15/17/6356 (accessed on 21 April 2025).
- Arfi, O.; Mezaache, E.H.; Laouer, A. Numerical investigation of double layered PCM building envelope during charging cycle for energy saving. Int. Commun. Heat Mass Transf. 2023, 144, 106797. [Google Scholar] [CrossRef]
- Sheikholeslami, M. Efficacy of porous foam on discharging of phase change material with inclusion of hybrid nanomaterial. J. Energy Storage 2023, 62, 106925. [Google Scholar] [CrossRef]
- Sharma, R.K.; Ganesan, P.; Tyagi, V.V.; Metselaar, H.S.C.; Sandaran, S.C. Developments in organic solid–liquid phase change materials and their applications in thermal energy storage. Energy Convers. Manag. 2015, 95, 193–228. [Google Scholar] [CrossRef]
- Zhang, C.; Chen, W.H.; Ho, S.H. Economic feasibility analysis and environmental impact assessment for the comparison of conventional and microwave torrefaction of spent coffee grounds. Biomass Bioenergy 2023, 168, 106652. [Google Scholar] [CrossRef]
- Marwan, M.; Indarti, E.; Bairwan, R.D.; Khalil, H.P.S.A.; Abdullah, C.K.; Ahmad, A. Enhancement micro filler spent coffee grounds in catalyst—Chemically modified bast fibers reinforced biodegradable materials. Bioresour. Technol. Rep. 2024, 25, 101723. [Google Scholar] [CrossRef]
- Moshood, T.D.; Nawanir, G.; Mahmud, F.; Mohamad, F.; Ahmad, M.H.; AbdulGhani, A. Sustainability of biodegradable plastics: New problem or solution to solve the global plastic pollution? Curr. Res. Green Sustain. Chem. 2022, 5, 100273. [Google Scholar] [CrossRef]
- Massaya, J.; Prates Pereira, A.; Mills-Lamptey, B.; Benjamin, J.; Chuck, C.J. Conceptualization of a spent coffee grounds biorefinery: A review of existing valorisation approaches. Food Bioprod. Process. 2019, 118, 149–166. [Google Scholar] [CrossRef]
- Miladi, M.; Martins, A.A.; Mata, T.M.; Vegara, M.; Pérez-Infantes, M.; Remmani, R.; Ruiz-Canales, A.; Núñez-Gómez, D. Optimization of Ultrasound-Assisted Extraction of Spent Coffee Grounds Oil Using Response Surface Methodology. Processes 2021, 9, 2085. [Google Scholar] [CrossRef]
- Sarier, N.; Onder, E. Organic phase change materials and their textile applications: An overview. Thermochim. Acta 2012, 540, 7–60. [Google Scholar] [CrossRef]
- Yoo, J.; Chang, S.J.; Wi, S.; Kim, S. Spent coffee grounds as supporting materials to produce bio-composite PCM with natural waxes. Chemosphere 2019, 235, 626–635. [Google Scholar] [CrossRef]
- Ben Hamou, K.; Kaddami, H.; Elisabete, F.; Erchiqui, F. Synergistic association of wood/hemp fibers reinforcements on mechanical, physical and thermal properties of polypropylene-based hybrid composites. Ind. Crops Prod. 2023, 192, 116052. [Google Scholar] [CrossRef]
- Wibowo, A.C.; Mohanty, A.K.; Misra, M.; Drzal, L.T. Chopped Industrial Hemp Fiber Reinforced Cellulosic Plastic Biocomposites: Thermomechanical and Morphological Properties. Ind. Eng. Chem. Res. 2004, 43, 4883–4888. [Google Scholar] [CrossRef]
