Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (193)

Search Parameters:
Keywords = PBS—polybutylene succinate

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 3972 KiB  
Article
The Influence of Halloysite Clay on the Properties of the Polybutylene Succinate (PBS)/Sawdust, PBS/Sugarcane Bagasse, and PBS/Sawdust/Sugarcane Bagasse Hybrid Composites
by Tlholohelo Sylvia Sikhosana, Ntsoaki Joyce Malebo, Mpho Phillip Motloung, Tladi Gideon Mofokeng and Mokgaotsa Jonas Mochane
Polymers 2025, 17(15), 2120; https://doi.org/10.3390/polym17152120 - 31 Jul 2025
Abstract
In this study, the influences of natural fibres (sugarcane bagasse (SB) and sawdust (SD)) on the material properties of polybutylene succinate (PBS) prepared through melt compounding were investigated. The study further evaluated the effects of incorporating halloysite nanotubes (HS) and expandable graphite (EG) [...] Read more.
In this study, the influences of natural fibres (sugarcane bagasse (SB) and sawdust (SD)) on the material properties of polybutylene succinate (PBS) prepared through melt compounding were investigated. The study further evaluated the effects of incorporating halloysite nanotubes (HS) and expandable graphite (EG) on the properties of PBS/SD and PBS/SB binary and PBS/SB/SD hybrid composites. The morphological analysis indicated poor interfacial adhesion between PBS and the fibres. The obtained findings indicated enhancements in the complex viscosity of PBS in the presence of natural fibres, and further improvements in the presence of HS and EG. The stiffness of PBS hybrid composites also increased upon the addition of HS and EG. Moreover, the crystallization temperatures of PBS increased in the presence of fillers, with EG showing better nucleation efficiency. However, the mechanical properties (toughness and impact resilience) decreased due to the increased stiffness of the composites and the poor interfacial adhesion between the matrix and the fillers, indicating the need to pre-treat the fibres to enhance compatibility. Overall, the material properties of PBS/SD/SB hybrid composites were enhanced by incorporating HS and EG at low concentrations. Full article
(This article belongs to the Section Polymer Composites and Nanocomposites)
Show Figures

Figure 1

17 pages, 900 KiB  
Review
Cellulose Nanofibril-Based Biodegradable Polymers from Maize Husk: A Review of Extraction, Properties, and Applications
by Nthabiseng Motshabi, Gaofetoge Gobodiwang Lenetha, Moipone Alice Malimabe and Thandi Patricia Gumede
Polymers 2025, 17(14), 1947; https://doi.org/10.3390/polym17141947 - 16 Jul 2025
Viewed by 346
Abstract
The environmental impact of petroleum-based plastics has driven a global shift toward sustainable alternatives like biodegradable polymers, including polylactic acid (PLA), polybutylene succinate (PBS), and polycaprolactone (PCL). Yet, these bioplastics often face limitations in mechanical and thermal properties, hindering broader use. Reinforcement with [...] Read more.
The environmental impact of petroleum-based plastics has driven a global shift toward sustainable alternatives like biodegradable polymers, including polylactic acid (PLA), polybutylene succinate (PBS), and polycaprolactone (PCL). Yet, these bioplastics often face limitations in mechanical and thermal properties, hindering broader use. Reinforcement with cellulose nanofibrils (CNFs) has shown promise, yet most research focuses on conventional sources like wood pulp and cotton, neglecting agricultural residues. This review addresses the potential of maize husk, a lignocellulosic waste abundant in South Africa, as a source of CNFs. It evaluates the literature on the structure, extraction, characterisation, and integration of maize husk-derived CNFs into biodegradable polymers. The review examines the chemical composition, extraction methods, and key physicochemical properties that affect performance when blended with PLA, PBS, or PCL. However, high lignin content and heterogeneity pose extraction and dispersion challenges. Optimised maize husk CNFs can enhance the mechanical strength, barrier properties, and thermal resistance of biopolymer systems. This review highlights potential applications in packaging, biomedical, and agricultural sectors, aligning with South African bioeconomic goals. It concludes by identifying research priorities for improving compatibility and processing at an industrial scale, paving the way for maize husk CNFs as effective, locally sourced reinforcements in green material innovation. Full article
Show Figures

