The Effects of Microplastics and Heavy Metals Individually and in Combination on the Growth of Water Spinach (Ipomoea aquatic) and Rhizosphere Microorganisms
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Materials
2.2. Pot Experiment
2.3. Sample Processing
2.4. High-Throughput Sequencing
2.5. Data Analysis
3. Results
3.1. Effects of Different Treatments on Soil Physicochemical Properties and Bioavailable Metal Content
3.2. Effect of Different Treatments on the Biomass of Water Spinach
3.3. Effects of Different Treatments on the Content and Accumulation of Cd and Pb in Water Spinach
3.4. Effect of Different Treatments on the Rhizosphere Soil Bacterial and Fungal Communities
3.5. RDA
3.6. Effect of Combined MPs and Heavy Metal Contamination Treatment on the Prediction of Bacterial Function
3.7. Mantel Test Analysis
4. Discussion
4.1. Combined Microplastic and Heavy Metal Contamination Can Exert Greater Phytotoxic Effects on Water Spinach Growth Compared to Single Pollution
4.2. Combined Microplastic and Heavy Metal Contamination Has a More Pronounced Effect on the Composition and Structure of the Water Spinach Rhizosphere Microbial Community Compared to Single Pollution
4.3. Combined Microplastic and Heavy Metal Contamination Has a More Pronounced Effect on the Functional Composition of the Water Spinach Rhizosphere Microbial Community Compared to Single Pollution
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wu, Y.; Li, X.; Yu, L.; Wang, T.; Wang, J.; Liu, T. Review of soil heavy metal pollution in China: Spatial distribution, primary sources, and remediation alternatives. Resour. Conserv. Recycl. 2022, 181, 106261. [Google Scholar] [CrossRef]
- Yang, Q.; Li, Z.; Lu, X.; Duan, Q.; Huang, L.; Bi, J. A review of soil heavy metal pollution from industrial and agricultural regions in China: Pollution and risk assessment. Sci. Total Environ. 2018, 642, 690–700. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.A.; Chen, Z.; Gao, W.; He, S.; Xiao, D.; Fan, W.; Huo, M.; Nugroho, W.A. Global trends and prospects in research on heavy metal pollution at contaminated sites. J. Environ. Manag. 2025, 383, 125402. [Google Scholar] [CrossRef]
- Long, Z.; Huang, Y.; Zhang, W.; Shi, Z.; Yu, D.; Chen, Y.; Liu, C.; Wang, R. Effect of different industrial activities on soil heavy metal pollution, ecological risk, and health risk. Environ. Monit. Assess. 2021, 193, 20. [Google Scholar] [CrossRef] [PubMed]
- Luo, X.; Wu, C.; Lin, Y.; Li, W.; Deng, M.; Tan, J.; Xue, S. Soil heavy metal pollution from Pb/Zn smelting regions in China and the remediation potential of biomineralization. J. Environ. Sci. 2023, 125, 662–677. [Google Scholar] [CrossRef]
- Yang, Y.; Hassan, M.F.; Ali, W.; Zou, H.; Liu, Z.; Ma, Y. Effects of Cadmium Pollution on Human Health: A Narrative Review. Atmosphere 2025, 16, 225. [Google Scholar] [CrossRef]