- Mutjé, P.; Lòpez, A.; Vallejos, M.E.; López, J.P.; Vilaseca, F. Full exploitation of Cannabis sativa as reinforcement/filler of thermoplastic composite materials. Compos. Part A Appl. Sci. Manuf. 2007, 38, 369–377. [Google Scholar] [CrossRef]
- Khoathane, M.C.; Vorster, O.C.; Sadiku, E.R. Hemp Fiber-Reinforced 1-Pentene/Polypropylene Copolymer: The Effect of Fiber Loading on the Mechanical and Thermal Characteristics of the Composites. J. Reinf. Plast. Compos. 2008, 27, 1533–1544. [Google Scholar] [CrossRef]
- Zabihollah, A.; Shi, Y. Reliability Analysis of Residential Buildings Under Hurricane Using Embedded FBG Sensors: Remaining Useful Lifetime Analysis. J. Opt. Photonics Res. 2025; onine first. [Google Scholar] [CrossRef]
- Wu, T.; Shen, J.; Zou, J.; Wu, P.; Liao, Y. Semiconductor Laser Packaging Technology: Thermal Management, Optical Performance Enhancement, and Reliability Studies. J. Opt. Photonics Res. 2024; onine first. [Google Scholar] [CrossRef]
Types of TES | Characteristics | Phases |
---|---|---|
Sensible heat |
| L/S |
Latent heat |
| L–S S–S L–G |
Thermochemical heat |
| L–G S–G G–G |
PCM | Advantages | Weaknesses |
---|---|---|
Organic |
|
|
Inorganic |
|
|
PCM | Melting Point (°C) | Heat of Fusion (kJ/kg) | Thermal Conductivity (W/m·K) | Density (kg/m3) | Specific Heat (kJ/kg·K) |
---|---|---|---|---|---|
(L/S) | (L/S) | (L/S) | |||
Paraffin | 27–29 | 245 | 0.2 (L) | 770/880 | 2 (L) |
Bio-PCM | 28.85 | 219 | 0.2/0.2 | 860/860 | 1.97/1.97 |
OM32 | 31.85 | 200 | 0.145/0.219 | 870/928 | 2.3/1.95 |
Pure-Temp 23 | 22.23–24.17 | 170.71 | 0.15/0.25 | 830/910 | 2.06/1.56 |
OM35 | 35 | 160 | 0.16/0.2 | 870/900 | 2.71/2.31 |
Eicosane | 36–38 | 202 | 0.15/0.39 | 780/815 | 2.46/1.92 |
Paraffin wax | 44 | 174.12 | 0.13 (L) | 783/830 | 2.53/2.44 |
Paraffin PT 27 | 28 | 147 | 0.2 (L) | 750/870 | - |
OM37 | 26–29 | 218 | 0.13 (L) | 860 | - |
HS29 | 26–29 | 190 | 0.55/1.05 | 1530/1681 | 2.62 (L) |
GR27 | 28 | 72 | 0.15 | 710 | 1.125 |
Water | 0 | 334 | 0.6 | 1000 | 4.179 |
PCM | Melting Temperature (°C) | Heat of Fusion (kJ/kg) | Thermal Conductivity (W/m·K) | Density (kg/m3) |
---|---|---|---|---|
Paraffin | L/S | |||
n-Heptadecane | 19 | 240 | 0.21 | 777 |
Paraffin C17 | 21.7 | 213 | 0.2 | 817/754 |
Paraffin C13–C24 | 22–24 | 189 | 0.21 (L) | 760/900 |
Paraffin RT-27 | 28 | 179 | 0.2 | 800 |
Paraffin RT-18 | 15–19 | 134 | 0.2 | 756 |
Paraffin C18 | 28 | 244 | 0.148 (L) | - |
n-Octadecane | 28 | 179 | 0.2 | 750/870 |
Fatty acids | ||||
Capric Acid–Palmitic Acid | 26.2 | 177 | 2.2 | 784 |
Capric Acid | 30 | 142.7 | 0.2 (L) | 815 (L) |
Capric Acid and 1-Dodecanol | 26.5 | 126.9 | 0.12(S) | 752 (S) |
MeP + MeS | 23–26.5 | 180 | 0.2 (L) | 817 (L) |
Butyl Stearate-Palmitate | 17–20 | 137.8 | 0.12 (S) | 754 (S) |
Eutectic Capric Acid–Myristic Acid | 21.7 | 155 | ||
Eutectic Capric Acid–Stearic Acid | 24.7 | 179 | ||
Capric Acid–Lauric Acid | 19.2–20.3 | 144–150 | - | 550 |