Figure 1

20 pages, 3330 KiB  
Article
Impact of Multiple Mechanical Recycling Cycles via Semi-Industrial Twin-Screw Extrusion on the Properties of Polybutylene Succinate (PBS)
by Vito Gigante, Laura Aliotta, Luigi Botta, Irene Bavasso, Alessandro Guzzini, Serena Gabrielli, Fabrizio Sarasini, Jacopo Tirillò and Andrea Lazzeri
Polymers 2025, 17(14), 1918; https://doi.org/10.3390/polym17141918 - 11 Jul 2025
Viewed by 501
Abstract
This study investigates the effects of repeated mechanical recycling on the structural, thermal, mechanical, and aesthetic properties of poly(butylene succinate) (PBS), a commercially available bio-based and biodegradable aliphatic polyester. PBS production scraps were subjected to five consecutive recycling cycles through semi-industrial extrusion compounding [...] Read more.
This study investigates the effects of repeated mechanical recycling on the structural, thermal, mechanical, and aesthetic properties of poly(butylene succinate) (PBS), a commercially available bio-based and biodegradable aliphatic polyester. PBS production scraps were subjected to five consecutive recycling cycles through semi-industrial extrusion compounding followed by injection molding to simulate realistic mechanical reprocessing conditions. Melt mass-flow rate (MFR) analysis revealed a progressive increase in melt fluidity. Initially, the trend of viscosity followed the melt flow rate; however, increasing the reprocessing number (up to 5) resulted in a partial recovery of viscosity, which was caused by chain branching mechanisms. The phenomenon was also confirmed by data of molecular weight evaluation. Differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) confirmed the thermal stability of the polymer, with minimal shifts in glass transition, crystallization, and degradation temperatures during the reprocessing cycles. Tensile tests revealed a slight reduction in strength and stiffness, but an increase in elongation at break, indicating improved ductility. Impact resistance declined moderately from 8.7 to 7.3 kJ/m2 upon reprocessing; however, it exhibited a pronounced reduction to 1.8 kJ/m2 at −50 °C, reflecting brittle behavior under sub-ambient conditions. Despite these variations, PBS maintained excellent color stability (ΔE < 1), ensuring aesthetic consistency while retaining good mechanical and thermal properties. Full article
Show Figures

Figure 1

18 pages, 6158 KiB  
Article
Poly(butylene succinate) Film Coated with Hydroxypropyl Methylcellulose with Sea Buckthorn Extract and Its Ethosomes—Examination of Physicochemical and Antimicrobial Properties Before and After Accelerated UV Aging
by Szymon Macieja, Magdalena Zdanowicz, Małgorzata Mizielińska, Wojciech Jankowski and Artur Bartkowiak
Polymers 2025, 17(13), 1784; https://doi.org/10.3390/polym17131784 - 27 Jun 2025
Viewed by 358
Abstract
The new generation of food packaging should not only be biodegradable, but also provide additional protective properties for packaged products, extending their shelf life. In this paper, we present the results of research on cast-extruded poly(butylene succinate) (PBS) films coated with hydroxypropyl methylcellulose [...] Read more.
The new generation of food packaging should not only be biodegradable, but also provide additional protective properties for packaged products, extending their shelf life. In this paper, we present the results of research on cast-extruded poly(butylene succinate) (PBS) films coated with hydroxypropyl methylcellulose (HPMC) modified with CO2 extract from sea buckthorn (ES) or its ethosomes (ET) at amounts of 1 or 5 pph per HPMC. In addition, the developed films were exposed to accelerated aging (UV radiation and elevated temperature) to determine its effect on the films’ properties. Based on SEM, it can be concluded that accelerated aging results in the uncovering of the extract and ethosomes from the coating’s bulk. GPC showed a decrease in the molecular weight of PBS after treatment, additionally amplified by the presence of HPMC. However, the addition of ES or ET in low concentrations reduced the level of polyester degradation. The presence of the modified coating and its treatment increased the oxygen barrier (a decrease from 324 cm3/m2 × 24 h for neat PBS to 208 cm3/m2 × 24 h for the coated and modified PBS ET5). Despite the presence of colored extract or ethosomes in the coating, the color differences compared with neat PBS were imperceptible (ΔE < 1). The addition of 5 pph of sea buckthorn extract or its ethosomes in combination with accelerated aging resulted in the complete inhibition of the growth of E. coli and S. aureus, which was not observed in non-aged samples. The results obtained demonstrate an improvement in bioactive properties and protection against the negative effects of UV radiation on the film due to the presence of ET or ES in the coating. The developed systems could be used in the food industry as active packaging. Full article
Show Figures