- Mohammed, A.S.; Kapri, A.; Goel, R. Heavy metal pollution: Source, impact, and remedies. Biomanag. Met. Contam. Soils 2011, 13, 1–28. [Google Scholar]
- Thacharodi, A.; Meenatchi, R.; Hassan, S.; Hussain, N.; Bhat, M.A.; Arockiaraj, J.; Ngo, H.H.; Le, Q.H.; Pugazhendhi, A. Microplastics in the environment: A critical overview on its fate, toxicity, implications, management, and bioremediation strategies. J. Environ. Manag. 2024, 349, 119433. [Google Scholar] [CrossRef]
- Tariq, M.; Iqbal, B.; Khan, I.; Khan, A.R.; Jho, E.H.; Salam, A.; Zhou, H.; Zhao, X.; Li, G.; Du, D. Microplastic contamination in the agricultural soil—Mitigation strategies, heavy metals contamination, and impact on human health: A review. Plant Cell Rep. 2024, 43, 65. [Google Scholar] [CrossRef]
- Duan, L.-Y.; Zhang, Y.; Li, Y.-Y.; Li, X.-Q.; Liu, Y.-Q.; Li, B.L.; Ding, C.-Y.; Ren, X.-M.; Duan, P.-F.; Han, H.; et al. Effects of combined microplastic and cadmium pollution on sorghum growth, Cd accumulation, and rhizosphere microbial functions. Ecotoxicol. Environ. Saf. 2024, 277, 116380. [Google Scholar] [CrossRef]
- Guo, J.-J.; Huang, X.-P.; Xiang, L.; Wang, Y.-Z.; Li, Y.-W.; Li, H.; Cai, Q.-Y.; Mo, C.-H.; Wong, M.-H. Source, migration and toxicology of microplastics in soil. Environ. Int. 2020, 137, 105263. [Google Scholar] [CrossRef]
- Gao, X.; Hassan, I.; Peng, Y.; Huo, S.; Ling, L. Behaviors and influencing factors of the heavy metals adsorption onto microplastics: A review. J. Clean. Prod. 2021, 319, 128777. [Google Scholar] [CrossRef]
- Cao, Y.; Zhao, M.; Ma, X.; Song, Y.; Zuo, S.; Li, H.; Deng, W. A critical review on the interactions of microplastics with heavy metals: Mechanism and their combined effect on organisms and humans. Sci. Total Environ. 2021, 788, 147620. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhao, S.-Y.; Zhang, R.-H.; Li, B.L.; Li, Y.-Y.; Han, H.; Duan, P.-F.; Chen, Z.-J. Screening of plant growth-promoting rhizobacteria helps alleviate the joint toxicity of PVC+Cd pollution in sorghum plants. Environ. Pollut. 2024, 355, 124201. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Chen, Y.; Jiao, R.-Q.; Gao, S.-S.; Li, B.L.; Li, Y.-Y.; Han, H.; Chen, Z.-J. Beneficial microbial consortia effectively alleviated plant stress caused by the synergistic toxicity of microplastics and cadmium. Ind. Crops Prod. 2025, 225, 120479. [Google Scholar] [CrossRef]
- Fu, Q.; Tan, X.; Ye, S.; Ma, L.; Gu, Y.; Zhang, P.; Chen, Q.; Yang, Y.; Tang, Y. Mechanism analysis of heavy metal lead captured by natural-aged microplastics. Chemosphere 2021, 270, 128624. [Google Scholar] [CrossRef] [PubMed]
- Qiongjie, W.; Yong, Z.; Yangyang, Z.; Zhouqi, L.; Jinxiaoxue, W.; Huijuan, C. Effects of biofilm on metal adsorption behavior and microbial community of microplastics. J. Hazard. Mater. 2022, 424, 127340. [Google Scholar] [CrossRef]