Glycerin | 17.9 | 198.7 | - | - |
Lauric Acid–Myristic Acid–Stearic Acid/Expanded Graphite | 29.05 | 137.1 | - | - |
Capric Acid–Palmitic Acid–Stearic Acid | 19.93 | 129.4 | ||
Myristic Acid–Palmitic Acid Stearic Acid/Expanded Graphite | 41.64 | 153.5 |
Constructive Localization | Method of PCM Integration | Constructive Solution | Temperature Transition of PCM (°C) | Most Relevant Conclusions |
---|---|---|---|---|
Walls | Immersion | Gypsum Boards | 50 | Cost reduction of the energy consumed by HVAC systems, aiming to minimize peak electricity demand. |
20 | The system assisted in decreasing the temperature to its maximum level and increasing it to the minimum level. | |||
Microencapsulation | Gypsum Boards | 22 | Relatively low changes in temperature. | |
18 | Enhanced performance of the PCM was obtained when it was placed close to the surface of the gypsum board, which resulted in an increase in the minimum temperature. | |||
Concrete | 22 | Air temperature reduction and lagging latency. | ||
25 | Enhanced thermal inertia and heat efficiency. | |||
Bags | 34 | The bags reduce the peak demand period of the heat. | ||
Mortar | 24 | Increase in the minimum temperature and decrease in the maximum temperature along with reduction in the cooling and heating requirements and lag time. | ||
Macroencapsulation | Brick | 35 | The system can reduce heat flux and inner temperature. | |
25 | Reduction in electricity utilization along with decrease in the highest temperature and daytime thermal gradients. | |||
Panels | 30 | Enhanced energy storage capacity. | ||
21 | Decrease in the temperature intensity. | |||
Microencapsulation (Hybrid solution) | 10, 24, 26, and 28 | Greater thermal amplitude attenuation. | ||
Ceiling | Macroencapsulation | Metallic panel | 46 | Reduction in the cooling load and thermal flow. |
22 | Grater internal temperature control system. | |||
Shape-stabilization | Ceiling | 21 | Energy conservation during daylight hours. | |
Concrete | 26 | Increase in the minimum temperature and decrease in the maximum temperature | ||
Microencapsulation | Panels | 18 | Decrease in volume flows. | |
Macroencapsulation (Hybrid solution) | Metallic panels | 26–28 | Reduction in the interior temperature fluctuation and improvement in thermal comfort | |
Floor | Macroencapsulation | Concrete | 20 | Extended periods at constant temperature. |
23 | Increase in the minimum temperature and decrease in the maximum temperature. | |||
Shape-stabilization | Boards | 52 | Increase in the temperature inside without increasing the temperature gradient. | |
Macroencapsulation (Hybrid solution) | Panels | 14, 16, 18, 20, 22, 30, 34, 38, 42, and 46 | Decrease in surface temperature variability as well as heat flows. | |
Glazed | Macroencapsulation | Shutter system | Maintaining the internal temperature at a consistent level. | |
Macroencapsulation (Hybrid solution) | - | 18, 26, and 32 | Thermal efficiency enhancement of the glazed unit when incorporating PCM. |