Graphical abstract

36 pages, 1698 KiB  
Review
Enhancing Bioplastic Degradation in Anaerobic Digestion: A Review of Pretreatment and Co-Digestion Strategies
by Mohamed Shafana Farveen, Raúl Muñoz, Rajnish Narayanan and Octavio García-Depraect
Polymers 2025, 17(13), 1756; https://doi.org/10.3390/polym17131756 - 25 Jun 2025
Viewed by 864
Abstract
The increasing production of bioplastics worldwide requires sustainable end-of-life solutions to minimize the environmental burden. Anaerobic digestion (AD) has been recognized as a potential technology for valorizing waste and producing renewable energy. However, the inherent resistance of certain bioplastics to degradation under anaerobic [...] Read more.
The increasing production of bioplastics worldwide requires sustainable end-of-life solutions to minimize the environmental burden. Anaerobic digestion (AD) has been recognized as a potential technology for valorizing waste and producing renewable energy. However, the inherent resistance of certain bioplastics to degradation under anaerobic conditions requires specific strategies for improvement. Thus, in this review, the anaerobic biodegradability of commonly used bioplastics such as polylactic acid (PLA), polyhydroxybutyrate (PHB), polybutylene adipate-co-terephthalate (PBAT), polybutylene succinate (PBS), polycaprolactone (PCL), and starch- and cellulose-based bioplastics are critically evaluated for various operational parameters, including the temperature, particle size, inoculum-to-substrate ratio (ISR) and polymer type. Special attention is given to process optimization strategies, including pretreatment techniques (mechanical, thermal, hydrothermal, chemical and enzymatic) and co-digestion with nutrient-rich organic substrates, such as food waste and sewage sludge. The combinations of these strategies used for improving hydrolysis kinetics, increasing the methane yield and stabilizing reactor performance are described. In addition, new technologies, such as hydrothermal pretreatment and microbial electrolysis cell-assisted AD, are also considered as prospective strategies for reducing the recalcitrant nature of some bioplastics. While various strategies have enhanced anaerobic degradability, a consistent performance across bioplastic types and operational settings remains a challenge. By integrating key recent findings and limitations alongside pretreatment and co-digestion strategies, this review offers new insights to facilitate the circular use of bioplastics in solid waste management systems. Full article
(This article belongs to the Special Issue Advances in Polymer Composites with Upcycling Waste)
Show Figures

Figure 1

16 pages, 1024 KiB  
Systematic Review
Potential Applications of PRP-Enhanced Polybutylene Succinate Graft as Vascular Access for Chemotherapy in Oncological Patients: A Systematic Review
by Andrea Gottardo, Giulia Bonventre, Tancredi Didier Bazan Russo, Pietro Zanatta, Giulia Lo Monte, Valerio Gristina, Antonio Galvano, Antonio Russo and Attilio Ignazio Lo Monte
J. Funct. Biomater. 2025, 16(6), 228; https://doi.org/10.3390/jfb16060228 - 19 Jun 2025
Viewed by 584
Abstract
This systematic review aimed to evaluate the potential of combining platelet-rich plasma (PRP) and polybutylene succinate (PBS) for the development of vascular grafts in patients undergoing chemotherapy. Relevant articles published in English or Italian were selected through a comprehensive search of MEDLINE (via [...] Read more.
This systematic review aimed to evaluate the potential of combining platelet-rich plasma (PRP) and polybutylene succinate (PBS) for the development of vascular grafts in patients undergoing chemotherapy. Relevant articles published in English or Italian were selected through a comprehensive search of MEDLINE (via PubMed) and the Cochrane Library. A total of ten screened articles and two additional relevant studies were included. The synthesis of results was conducted using digital tools, thoroughly reviewed by the authors. The quality assessment of the included studies revealed a medium-to-high risk of bias, with frequent limitations such as small sample sizes, experimental designs, and overall moderate to low methodological quality. Despite the heterogeneity of the findings, the available evidence suggests that radiocephalic graft placement and the use of PBS as a scaffold material, in combination with the growth factors contained in PRP, may improve clinical outcomes and reduce complications related to arteriovenous graft implantation. While promising, the current literature on this topic remains scarce and fragmented, underscoring the need for additional preclinical and clinical research. The proposed approach appears to hold potential for improving vascular access in oncology, but further in vivo validation is essential. This study received no external funding. Registration: PROSPERO ID CRD42025646724. Full article
(This article belongs to the Section Biomaterials for Cancer Therapies)
Show Figures

