Poly(Butylene Succinate) Film Coated with Hydroxypropyl Methylcellulose with Sea Buckthorn Extract and Its Ethosomes—Examination of Physicochemical and Antimicrobial Properties Before and After Accelerated UV Aging
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.2. Preparation of PBS Films via Cast Extrusion
2.3. Preparation of Coated Films
2.4. Accelerated UV Aging of the Films
2.5. Thickness and Mechanical Properties
2.6. Spectral Analysis of the Films
2.7. SEC of Neat PBS and the Samples After Accelerated UV Aging
2.8. Films Color Analysis
2.9. Oxygen Permeability Analysis
2.10. Contact Angle Measurement
2.11. Antimicrobial Analysis
2.12. Scanning Electron Microscopy Evaluation
2.13. Statistical Analysis
3. Results and Discussion
3.1. SEM
3.2. Contact Angle of PBS Surface
3.3. Spectral Analysis of the Films
3.4. Study of Influence of UV Aging and Type of Coating on the Average Molecular Weight—GPC Results
3.5. Mechanical Properties
3.6. Barrier Properties Towards Oxygen
3.7. Color Analysis
3.8. Antimicrobial Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Tajeddin, B.; Arabkhedri, M. Polymers and Food Packaging. In Polymer Science and Innovative Applications: Materials, Techniques, and Future Developments; Elsevier: Amsterdam, The Netherlands, 2020; pp. 525–543. [Google Scholar] [CrossRef]
- Chamas, A.; Moon, H.; Zheng, J.; Qiu, Y.; Tabassum, T.; Jang, J.H.; Abu-Omar, M.; Scott, S.L.; Suh, S. Degradation Rates of Plastics in the Environment. ACS Sustain. Chem. Eng. 2020, 8, 3494–3511. [Google Scholar] [CrossRef]
- Kosior, E.; Crescenzi, I. Solutions to the Plastic Waste Problem on Land and in the Oceans. In Plastic Waste and Recycling: Environmental Impact, Societal Issues, Prevention, and Solutions; Academic Press: Cambridge, MA, USA, 2020; pp. 415–446. [Google Scholar] [CrossRef]
- Gautam, B.P.S.; Qureshi, A.; Gwasikoti, A.; Kumar, V.; Gondwal, M. Global Scenario of Plastic Production, Consumption, and Waste Generation and Their Impacts on Environment and Human Health. In Advanced Strategies for Biodegradation of Plastic Polymers; Springer: Cham, Switzerland, 2024; pp. 1–34. [Google Scholar] [CrossRef]
- Singh, N.; Ogunseitan, O.A.; Wong, M.H.; Tang, Y. Sustainable Materials Alternative to Petrochemical Plastics Pollution: A Review Analysis. Sustain. Horiz. 2022, 2, 100016. [Google Scholar] [CrossRef]
- Turning off the Tap: How the World Can End Plastic Pollution and Create a Circular Economy|UNEP—UN Environment Programme. Available online: https://www.unep.org/resources/turning-off-tap-end-plastic-pollution-create-circular-economy (accessed on 18 June 2025).