Sample | Components | Absorbed PCM (wt%) | Thermal Conductivity (W/m·K) | Melting Temperature (°C) | Melting Latent Heat (J/g) |
---|---|---|---|---|---|
Base PCM | Hydrogenated palm kernel vegetable fat (HPKVF) | - | 0.2 | 26.53 | 74.35 |
Composite PCM | HPKVF + cellulose fibers + natural clay + graphite | 53 | 0.86 | 27.33 | 40.27 |
Base PCM | Coconut oil | - | 0.182 | 22.63 | 106.17 |
Composite PCM | Coconut oil + 50% cellulose fibers + 50% natural clay +10% graphite | 44 | 0.53 | 23.73 | 46.70 |
Coconut oil + 42% cellulose fibers + 33% natural clay + 25% graphite | 46 | 0.71 | 23.66 | 48.39 | |
Coconut oil + 0.38% cellulose fibers + 31% natural clay + 31% graphite | 55 | 0.81 | 23.57 | 58.03 | |
Coconut oil + 29% cellulose fibers + 29% natural clay + 42% graphite | 56 | 1.06 | 23.79 | 59.10 | |
Base PCM | Non-cocoa vegetable fat | - | 0.2 | 34.94 | 108.83 |
Composite PCM | Non-cocoa vegetable fat + cellulose fibers + natural clay + graphite | 56 | 0.83 | 34.83 | 62.39 |
Composite PCM | Core (palmitic acid) + shell (polylactic acid) micro encapsulated PCM | 24.3 core content | - | 61.9 | 40.7 |
35.8 core content | - | 62.3 | 59.9 | ||
41.9 core content | - | 62.1 | 70.1 | ||
Base PCM | Beeswax | - | - | 62.28 | 141.49 |
Composite PCM | Beeswax + 3% graphene | - | 2.8 | 62.42 | 186.74 |
Base PCM | Stearic acid | - | 0.16 | 69.23 | 208.16 |
Composite PCM | Stearic acid + carbonized maize straw | 77.22 | 0.3 | 67.62 | 160.74 |
Base PCM | Capric-stearic acid | - | 0.19 | 24.65 | 175 |
Composite PCM | Capric-stearic acid + sugar beet pulp | 70 | 0.34 | 24.4 | 117 |
Base PCM | Lauric-stearic acid | - | 0.228 | 37.5 | 199.6 |
Composite PCM | Lauric-stearic acid + carbonized biomass waste corn cob | 77.9 | 0.441 | 35.1 | 148.3 |
Acid | Tm (°C) | Hf (kJ/kg) | Cp (kJ/kg·K) | k (W/m·K) | ρ (kg/m3) |
---|---|---|---|---|---|
Enanthic | −7.4 | 107 | - | - | - |
Butyric | −5.6 | 126 | - | - | - |
Caproic | −3 | 131 | - | - | - |
Propyl palmiate | 10 | 186 | - | - | - |
Pelargonic | 12.3 | 127 | - | - | - |
Isopropyl stearate | 14–18 | 140–142 | - | - | - |
Caprylic | 16 | 148.5 | - | 0.149 (L) | 862 (L) |
16.5 | 149 | 0.148 (L) | 1033 (S) | ||
981 (S) | |||||
Butyl stearate | 19 | 140 | - | - | - |
123–200 | |||||
Dimethyl sabacate | 21 | 120–135 | - | - | - |
Undecylenic | 24.6 | 141 | - | - | - |
Vinyl stearate | 27–29 | 122 | - | - | - |
Undecylic | 28.4 | 139 | - | - | - |
Capric | 31.5 | 153 | - | 0.149 (L) | 886 (L) |
32 | 152.7 | 0.153 (L) | 878 (L) | ||
Tridecylic | 41.8 | 157 | - | - | - |
Methyl-12 hydroxy-stearate | 42–43 | 120–126 | - | - | - |
Lauric acid | 42–44 | 178 | 1.6 | 0.147 (L) | 870 (L) |
44 | 177.4 | 862 (L)–1007 (S) | |||
Elaidic | 47 | 218 | - | - | 851 (L) |
Myristic | 54 | 187 | 1.6 (S) | - | 844 (L) |
58 | 186.6 | 2.7 (L) | 990 (S) | ||
49–51 | 204.5 | ||||
Pentadecanoic | 52–53 | 178 | - | - | - |