Graphical abstract

20 pages, 2023 KiB  
Article
Flame Retardance and Antistatic Polybutylene Succinate/Polybutylene Adipate-Co-Terephthalate/Magnesium Composite
by Pornchai Rachtanapun, Jonghwan Suhr, Eunyoung Oh, Nanthicha Thajai, Thidarat Kanthiya, Krittameth Kiattipornpithak, Kannikar Kaewapai, Siriphan Photphroet, Patnarin Worajittiphon, Nuttapol Tanadchangsaeng, Pitiwat Wattanachai, Kittisak Jantanasakulwong and Choncharoen Sawangrat
Polymers 2025, 17(12), 1675; https://doi.org/10.3390/polym17121675 - 17 Jun 2025
Viewed by 729
Abstract
Antistatic and anti-flame biodegradable polymer composites were developed by melt-blending polybutylene succinate (PBS) with epoxy resin, polybutylene adipate-co-terephthalate (PBAT), and MgO particles. The composite films were prepared using a two-roll mill and an extrusion-blown film machine. Plasma and sparking techniques were used to [...] Read more.
Antistatic and anti-flame biodegradable polymer composites were developed by melt-blending polybutylene succinate (PBS) with epoxy resin, polybutylene adipate-co-terephthalate (PBAT), and MgO particles. The composite films were prepared using a two-roll mill and an extrusion-blown film machine. Plasma and sparking techniques were used to improve the antistatic properties of the composites. The PBS/E1/PBAT/MgO 15% composite exhibited an improvement in V-1 rating of flame retardancy, indicating an enhancement in the flame retardancy of biodegradable composite films. The tensile strength of the PBS/PBAT blend increased from 19 MPa to 25 MPa with the addition of 1% epoxy due to the epoxy reaction increasing compatibility between PBS and PBAT. The PBS/E1/PBAT and PBS/E1/PBAT blends with MgO 0, 0.5, and 1% showed increases in the contact angle to 80.9°, 83.0°, and 85.7°, respectively, because the epoxy improved the reaction between PBS and PBAT via the MgO catalyst effect. Fourier-transform infrared spectroscopy confirmed the reaction between the epoxy groups of the epoxy resin and the carboxyl end groups of PBS and PBAT by new peaks at 1246 and 1249 cm−1. Plasma technology (sputtering) presents better antistatic properties than the sparking process because of the high consistency of the metal nanoparticles on the surface. This composite can be applied for electronic devices as sustainable packaging. Full article
(This article belongs to the Special Issue Modeling of Polymer Composites and Nanocomposites)
Show Figures