- Barletta, M.; Aversa, C.; Ayyoob, M.; Gisario, A.; Hamad, K.; Mehrpouya, M.; Vahabi, H. Poly(Butylene Succinate) (PBS): Materials, Processing, and Industrial Applications. Prog. Polym. Sci. 2022, 132, 101579. [Google Scholar] [CrossRef]
- Rajgond, V.; Mohite, A.; More, N.; More, A. Biodegradable Polyester-Polybutylene Succinate (PBS): A Review. Polym. Bull. 2023, 81, 5703–5752. [Google Scholar] [CrossRef]
- Zdanowicz, M.; Paszkiewicz, S.; El Fray, M. Polyesters and Deep Eutectic Solvents: From Synthesis through Modification to Depolymerization. Prog. Polym. Sci. 2025, 161, 101930. [Google Scholar] [CrossRef]
- Zhao, T.; Yu, J.; Zhang, X.; Han, W.; Zhang, S.; Pan, H.; Zhang, Q.; Yu, X.; Bian, J.; Zhang, H. Thermal, Crystallization, and Mechanical Properties of Polylactic Acid (PLA)/Poly(Butylene Succinate) (PBS) Blends. Polym. Bull. 2024, 81, 2481–2504. [Google Scholar] [CrossRef]
- Zhao, J.H.; Wang, X.Q.; Zeng, J.; Yang, G.; Shi, F.H.; Yan, Q. Biodegradation of Poly(Butylene Succinate) in Compost. J. Appl. Polym. Sci. 2005, 97, 2273–2278. [Google Scholar] [CrossRef]
- Zdanowicz, M.; Mizielińska, M.; Kowalczyk, A. Cast Extruded Films Based on Polyhydroxyalkanoate/Poly(Lactic Acid) Blend with Herbal Extracts Hybridized with Zinc Oxide. Polymers 2024, 16, 1954. [Google Scholar] [CrossRef]
- Mizielińska, M.; Zdanowicz, M.; Tarnowiecka-Kuca, A.; Bartkowiak, A. The Influence of Functional Composite Coatings on the Properties of Polyester Films before and after Accelerated UV Aging. Materials 2024, 17, 3048. [Google Scholar] [CrossRef]
- Barbato, A.; Apicella, A.; Palmieri, F.; Incarnato, L. Development of Biodegradable PBS/PVOH-Based Films and Evaluation of Performance for Food Packaging Applications. Chem. Eng. Trans. 2023, 102, 97–102. [Google Scholar] [CrossRef]
- Aziman, N.; Kian, L.K.; Jawaid, M.; Sanny, M.; Alamery, S. Morphological, Structural, Thermal, Permeability, and Antimicrobial Activity of PBS and PBS/TPS Films Incorporated with Biomaster-Silver for Food Packaging Application. Polymers 2021, 13, 391. [Google Scholar] [CrossRef] [PubMed]
- Bizymis, A.P.; Giannou, V.; Tzia, C. Contribution of Hydroxypropyl Methylcellulose to the Composite Edible Films and Coatings Properties. Food Bioprocess Technol. 2023, 16, 1488–1501. [Google Scholar] [CrossRef]
- Sharma, S.; Barkauskaite, S.; Jaiswal, A.K.; Jaiswal, S. Essential Oils as Additives in Active Food Packaging. Food Chem. 2021, 343, 128403. [Google Scholar] [CrossRef] [PubMed]
- Tereshchuk, L.V.; Starovoitova, K.V.; Vyushinsky, P.A.; Zagorodnikov, K.A. The Use of Sea Buckthorn Processing Products in the Creation of a Functional Biologically Active Food Emulsion. Foods 2022, 11, 2226. [Google Scholar] [CrossRef] [PubMed]