- Liu, Y.-Q.; Chen, Y.; Li, Y.-Y.; Ding, C.-Y.; Li, B.-L.; Han, H.; Chen, Z.-J. Plant growth-promoting bacteria improve the Cd phytoremediation efficiency of soils contaminated with PE–Cd complex pollution by influencing the rhizosphere microbiome of sorghum. J. Hazard. Mater. 2024, 469, 134085. [Google Scholar] [CrossRef]
- Barra Caracciolo, A.; Terenzi, V.J.M. Rhizosphere microbial communities and heavy metals. Microorganisms 2021, 9, 1462. [Google Scholar] [CrossRef]
- Reid, C.J.; Farrell, M.; Kirby, J.K. Microbial communities in biosolids-amended soils: A critical review of high-throughput sequencing approaches. J. Environ. Manag. 2025, 375, 124203. [Google Scholar] [CrossRef]
- Mazur-Marzec, H.; Andersson, A.F.; Błaszczyk, A.; Dąbek, P.; Górecka, E.; Grabski, M.; Jankowska, K.; Jurczak-Kurek, A.; Kaczorowska, A.K.; Kaczorowski, T.; et al. Biodiversity of microorganisms in the Baltic Sea: The power of novel methods in the identification of marine microbes. FEMS Microbiol. Rev. 2024, 48, fuae024. [Google Scholar] [CrossRef] [PubMed]
- Douglas, G.M.; Maffei, V.J.; Zaneveld, J.R.; Yurgel, S.N.; Brown, J.R.; Taylor, C.M.; Huttenhower, C.; Langille, M.G. PICRUSt2 for prediction of metagenome functions. Nat. Biotechnol. 2020, 38, 685–688. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Q.; Wang, J.; Li, H.; Wang, Z.; Makar, R.S.; Yao, L.; Chen, Z.; Han, H. Phosphate-solubilizing bacteria reduce Cd accumulation in spinach by forming P–Ca adhesive films in the roots and altering the structure of soil macroaggregates. J. Hazard. Mater. 2025, 494, 138482. [Google Scholar] [CrossRef] [PubMed]
- Briffa, J.; Sinagra, E.; Blundell, R. Heavy metal pollution in the environment and their toxicological effects on humans. Heliyon 2020, 6, e04691. [Google Scholar] [CrossRef]
- An, Q.; Wen, C.; Yan, C. Meta-analysis reveals the combined effects of microplastics and heavy metal on plants. J. Hazard. Mater. 2024, 476, 135028. [Google Scholar] [CrossRef]
- Khalid, S.; Tariq, T.Z.; Murtaza, B.; Younis, M.; Nadeem, H.M.; Al-Kahtani, A.A.; Niazi, N.K.; Shahid, M. Biochemical and Physiological Concepts for Plant Improvement. In Agricultural Crop Improvement; CRC Press: Boca Raton, FL, USA, 2025; pp. 90–109. [Google Scholar]
- Mehmood, I.; Wani, K.I.; Aftab, T. Role of Strigolactones in Heavy Metal Tolerance: A Case Study on Cadmium. In Strigolactones: Emerging Plant Hormones; Wiley: Hoboken, NJ, USA, 2025; pp. 137–159. [Google Scholar]
- Cardinoza, G.L.; Dela Torre, M.L.M.; Macasieb, M.P.; Estorico, G. Effect of Nickel on the Metal Eating Plant Rinorea niccolifera’s Growth and Reproduction Response. Int. J. Innov. Sci. Res. Technol. 2025, 10, 734–740. [Google Scholar] [CrossRef]
- Zhao, Y.; Du, A.; Ge, T.; Li, G.; Lian, X.; Zhang, S.; Hu, C.; Wang, X. Accumulation modes and effects of differentially charged polystyrene nano/microplastics in water spinach (Ipomoea aquatica F.). J. Hazard. Mater. 2024, 480, 135892. [Google Scholar] [CrossRef]