Figure 1

21 pages, 8203 KiB  
Article
The Effects of Microplastics and Heavy Metals Individually and in Combination on the Growth of Water Spinach (Ipomoea aquatic) and Rhizosphere Microorganisms
by Jing-Yi Wang, Meng Wang, Jian-Wei Shi, B. Larry Li, Ling Liu, Peng-Fei Duan and Zhao-Jin Chen
Agronomy 2025, 15(6), 1319; https://doi.org/10.3390/agronomy15061319 - 28 May 2025
Viewed by 610
Abstract
Microplastics (MPs) and heavy metals are commonly present in soil at significant concentrations and can interact in complex ways that pose serious threats to environmental and ecological systems. The effects of combined contamination by different types of heavy metals and microplastics on plants, [...] Read more.
Microplastics (MPs) and heavy metals are commonly present in soil at significant concentrations and can interact in complex ways that pose serious threats to environmental and ecological systems. The effects of combined contamination by different types of heavy metals and microplastics on plants, as well as on soil microbial communities and their functions, remain largely unexplored. In this study, a series of pot experiments was conducted to investigate the effects of composite contamination involving two heavy metals (Cd and Pb) and two types of microplastics polylactic acid (PLA) and polybutylene succinate (PBS) at varying concentrations (0.1% and 0.5%, w/w). The impacts on water spinach (Ipomoea aquatica) growth and heavy metal accumulation were evaluated, and the rhizosphere bacterial and fungal community structure and diversity were analyzed using high-throughput sequencing. The presence of Cd, Pb, and microplastics significantly inhibited the growth of water spinach, reducing both its length and biomass. Under combined microplastic–heavy metal contamination, phytotoxicity increased with rising concentrations of PLA and PBS. Microplastics were found to alter the mobility and availability of heavy metals, thereby reducing their accumulation in plant tissues and decreasing the levels of available potassium and phosphorus in the soil. Furthermore, microplastic–heavy metal interactions significantly influenced the composition and diversity of soil microbial communities, leading to an increased abundance of heavy-metal-tolerant and potential plastic-degrading microorganisms. A strong correlation was observed between microbial community structure (both bacterial and fungal), soil physicochemical properties, and plant growth. Functional predictions using PICRUSt2 suggested that the type and concentration of microplastics significantly affected rhizosphere microorganisms’ metabolic functions. In conclusion, the present study demonstrates that combined microplastic and heavy metal contamination exerts a detrimental effect on soil nutrient availability, resulting in alterations to soil microbial community composition and function. Furthermore, this study shows that these contaminants can inhibit plant growth and heavy metal uptake. The findings provide a valuable contribution to the existing body of knowledge on the ecotoxicological impacts of microplastic–heavy metal composite pollution in terrestrial ecosystems. Full article
Show Figures

Figure 1

17 pages, 1971 KiB  
Article
Sustainable Microwave-Assisted Extraction of Hemp Seed Oil as Functional Additive into Polybutylene Succinate (PBS) Films for Food Packaging
by Giovanni Dal Poggetto, Mattia Di Maro, Luca Gargiulo, Donatella Duraccio, Gabriella Santagata and Giovanna Gomez d’Ayala
Polymers 2025, 17(10), 1376; https://doi.org/10.3390/polym17101376 - 16 May 2025
Viewed by 451
Abstract
In this study, microwave-assisted extraction (MAE) was performed to recover antioxidant hemp seed oil (HSO) with the purpose of developing polybutylene succinate (PBS)/HSO-based films for active packaging to improve food shelf-life. It was found that MAE achieved comparable yields, structural characteristics, and antioxidant [...] Read more.
In this study, microwave-assisted extraction (MAE) was performed to recover antioxidant hemp seed oil (HSO) with the purpose of developing polybutylene succinate (PBS)/HSO-based films for active packaging to improve food shelf-life. It was found that MAE achieved comparable yields, structural characteristics, and antioxidant activity to Soxhlet extraction, but in significantly less time (2.5 min vs. 6 h). PBS-based films with 0.5 and 1 wt% HSO were prepared by compression molding. Morphological investigation of the PBS-HSO films highlighted uniform oil droplet dispersion and good compatibility. HSO reduced PBS crystallinity but did not affect the α-form of PBS. Thermal analysis showed reductions in Tm and Tc, whereas Tg remained unchanged at −17 °C. PBS containing 1 wt% HSO exhibited a 42% decrease in Young’s modulus, 47% reduction in elongation at break, and 47% decrease in tensile strength due to the plasticizing effect of the oil and, which reduced the intermolecular forces and facilitated polymer chain disentanglement, in agreement with the FTIR analysis, which showed a distinct broadening of the carbonyl stretching region associated with the amorphous phase (1720–1730 cm−1) in the PBS-HSO films compared to neat PBS. Migration tests showed that the films are unsuitable for fatty foods but safe for aqueous, acidic, and alcoholic foods. Full article
Show Figures