- Reverchon, E.; De Marco, I. Supercritical Fluid Extraction and Fractionation of Natural Matter. J. Supercrit. Fluids 2006, 38, 146–166. [Google Scholar] [CrossRef]
- Macieja, S.; Bartkowiak, A.; Mizielińska, M. Preparation and Characterization of Poly(Butylene Succinate) Films Modified with Sea Buckthorn (Hippophae rhamnoides L.) Extract for Packaging Applications. Appl. Sci. 2025, 15, 2099. [Google Scholar] [CrossRef]
- Yu, W.; Du, Y.; Li, S.; Wu, L.; Guo, X.; Qin, W.; Kuang, X.; Gao, X.; Wang, Q.; Kuang, H. Sea Buckthorn-Nutritional Composition, Bioactivity, Safety, and Applications: A Review. J. Food Compos. Anal. 2024, 133, 106371. [Google Scholar] [CrossRef]
- Paiva-Santos, A.C.; Silva, A.L.; Guerra, C.; Peixoto, D.; Pereira-Silva, M.; Zeinali, M.; Mascarenhas-Melo, F.; Castro, R.; Veiga, F. Ethosomes as Nanocarriers for the Development of Skin Delivery Formulations. Pharm. Res. 2021, 38, 947–970. [Google Scholar] [CrossRef]
- Zhang, M.; Zhuang, X.; Li, S.; Wang, Y.; Zhang, X.; Li, J.; Wu, D. Designed Fabrication of Phloretin-Loaded Propylene Glycol Binary Ethosomes: Stability, Skin Permeability and Antioxidant Activity. Molecules 2024, 29, 66. [Google Scholar] [CrossRef]
- Zahid, S.R.; Upmanyu, N.; Dangi, S.; Ray, S.K.; Jain, P.; Parkhe, G. Ethosome: A Novel Vesicular Carrier for Transdermal Drug Delivery. J. Drug Deliv. Ther. 2018, 8, 318–326. [Google Scholar] [CrossRef]
- Macieja, S.; Lepczyński, A.; Bernaciak, M.; Śliwiński, M.; Bartkowiak, A.; Łopusiewicz, Ł. Effect of Melanin on the Stability of Casein Films Exposed to Artificially Accelerated UV Aging. Coatings 2023, 13, 1262. [Google Scholar] [CrossRef]
- Barczewski, M.; Zdanowicz, M.; Mysiukiewicz, O.; Dobrzyńska-Mizera, M.; Dudziec, B. Effect of Tetrasilanolphenyl Silsesquioxane on Properties of Sorbitol Derivative-Nucleated Polypropylene Cast Films. Plast. Rubber Compos. 2023, 52, 204–215. [Google Scholar] [CrossRef]
- ASTM D3985-17; Test Method for Oxygen Gas Transmission Rate Through Plastic Film and Sheeting Using a Coulometric Sensor. ASTM International: West Conshohocken, PA, USA, 2017. [CrossRef]
- Scolaro, C.; Brahimi, S.; Falcone, A.; Beghetto, V.; Visco, A. Mechanical and Physical Changes in Bio-Polybutylene-Succinate Induced by UVC Ray Photodegradation. Polymers 2024, 16, 1288. [Google Scholar] [CrossRef] [PubMed]
- Rao, B.L.; Shivananda, C.S.; Shetty, G.R.; Harish, K.V.; Madhukumar, R.; Sangappa, Y. Influence of UV Irradiation on Hydroxypropyl Methylcellulose Polymer Films. AIP Conf. Proc. 2018, 1953, 080011. [Google Scholar] [CrossRef]
- Topală, C.M.; Mazilu, I.C.; Vulpe, M.; Vîjan, L.E. QUALITY STUDY OF FRUITS AND EXTRACTS FROM SIX ROMANIAN SEA BUCKTHORN VARIETIES. Curr. Trends Nat. Sci. 2020, 9, 273–283. [Google Scholar] [CrossRef]