Margaric | 60 | 172.2 | |||
Palmitic | 63 | 187 | - | 0.165 (L) | 874 (L) |
61 | 203.4 | - | 0.159 (L) | 874 (L) | |
64 | 185.4 | - | 0.162 (L) | 850 (L) | |
Stearic | 70 | 203 | 2.35 (L) | 0.172 (L) | 941 (L) |
69 | 202.5 | 848 (L) | |||
60–61 | 186.5 | ||||
69.4 | 199 | ||||
Nonadecylic | 67 | 192 | |||
Arachidic | 74 | 227 | - | - | - |
Heneicosylic | 73–74 | 193 | |||
Phenylacetic | 16.7 | 102 | |||
Acetamid | 81 | 241 | - | - | - |
SCG | 4.50 | 50.89 | 1.3–1.5 (S) 1.8–1.9 (L) | 0.2 | 919.2–927.7 |
SCG-Based PCM | Paraffin PCM (RT 25) | Fatty Acid PCM (Pure Temp 25) | |
---|---|---|---|
Primary feedstock | Spent coffee grounds (coffee oil or SCG/bio-wax composite) | Petroleum-derived Paraffin wax | Vegetable oil–fatty acid blend |
Phase change temperature (°C) |
| 24–26 | 25 |
Latent heat (kJ/kg) |
| 148–170 | 185 |
Cost of bulk material (USD/kg) | 0.12–0.38 (ultrasound-assisted extraction, pilot scale) |
| 1.4–1.7 |
Embodied carbon and circularity | Very law net GHG when credits for avoided disposal in landfill are counted | High fossil carbon footprint No circular benefit | Renewable raw material, but concerns about land use and food versus fuel |
Commercial readiness |
| Widely commercialized Proven 10,000 + cycles | Commercialized for building and cold chain |
End-of-life | Biodegradable/compostable (Can enter organic waste streams) | Non-biodegradable (disposal or recycling needed) | Biodegradable under controlled conditions |
PP-MAPP/Hemp/Wood Weight Ratio | Melting Process | Crystallization Process | ||
---|---|---|---|---|
(wt.%) | Tm (°C) | ΔHm (kJ/kg) | Tc (°C) | ΔHc (kJ/kg) |
100:0:0 | 165 | 81 | 111 | 84 |
80:20:0 | 164 | 66 | 119 | 64 |
60:30:10 | 164 | 53 | 121 | 47 |
80:10:10 | 163 | 75 | 120 | 66 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hmida, A.; Erchiqui, F.; Laafer, A.; Bourouis, M. Energy Efficiency in Buildings Through the Application of Phase Change Materials: An In-Depth Analysis of the Integration of Spent Coffee Grounds (SCGs). Energies 2025, 18, 3629. https://doi.org/10.3390/en18143629
Hmida A, Erchiqui F, Laafer A, Bourouis M. Energy Efficiency in Buildings Through the Application of Phase Change Materials: An In-Depth Analysis of the Integration of Spent Coffee Grounds (SCGs). Energies. 2025; 18(14):3629. https://doi.org/10.3390/en18143629
Chicago/Turabian StyleHmida, Abir, Fouad Erchiqui, Abdelkader Laafer, and Mahmoud Bourouis. 2025. "Energy Efficiency in Buildings Through the Application of Phase Change Materials: An In-Depth Analysis of the Integration of Spent Coffee Grounds (SCGs)" Energies 18, no. 14: 3629. https://doi.org/10.3390/en18143629
APA StyleHmida, A., Erchiqui, F., Laafer, A., & Bourouis, M. (2025). Energy Efficiency in Buildings Through the Application of Phase Change Materials: An In-Depth Analysis of the Integration of Spent Coffee Grounds (SCGs). Energies, 18(14), 3629. https://doi.org/10.3390/en18143629