Figure 1

19 pages, 4805 KiB  
Article
Biochemical Characterization and Polyester-Binding/Degrading Capability of Two Cutinases from Aspergillus fumigatus
by Haizhen Wang, Tianrui Zhang, Kaixiang Chen, Liangkun Long and Shaojun Ding
Microorganisms 2025, 13(5), 1121; https://doi.org/10.3390/microorganisms13051121 - 13 May 2025
Viewed by 647
Abstract
Two recombinant cutinases, AfCutA and AfCutB, derived from Aspergillus fumigatus, were heterologously expressed in Pichia pastoris and systematically characterized for their biochemical properties and polyester-degrading capabilities. AfCutA demonstrated superior catalytic performance compared with AfCutB, displaying higher optimal pH (8.0–9.0 [...] Read more.
Two recombinant cutinases, AfCutA and AfCutB, derived from Aspergillus fumigatus, were heterologously expressed in Pichia pastoris and systematically characterized for their biochemical properties and polyester-degrading capabilities. AfCutA demonstrated superior catalytic performance compared with AfCutB, displaying higher optimal pH (8.0–9.0 vs. 7.0–8.0), higher optimal temperature (60 °C vs. 50 °C), and greater thermostability. AfCutA exhibited increased hydrolytic activity toward p-nitrophenyl esters (C4–C16) and synthetic polyesters. Additionally, AfCutA released approximately 3.2-fold more acetic acid from polyvinyl acetate (PVAc) hydrolysis than AfCutB. Quartz crystal microbalance with dissipation monitoring (QCM-D) revealed rapid adsorption of both enzymes onto polyester films. However, their adsorption capacity on poly (ε-caprolactone) (PCL) films was significantly higher than on polybutylene succinate (PBS) films, and was influenced by pH. Comparative modeling of catalytic domains identified distinct structural differences between the two cutinases. AfCutA possesses a shallower substrate-binding cleft, fewer acidic residues, and more extensive hydrophobic regions around the active site, potentially explaining its enhanced interfacial activation and catalytic efficiency toward synthetic polyester substrates. The notably superior performance of AfCutA suggests its potential as a biocatalyst in industrial applications, particularly in polyester waste bioremediation and sustainable polymer processing. Full article
(This article belongs to the Section Microbial Biotechnology)
Show Figures

Graphical abstract

19 pages, 14891 KiB  
Article
Development of CS/PLA Composites with Enhanced Ductility via PBS Elastomer Reinforcement
by Tingqiang Yan, Kang Chen, Xiaodong Wang and Yingjie Qiao
Int. J. Mol. Sci. 2025, 26(10), 4643; https://doi.org/10.3390/ijms26104643 - 13 May 2025
Viewed by 472
Abstract
Polylactic acid (PLA) exhibits remarkable biocompatibility and biodegradability, rendering it a highly promising material for applications in packaging and disposable products. However, its inherent brittleness, low melt strength, and slow crystallization rate significantly restrict its practical uses. Our previous studies have shown that [...] Read more.
Polylactic acid (PLA) exhibits remarkable biocompatibility and biodegradability, rendering it a highly promising material for applications in packaging and disposable products. However, its inherent brittleness, low melt strength, and slow crystallization rate significantly restrict its practical uses. Our previous studies have shown that incorporating the ADR chain extender can yield chitosan–polylactic acid–ADR (CS/PLA-ADR) composites with outstanding antibacterial properties, enhanced biodegradability, and the capability to effectively block water vapor and oxygen. However, the low elongation at break (less than 10%) limits its application in scenarios that require high ductility. To enhance the toughness of the CS/PLA-ADR composites, the flexible biodegradable polybutylene succinate (PBS) is innovatively introduced. The mechanical properties of PBS can be compared with polyethylene and polypropylene, providing high strength and toughness. The mechanism of introducing PBS is to construct a good, toughened structure through the flexible structure of PBS in collaboration with ADR toughening agent, achieving a balance between strength and toughness in CS/PLA-ADR-PBS composites. The incorporation of PBS is anticipated to improve the ductility of CS/PLA-ADR composites. This study systematically investigates the effects of varying PBS content (0–30%) on the properties of CS/PLA-ADR-PBS composites, aiming to determine the optimal PBS content and elucidate the mechanism by which PBS enhances the overall performance of the composites. The results indicate that when the PBS content is 20%, the composites exhibit optimal overall properties. This research provides a theoretical foundation and technical support for the development of environmentally friendly and sustainable packaging materials, offering significant research value and broad application prospects. Full article
(This article belongs to the Special Issue Synthesis of Advanced Polymer Materials, 3rd Edition)
Show Figures