- Raghav, S.S.; Kumar, B.; Sethiya, N.K.; Pahwa, S. Development and Optimization of Kaempferol Loaded Ethosomes Using Box–Behnken Statistical Design: In Vitro and Ex-Vivo Assessments. J. Biomed. Mater. Res. B Appl. Biomater. 2024, 112, e35394. [Google Scholar] [CrossRef]
- Shi, S.C.; Wu, J.Y.; Huang, T.F. Raman, FTIR, and XRD Study of MoS2 Enhanced Hydroxypropyl Methylcellulose Green Lubricant. Opt. Quantum Electron. 2016, 48, 1–9. [Google Scholar] [CrossRef]
- Alkarri, S.; Sharma, D.; Bergholz, T.M.; Rabnawaz, M. Fabrication Methodologies for Antimicrobial Polypropylene Surfaces with Leachable and Nonleachable Antimicrobial Agents. J. Appl. Polym. Sci. 2024, 141, e54757. [Google Scholar] [CrossRef]
- Sharmin, N.; Rotabakk, B.T.; Grøvlen, M.S.; Larsen, H.; Skåra, T.; Pettersen, M.K. Recyclable and Non-Recyclable Packaging Films with Different Barrier Properties: Effect of Processing and Storage Time on Quality of Mashed Potato and Ground Carrot. J. Food Sci. 2024, 89, 9466–9482. [Google Scholar] [CrossRef]
- Lindsey, D.T.; Wee, A.G. Perceptibility and Acceptability of CIELAB Color Differences in Computer-Simulated Teeth. J. Dent. 2007, 35, 593–599. [Google Scholar] [CrossRef]
- Wang, C.Y.; Chang, F.Y. The Influence of Packaging Color on Taste Expectations and Perceptions. Color Res. Appl. 2022, 47, 1426–1441. [Google Scholar] [CrossRef]
- Michel, T.; Destandau, E.; Le Floch, G.; Lucchesi, M.E.; Elfakir, C. Antimicrobial, Antioxidant and Phytochemical Investigations of Sea Buckthorn (Hippophaë rhamnoides L.) Leaf, Stem, Root and Seed. Food Chem. 2012, 131, 754–760. [Google Scholar] [CrossRef]
- Wu, D.; Yang, Z.; Li, J.; Huang, H.; Xia, Q.; Ye, X.; Liu, D. Optimizing the Solvent Selection of the Ultrasound-Assisted Extraction of Sea Buckthorn (Hippophae rhamnoides L.) Pomace: Phenolic Profiles and Antioxidant Activity. Foods 2024, 13, 482. [Google Scholar] [CrossRef] [PubMed]
- Brobbey, K.J.; Saarinen, J.J.; Alakomi, H.-L.; Yang, B.; Toivakka, M. Efficacy of Natural Plant Extracts in Antimicrobial Packaging Systems. J. Appl. Packag. Res. 2017, 9, 6. [Google Scholar]
- Feng, K.; Feng, X.; Tan, W.; Zheng, Q.; Zhong, W.; Liao, C.; Liu, Y.; Li, S.; Hu, W. Development of a Food Preservative from Sea Buckthorn Together with Chitosan: Application in and Characterization of Fresh-Cut Lettuce Storage. Front. Microbiol. 2023, 14, 1080365. [Google Scholar] [CrossRef] [PubMed]
- Smida, I.; Pentelescu, C.; Pentelescu, O.; Sweidan, A.; Oliviero, N.; Meuric, V.; Martin, B.; Colceriu, L.; Bonnaure-Mallet, M.; Tamanai-Shacoori, Z. Benefits of Sea Buckthorn (Hippophae rhamnoides) Pulp Oil-based Mouthwash on Oral Health. J. Appl. Microbiol. 2019, 126, 1594–1605. [Google Scholar] [CrossRef]
Sample | HPMC Coated | Active Additives to HPMC Coating [Parts Per Hundred] | UV Aged |