- Kumar, R.; Ivy, N.; Bhattacharya, S.; Dey, A.; Sharma, P. Coupled effects of microplastics and heavy metals on plants: Uptake, bioaccumulation, and environmental health perspectives. Sci. Total Environ. 2022, 836, 155619. [Google Scholar] [CrossRef]
- Kajal, S.; Thakur, S. Coexistence of microplastics and heavy metals in soil: Occurrence, transport, key interactions and effect on plants. Environ. Res. 2024, 262, 119960. [Google Scholar] [CrossRef]
- Pang, X.; Chen, C.; Sun, J.; Zhan, H.; Xiao, Y.; Cai, J.; Yu, X.; Liu, Y.; Long, L.; Yang, G. Effects of complex pollution by microplastics and heavy metals on soil physicochemical properties and microbial communities under alternate wetting and drying conditions. J. Hazard. Mater. 2023, 458, 131989. [Google Scholar] [CrossRef]
- Zhao, W.; Zhao, Y.; Geng, T.; Tian, Y.; Zhao, P. Co-transport behavior and Trojan-horse effect of colloidal microplastics with different functional groups and heavy metals in porous media. J. Hazard. Mater. 2023, 459, 131892. [Google Scholar] [CrossRef]
- Khaki, Q.Z.; Kumar, P. Ecological Impacts of Microplastics and Their Additives: Exposure Risk/Toxicity Assessment and Fate/Transport of Persistent, Bio—Accumulative and Toxic Substances. In Microplastics in the Environment: Fate, Impacts, Removal, and Management; Wiley: Hoboken, NJ, USA, 2025; pp. 259–282. [Google Scholar]
- Kumar, S.; Tripathi, A.; Yadhav, S.; Mishra, S.; Ghangrekar, M.M. Interactions of Microplastics with Microbial Communities and the Food Web/Plants. In Microplastics in the Environment: Fate, Impacts, Removal, and Management; Wiley: Hoboken, NJ, USA, 2025; pp. 283–310. [Google Scholar]
- Anderson, G.; Shenkar, N. Potential effects of biodegradable single-use items in the sea: Polylactic acid (PLA) and solitary ascidians. Environ. Pollut. 2021, 268, 115364. [Google Scholar] [CrossRef]
- Yu, H.; Hou, J.; Dang, Q.; Cui, D.; Xi, B.; Tan, W. Decrease in bioavailability of soil heavy metals caused by the presence of microplastics varies across aggregate levels. J. Hazard. Mater. 2020, 395, 122690. [Google Scholar] [CrossRef]
- Yu, H.; Zhang, Z.; Zhang, Y.; Fan, P.; Xi, B.; Tan, W. Metal type and aggregate microenvironment govern the response sequence of speciation transformation of different heavy metals to microplastics in soil. Sci. Total Environ. 2021, 752, 141956. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Zhang, T.; Zhou, L.; Lou, W.; Zeng, W.; Liu, T.; Yin, H.; Liu, H.; Liu, X.; Mathivanan, K.; et al. Soil microbial community assembly model in response to heavy metal pollution. Environ. Res. 2022, 213, 113576. [Google Scholar] [CrossRef] [PubMed]
- Yin, Y.; Wang, X.; Hu, Y.; Li, F.; Cheng, H. Soil bacterial community structure in the habitats with different levels of heavy metal pollution at an abandoned polymetallic mine. J. Hazard. Mater. 2023, 442, 130063. [Google Scholar] [CrossRef]