Figure 1

14 pages, 2100 KiB  
Article
Improved Bone Regeneration Using Biodegradable Polybutylene Succinate Artificial Scaffold with BMP-2 Protein in a Rabbit Model
by Giulio Edoardo Vigni, Mariano Licciardi, Lorenzo D’itri, Francesca Terracina, Sergio Scirè, Giuseppe Arrabito, Bruno Pignataro, Lawrence Camarda, Giovanni Cassata, Roberto Puleio, Lucio Di Silvestre and Luca Cicero
Materials 2025, 18(10), 2234; https://doi.org/10.3390/ma18102234 - 12 May 2025
Viewed by 476
Abstract
Extensive bone loss represents a great challenge for orthopedic and reconstructive surgery. On an in vivo rabbit model, the healing of two bone defects on a long bone, tibia, was studied. A polybutylene succinate (PBS) microfibrillar scaffold was implemented with BMP-2 protein and [...] Read more.
Extensive bone loss represents a great challenge for orthopedic and reconstructive surgery. On an in vivo rabbit model, the healing of two bone defects on a long bone, tibia, was studied. A polybutylene succinate (PBS) microfibrillar scaffold was implemented with BMP-2 protein and hydroxyapatite (HA) as potential osteogenic factors. The present study was carried out on 6 male New Zealand white (4–6 months old) rabbits in vivo model. One bone defect was created in each subject on the tibia. The controls were left to heal spontaneously while the study samples were treated with the polybutylene succinate (PBS) microfibrillar scaffolds doped with BMP-2 and HA. Histological and immunohistochemical analyses were performed after euthanasia at 3 and 6 months. The bone defect treated with the BMP-2 PBS scaffold shows, from 3 months, a significantly increased presence of activated osteoblasts with mineralized bone tissue deposition. This study confirms the great potential of PBS scaffolds in the clinical treatment of bone defects. Full article
(This article belongs to the Special Issue Advanced Materials for Bone Regeneration and Treatment)
Show Figures

Figure 1

24 pages, 7153 KiB  
Article
A Comparative Study on the Compatibilization of Thermoplastic Starch/Polybutylene Succinate Blends by Chain Extender and Epoxidized Linseed Oil
by Ke Gong, Yinshi Lu, Alexandre Portela, Soheil Farshbaf Taghinezhad, David Lawlor, Shane Connolly, Mengli Hu, Yuanyuan Chen and Maurice N. Collins
Macromol 2025, 5(2), 24; https://doi.org/10.3390/macromol5020024 - 12 May 2025
Cited by 1 | Viewed by 1307
Abstract
The immiscibility of thermoplastic starch (TPS) and polybutylene succinate (PBS) complicates the thermal processing of these materials. This study provides the first comparative assessment of two compatibilizers with differing reaction mechanisms, Joncryl® ADR 4468 and epoxidized linseed oil (ELO), for the optimization [...] Read more.
The immiscibility of thermoplastic starch (TPS) and polybutylene succinate (PBS) complicates the thermal processing of these materials. This study provides the first comparative assessment of two compatibilizers with differing reaction mechanisms, Joncryl® ADR 4468 and epoxidized linseed oil (ELO), for the optimization of biobased TPS/PBS blends. A total of 13 batches, varying in compatibilizer and blend composition, were processed via hot melt extrusion and injection molding to produce pellets. Blends were analyzed using tensile and impact testing, differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FTIR), rheology, and scanning electron microscopy (SEM). The findings suggest that both compatibilizers can improve the compatibility of these blends, as evidenced by higher glass transition temperatures (Tg) compared to the reference batch (100-0-N/A). Joncryl® ADR 4468 batches exhibit superior tensile strength and Young’s moduli, while ELO batches demonstrate greater elongation at break. The enhanced processability observed in Joncryl® ADR 4468 is attributed to the increased polymer chain entanglement and molecular weight, whereas ELO facilitates greater chain mobility due to its plasticizing effect. These differences arise from the distinct mechanisms of action: Joncryl® ADR 4468 promotes chain extension and crosslinking, whereas ELO mainly enhances flexibility through plasticization. Overall, this study provides a comparative assessment of these compatibilizers in TPS/PBS blends, laying the groundwork for future investigations into optimizing compatibilizer concentration and blend composition. Full article
(This article belongs to the Collection Advances in Biodegradable Polymers)
Show Figures