---|---|---|---|
PBS | No | - | No |
PBS UV | No | - | Yes |
HPMC | Yes | - | No |
HPMC UV | Yes | - | Yes |
ES1 | Yes | 1 pph sea buckthorn scCO2 extract | No |
ES1 UV | Yes | Yes | |
ES5 | Yes | 5 pph sea buckthorn scCO2 extract | No |
ES5 UV | Yes | Yes | |
ET1 | Yes | 1 pph sea buckthorn scCO2 extract-based ethosomes | No |
ET1 UV | Yes | Yes | |
ET5 | Yes | 5 pph sea buckthorn scCO2 extract-based ethosomes | No |
ET5 UV | Yes | Yes |
Sample | Average Contact Angle [°] | Example Images |
---|---|---|
PBS | 63 ± 3 | |
PBS UV | 53 ± 6 | |
HPMC | 32 ± 3 | |
HPMC UV | 37 ± 4 | |
ES1 | 41 ± 2 | |
ES1 UV | 35 ± 4 | |
ES5 | 45 ± 5 | |
ES5 UV | 39 ± 3 | |
ET1 | 41 ± 4 | |
ET1 UV | 35 ± 3 | |
ET5 | 48 ± 5 | |
ET5 UV | 39 ± 4 |
Sample | Mn | Mw | PDI |
---|---|---|---|
PBS | 52,684 | 115,648 | 2.20 |
PBS UV | 47,138 | 110,276 | 2.34 |
HPMC UV | 45,063 | 103,793 | 2.30 |
ES1 UV | 46,472 | 106,888 | 2.31 |
ES5 UV | 45,144 | 105,663 | 2.34 |
ET1 UV | 47,453 | 108,535 | 2.29 |
ET5 UV | 45,188 | 105,628 | 2.34 |
Elongation | Puncture | |||||
---|---|---|---|---|---|---|
Sample | Thickness [µm] | YM [MPa] | TS [MPa] | EB [%] | Fmax [N] | Is [mm] |
PBS | 82 ± 2 a,b,e | 519 ± 70 d | 41.9 ± 3.5 b,f | 276 ± 31 c,d | 3.34 ± 0.11 a,b | 0.46 ± 0.10 a |
PBS UV | 74 ± 4 c | 660 ± 62 b,c,e | 28.0 ± 7.5 d,e | 6.42 ± 2.10 a | 3.04 ± 0.12 b | 0.43 ± 0.14 a |
HPMC | 78 ± 2 d,f | 636 ± 56 a,b,c | 50.1 ± 6.4 c | 323 ± 42 e,f | 3.21 ± 0.15 b,c | 0.59 ± 0.09 a,b |
HPMC UV | 83 ± 1 a,b | 677 ± 575 c,e,f | 37.9 ± 3.0 a,b | 21.2 ± 8.5 a,b | 3.15 ± 0.26 a,b | 0.47 ± 0.10 a |
ES1 | 80 ± 1 e,f | 579 ± 48 a,d | 48.3 ± 4.3 c | 327 ± 14 f | 3.98 ± 0.38 d | 0.56 ± 0.20 a,b |
ES1 UV | 76 ± 2 c,d | 612 ± 52 a,b,c | 27.2 ± 4.3 d | 7.21 ± 2.27 a | 3.97 ± 0.28 d | 0.53 ± 0.19 a |
ES5 | 84 ± 3 a,b | 634 ± 37.7 a,b,c | 47.7 ± 3.0 c,f | 297 ± 14 c,e | 3.34 ± 0.09 a,b,c | 0.44 ± 0.09 a |
ES5 UV | 82 ± 1 a,e | 606 ± 48 a,b,c | 33.6 ± 3.8 a,e | 33.9 ± 4.5 b | 3.95 ± 0.14 d | 0.53 ± 0.05 a |
ET1 | 76 ± 4 c,d | 745 ± 55 f | 38.3 ± 4.9 a,b | 252 ± 17 d | 3.56 ± 0.25 a | 0.57 ± 0.09 a,b |
ET1 UV | 75 ± 3 c | 720 ± 93 e,f | 36.9 ± 4.7 a,b | 13.7 ± 1.1 a,b | 3.32 ± 0.28 a,b,c | 0.48 ± 0.23 a |
ET5 | 84 ± 2 a,b | 588 ± 55 a,b,d | 38.2 ± 3.2 a,b | 292 ± 17 c | 3.57 ± 0.18 a | 0.41 ± 0.12 a |
ET5 UV | 85 ± 3 b | 640. ± 62 a,b,c | 34.6 ± 3.6 a | 71.2 ± 14.5 g | 3.89 ± 0.39 d | 0.75 ± 0.31 b |
Sample | L* | a* | b* | ΔE | YI | Opacity | T [700 nm] |
---|---|---|---|---|---|---|---|
PBS | 89.52 ± 0.10 g | −0.16 ± 0.15 c | 2.82 ± 0.08 a,b | Used as standard | 4.46 ± 0.12 a | 12.6 ± 0.3 a | 58.5 ± 1.1 e |
PBS UV | 90.15 ± 0.15 i | −0.13 ± 0.01 c,d | 2.30 ± 0.09 c | 0.83 ± 0.17 i | 3.64 ± 0.14 c | 11.6 ± 0.2 f | 58.7 ± 0.4 e |