- Song, X.; Li, C.; Qiu, Z.; Wang, C.; Zeng, Q. Ecotoxicological effects of polyethylene microplastics and lead (Pb) on the biomass, activity, and community diversity of soil microbes. Environ. Res. 2024, 252, 119012. [Google Scholar] [CrossRef] [PubMed]
- Sazykin, I.; Khmelevtsova, L.; Azhogina, T.; Sazykina, M. Heavy metals influence on the bacterial community of soils: A review. Agriculture 2023, 13, 653. [Google Scholar] [CrossRef]
- Xu, R.; Sun, X.; Häggblom, M.M.; Dong, Y.; Zhang, M.; Yang, Z.; Xiao, E.; Xiao, T.; Gao, P.; Li, B.; et al. Metabolic potentials of members of the class Acidobacteriia in metal-contaminated soils revealed by metagenomic analysis. Environ. Microbiol. 2022, 24, 803–818. [Google Scholar] [CrossRef]
- Cai, P.; Chen, Q.; Du, W.; Yang, S.; Li, J.; Cai, H.; Zhao, X.; Sun, W.; Xu, N.; Wang, J. Deciphering the dynamics of metal and antibiotic resistome profiles under different metal (loid) contamination levels. J. Hazard. Mater. 2023, 455, 131567. [Google Scholar] [CrossRef]
- Zhang, X.; Zhou, R.; Teng, L.; Chen, H.; Li, M.; Wang, L.; Zhran, M.; Cao, F. Genotypic variation in grain cadmium concentration in wheat: Insights into soil pollution, agronomic characteristics, and rhizosphere microbial communities. Environ. Pollut. 2024, 340, 122792. [Google Scholar] [CrossRef] [PubMed]
- Sun, C.; Wu, P.; Wang, G.; Kong, X. Heavy metal pollution decreases the stability of microbial co-occurrence networks in the rhizosphere of native plants. Front. Environ. Sci. 2022, 10, 979922. [Google Scholar] [CrossRef]
- Zhang, G.; Liu, D.; Lin, J.; Kumar, A.; Jia, K.; Tian, X.; Yu, Z.; Zhu, B. Priming effects induced by degradable microplastics in agricultural soils. Soil. Biol. Biochem. 2023, 180, 109006. [Google Scholar] [CrossRef]
- Song, X.; Sun, S.; Gao, Y.; Zhang, W.; Zhou, L.; Wan, J.; Chen, J.; Zhou, L.; Yu, G. Laboratory-scale study of a biodegradable microplastic polylactic acid stabilizing aerobic granular sludge system. Environ. Pollut. 2022, 306, 119329. [Google Scholar] [CrossRef]
- Yu, Y.; Lin, S.; Sarkar, B.; Wang, J.; Liu, X.; Wang, D.; Ge, T.; Li, Y.; Zhu, B.; Yao, H. Mineralization and microbial utilization of poly(lactic acid) microplastic in soil. J. Hazard. Mater. 2024, 476, 135080. [Google Scholar] [CrossRef]
- Zhang, Y.; Gao, W.; Mo, A.; Jiang, J.; He, D. Degradation of polylactic acid/polybutylene adipate films in different ratios and the response of bacterial community in soil environments. Environ. Pollut. 2022, 313, 120167. [Google Scholar] [CrossRef]
- Chen, H.; Wang, Y.; Sun, X.; Peng, Y.; Xiao, L. Mixing effect of polylactic acid microplastic and straw residue on soil property and ecological function. Chemosphere 2020, 243, 125271. [Google Scholar] [CrossRef]