Figure 1

16 pages, 4271 KiB  
Article
The Influence of Spinning Process on the Properties and Structure of PBS Fibers
by Hao Liu, Hui Li and Zexu Hu
Polymers 2025, 17(9), 1138; https://doi.org/10.3390/polym17091138 - 22 Apr 2025
Viewed by 712
Abstract
As a bio-based polymer, polybutylene succinate (PBS) has extensive applications in plastic products and film manufacturing. However, its low melt strength results in poor spinnability, and during the forming process, it tends to form large-sized spherulites and exhibit filament adhesion phenomena. These limitations [...] Read more.
As a bio-based polymer, polybutylene succinate (PBS) has extensive applications in plastic products and film manufacturing. However, its low melt strength results in poor spinnability, and during the forming process, it tends to form large-sized spherulites and exhibit filament adhesion phenomena. These limitations have hindered its development in the field of fiber spinning. To enhance fiber strength, this work systematically investigated the effects of spinning temperature and spinning speed on the properties and structure of PBS pre-oriented yarns (PBS-POY). The results indicated that appropriately lowering the spinning temperature and increasing the spinning speed could improve the mechanical properties of the fibers. When the spinning temperature was 195 °C and the spinning speed reached 2500 m/min, the tensile strength of pre-oriented yarns achieved 2.09 cN/dtex. Furthermore, the evolution of properties and structures of pre-oriented yarns under maximum drawing conditions across different spinning speed systems was examined. By synchronously analyzing the correlations among mechanical properties, thermal behavior and condensed state structures, the structural performance regulation mechanism under the synergistic effect of spinning–drawing processes was revealed. The results demonstrated that fibers produced at higher spinning speeds contained more numerous and smaller spherulites. After maximum drawing, these smaller spherulites split into lamellae with higher uniformity, resulting in final fibers with smaller crystal sizes, higher crystallinity and improved orientation. As the spinning speed increased, the average crystal size of the final fibers decreased; the long period of the final fibers extended from 8.55 nm to 9.99 nm, and the mechanical strength improved to 2.72 cN/dtex. Full article
(This article belongs to the Section Polymer Fibers)
Show Figures

Figure 1

21 pages, 9141 KiB  
Article
Isolation, Identification and Screening of Plastic-Degrading Microorganisms: Qualitative and Structural Effects on Poly(Butylene Succinate) (PBS) Films
by Cristina América Morando-Grijalva, Ana Ramos-Díaz, Angel H. Cabrera-Ramirez, Juan Carlos Cuevas-Bernardino, Soledad Cecilia Pech-Cohuo, Angela Francisca Kú-González, Julia Cano-Sosa, Iván Emanuel Herrera-Pool, Sergio Valdivia-Rivera, Teresa Ayora-Talavera and Neith Pacheco
Polymers 2025, 17(8), 1128; https://doi.org/10.3390/polym17081128 - 21 Apr 2025
Viewed by 1575
Abstract
(1) Background: Plastic contamination is on the rise, despite ongoing research focused on alternatives such as bioplastics. However, most bioplastics require specific conditions to biodegrade. A promising alternative involves using microorganisms isolated from landfill soils that have demonstrated the ability to degrade plastic [...] Read more.
(1) Background: Plastic contamination is on the rise, despite ongoing research focused on alternatives such as bioplastics. However, most bioplastics require specific conditions to biodegrade. A promising alternative involves using microorganisms isolated from landfill soils that have demonstrated the ability to degrade plastic materials. (2) Methods: Soil samples were collected, and bacteria were isolated, characterized, and molecularly identified. Their degradative capacity was evaluated using the zone of clearing method, while their qualitative and structural degradative activity was assessed in a liquid medium on poly(butylene succinate) (PBS) films prepared by the cast method. (3) Results: Three strains—Bacillus cereus CHU4R, Acinetobacter baumannii YUCAN, and Pseudomonas otitidis YUC44—were selected. These strains exhibited the ability to cause severe damage to the microscopic surface of the films, attack the ester bonds within the PBS structure, and degrade lower-weight PBS molecules during the process. (4) Conclusions: this study represents the first report of strains isolated in Yucatán with plastic degradation activity. The microorganisms demonstrated the capacity to degrade PBS films by causing surface and structural damage at the molecular level. These findings suggest that the strains could be applied as an alternative in plastic biodegradation. Full article
Show Figures

Figure 1

Back to TopTop