HPMC | 89.95 ± 0.09 a,c | −0.54 ± 0.01 e | 2.98 ± 0.05 e | 0.68 ± 0.06 a,b | 4.73 ± 0.09 e | 11.1 ± 0.3 e | 54.6 ± 0.4 c,d |
HPMC UV | 90.01 ± 0.07 c,d | −0.43 ± 0.01 a,b | 2.83 ± 0.05 a | 0.63 ± 0.04 b,c | 4.50 ± 0.08 a,b | 13.2 ± 0.7 c | 52.4 ± 0.6 b |
ES1 | 90.07 ± 0.10 b | −0.40 ± 0.01 f | 2.69 ± 0.05 b | 0.67 ± 0.10 c | 4.26 ± 0.08 d | 13.6 ± 0.2 d | 55.8 ± 0.7 a,d |
ES1 UV | 89.91 ± 0.06 e | −0.41 ± 0.00 c,d | 2.85 ± 0.03 i | 0.53 ± 0.04 a | 4.54 ± 0.05 b | 13.7 ± 0.2 d | 46.4 ± 0.9 f |
ES5 | 89.65 ± 0.05 h | −0.55 ± 0.00 f | 3.41 ± 0.03 a | 0.79 ± 0.02 g | 5.44 ± 0.05 h | 12.3 ± 0.2 b | 53.9 ± 0.5 c |
ES5 UV | 89.91 ± 0.07 f | −0.45 ± 0.01 d | 3.06 ± 0.05 g | 0.62 ± 0.01 a | 4.86 ± 0.08 f | 12.9 ± 0.3 a | 47.8 ± 0.0 g |
ET1 | 89.60 ± 0.02 d | −0.34 ± 0.00 b | 2.79 ± 0.01 d | 0.28 ± 0.01 f | 4.45 ± 0.02 a | 12.3 ± 0.2 b | 56.6 ± 0.8 a |
ET1 UV | 87.70 ± 0.04 a | −0.14 ± 0.01 a,b | 3.53 ± 0.01 a | 1.93 ± 0.04 d | 5.75 ± 0.02 i | 12.8 ± 0.2 a | 51.8 ± 0.6 b |
ET5 | 89.74 ± 0.05 b | −0.33 ± 0.01 e | 2.86 ± 0.02 h | 0.36 ± 0.02 h | 4.55 ± 0.04 b | 12.7 ± 0.2 a | 56.8 ± 0.3 a |
ET5 UV | 88.96 ± 0.03 a | −0.10 ± 0.02 a | 3.30 ± 0.03 f | 0.73 ± 0.04 e | 5.30 ± 0.06 g | 13.2 ± 0.3 c | 50.3 ± 0.4 h |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Macieja, S.; Zdanowicz, M.; Mizielińska, M.; Jankowski, W.; Bartkowiak, A. Poly(Butylene Succinate) Film Coated with Hydroxypropyl Methylcellulose with Sea Buckthorn Extract and Its Ethosomes—Examination of Physicochemical and Antimicrobial Properties Before and After Accelerated UV Aging. Polymers 2025, 17, 1784. https://doi.org/10.3390/polym17131784
Macieja S, Zdanowicz M, Mizielińska M, Jankowski W, Bartkowiak A. Poly(Butylene Succinate) Film Coated with Hydroxypropyl Methylcellulose with Sea Buckthorn Extract and Its Ethosomes—Examination of Physicochemical and Antimicrobial Properties Before and After Accelerated UV Aging. Polymers. 2025; 17(13):1784. https://doi.org/10.3390/polym17131784
Chicago/Turabian StyleMacieja, Szymon, Magdalena Zdanowicz, Małgorzata Mizielińska, Wojciech Jankowski, and Artur Bartkowiak. 2025. "Poly(Butylene Succinate) Film Coated with Hydroxypropyl Methylcellulose with Sea Buckthorn Extract and Its Ethosomes—Examination of Physicochemical and Antimicrobial Properties Before and After Accelerated UV Aging" Polymers 17, no. 13: 1784. https://doi.org/10.3390/polym17131784
APA StyleMacieja, S., Zdanowicz, M., Mizielińska, M., Jankowski, W., & Bartkowiak, A. (2025). Poly(Butylene Succinate) Film Coated with Hydroxypropyl Methylcellulose with Sea Buckthorn Extract and Its Ethosomes—Examination of Physicochemical and Antimicrobial Properties Before and After Accelerated UV Aging. Polymers, 17(13), 1784. https://doi.org/10.3390/polym17131784