- Liu, R.; Liang, J.; Yang, Y.; Jiang, H.; Tian, X. Effect of polylactic acid microplastics on soil properties, soil microbials and plant growth. Chemosphere 2023, 329, 138504. [Google Scholar] [CrossRef]
- Qi, X.; Ren, Y.; Wang, X. New advances in the biodegradation of Poly(lactic) acid. Int. Biodeterior. Biodegrad. 2017, 117, 215–223. [Google Scholar] [CrossRef]
- Wu, H.; Zhang, Q.; Chen, X.; Wang, L.; Luo, W.; Zhang, Z.; Liu, H.; Zhao, T. Effect of HRT and BDPs types on nitrogen removal and microbial community of solid carbon source SND process treating low carbon/nitrogen domestic wastewater. J. Water Process Eng. 2021, 40, 101854. [Google Scholar] [CrossRef]
- Philippot, L.; Chenu, C.; Kappler, A.; Rillig, M.C.; Fierer, N. The interplay between microbial communities and soil properties. Nat. Rev. Microbiol. 2024, 22, 226–239. [Google Scholar] [CrossRef]
- Ghorbani-Nasrabadi, R.; Greiner, R.; Alikhani, H.A.; Hamedi, J.; Yakhchali, B. Distribution of actinomycetes in different soil ecosystems and effect of media composition on extracellular phosphatase activity. J. Soil. Sci. Plant Nutr. 2013, 13, 223–236. [Google Scholar] [CrossRef]
- Murphy, D.V.; Stockdale, E.A.; Brookes, P.C.; Goulding, K.W. Impact of Microorganisms on Chemical Transformations in Soil. In Soil Biological Fertility: A Key to Sustainable Land Use in Agriculture; Abbott, L.K., Murphy, D.V., Eds.; Springer: Dordrecht, The Netherland, 2007; pp. 37–59. [Google Scholar]
- Bao, W.; He, Y.; Liu, W. Diversity analysis of bacterial and function prediction in hurunge from mongolia. Front. Nutr. 2022, 9, 835123. [Google Scholar] [CrossRef]
- Lacerda, C.M.R.; Choe, L.H.; Reardon, K.F. Metaproteomic Analysis of a Bacterial Community Response to Cadmium Exposure. J. Proteome Res. 2007, 6, 1145–1152. [Google Scholar] [CrossRef] [PubMed]
- Wijesekara, H.; Bolan, N.S.; Bradney, L.; Obadamudalige, N.; Seshadri, B.; Kunhikrishnan, A.; Dharmarajan, R.; Ok, Y.S.; Rinklebe, J.; Kirkham, M.B.; et al. Trace element dynamics of biosolids-derived microbeads. Chemosphere 2018, 199, 331–339. [Google Scholar] [CrossRef]
- Bradney, L.; Wijesekara, H.; Palansooriya, K.N.; Obadamudalige, N.; Bolan, N.S.; Ok, Y.S.; Rinklebe, J.; Kim, K.-H.; Kirkham, M.B. Particulate plastics as a vector for toxic trace-element uptake by aquatic and terrestrial organisms and human health risk. Environ. Int. 2019, 131, 104937. [Google Scholar] [CrossRef] [PubMed]
- An, X.; Wang, Z.; Teng, X.; Zhou, R.; Wang, X.; Xu, M.; Lian, B. Rhizosphere bacterial diversity and environmental function prediction of wild salt-tolerant plants in coastal silt soil. Ecol. Indic. 2022, 134, 108503. [Google Scholar] [CrossRef]
- Tang, Y.; Liu, Y.; Chen, Y.; Zhang, W.; Zhao, J.; He, S.; Yang, C.; Zhang, T.; Tang, C.; Zhang, C.; et al. A review: Research progress on microplastic pollutants in aquatic environments. Sci. Total Environ. 2021, 766, 142572. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, S.; Olga, V.; Xue, Y.; Lv, S.; Diao, X.; Zhang, Y.; Han, Q.; Zhou, H. The potential effects of microplastic pollution on human digestive tract cells. Chemosphere 2022, 291, 132714. [Google Scholar] [CrossRef]
Experimental Treatment | MPS | MPs Concentrations/% (w/w) | Cd Concentrations/mg·kg−1 | Pb Concentrations/mg·kg−1 |
---|---|---|---|---|
CK | 0 | 0 | 0 | 0 |
Cd | 0 | 0 | 10 | 0 |
Pb | 0 | 0 | 0 | 200 |
0.1%PLA | PLA | 0.1% | 0 | 0 |
0.5%PLA | PLA | 0.5% | 0 | 0 |
0.1%PBS | PBS | 0.1% | 0 | 0 |
0.5%PBS | PBS | 0.5% | 0 | 0 |
0.1%PLA + Cd | PLA | 0.1% | 10 | 0 |
0.1%PLA + Pb | PLA | 0.1% | 0 | 200 |
0.5%PLA + Cd | PLA | 0.5% | 10 | 0 |
0.5%PLA + Pb | PLA | 0.5% | 0 | 200 |
0.1%PBS + Cd | PBS | 0.1% | 10 | 0 |
0.1%PBS + Pb | PBS | 0.1% | 0 | 200 |
0.5%PBS + Cd | PBS | 0.5% | 10 | 0 |
0.5%PBS + Pb | PBS | 0.5% | 0 | 200 |
Experimental Treatment | pH | AK/(mg⋅kg−1) | AP/(mg⋅kg−1) | TK/(mg⋅kg−1) | TP/(mg⋅kg−1) | DTPA-Cd (mg⋅kg−1) | DTPA-Pb (mg⋅kg−1) |
---|---|---|---|---|---|---|---|
CK | 7.13 ± 0.00 cdef | 78.23 ± 0.28 ab | 17.82 ± 0.15 a | 7.99 ± 0.22 b | 140.22 ± 12.30 a | 0 | 0 |
Cd | 7.39 ± 0.0 1 ab | 62.27 ± 0.76 g | 12.83 ± 0.72 cdef | 6.73 ± 0.12 cd | 97.13 ± 8.69 e | 2.26 + 0 ab | 0 |
Pb | 7.09 ± 0.00 defg | 63.33 ± 0.24 fg | 11.33 ± 0.25 fg | 6.35 ± 0.24 d | 99.61 ± 4.82 e | 0 | 12.33 + 0.20 c |
0.1%PLA | 6.84 ± 0.01 b | 76.87 ± 0.15 b | 14.26 ± 0.59 bcd | 7.57 ± 0.16 b | 136.33 ± 1.91 ab | 0 | 0 |
0.5%PLA | 6.85 ± 0.01 b | 77.6 ± 0.69 ab | 15.36 ± 0.65 bc | 7.23 ± 0.06 bc | 133.58 ± 5.73 abc | 0 | 0 |
0.1%PBS | 7.14 ± 0.02 cde | 76.53 ± 0.35 b | 16.00 ± 0.24 b | 7.65 ± 0.01 b | 131.38 ± 6.26 abcd | 0 | 0 |
0.5%PBS | 6.87 ± 0.01 gh | 79.80 ± 1.79 a | 12.75 ± 0.06 cdef | 7.58 ± 0.07 b | 133.64 ± 8.36 abc | 0 | 0 |
0.1%PLA + Cd | 7.50 ± 0.00 a | 66.23 ± 0.82 e | 10.53 ± 0.21 fg | 6.71 ± 0.08 cd | 114.88 ± 10.98 cde | 2.06 + 0.001 ab | 0 |
0.1%PLA + Pb | 7.23 ± 0.02 bcd | 69.10 ± 0.98 d | 12.2 ± 0.25 defg | 5.09 ± 0.02 f | 98.88 ± 2.90 e | 0 | 17.75 + 0.010 a |
0.5%PLA + Cd | 7.09 ± 0.01 defg | 64.73 ± 0.58 ef | 12.67 ± 0.04 cdef | 6.31 ± 0.05 d | 107.42 ± 11.71 e | 2.43 + 0.003 a | 0 |
0.5%PLA + Pb | 6.90 ± 0.01 fgh | 68.97 ± 1.61 d | 11.80 ± 0.02 efg | 5.51 ± 0.05 ef | 116.69 ± 11.93 bcde | 0 | 18.18 + 0.32 a |
0.1%PBS + Cd | 7.0 ± 0.01 defgh | 64.33 ± 0.98 efg | 14.1 ± 0.35 bcde | 6.07 ± 0.11 de | 111.43 ± 9.39 de | 1.97 + 0.012 b | 0 |
0.1%PBS + Pb | 7.0 ± 0.00 defgh | 65.70 ± 0.49 e | 13.7 ± 0.35 bcde | 5.09 ± 0.08 f | 110.10 ± 13.80 e | 0 | 17.34 + 0.01 a |
0.5%PBS + Cd | 6.94 ± 0.00 efgh | 65.23 ± 1.95 ef | 12.83 ± 0.18 cdef | 6.25 ± 0.08 de | 115.12 ± 7.46 bcde | 2.27 + 0.032 ab | 0 |
0.5%PBS + Pb | 7.16 ± 0.00 bcde | 73.73 ± 0.63 c | 12.51 ± 0.00 def | 6.31 ± 0 d | 103.44 ± 14.36 e | 0 | 13.04 + 1.27 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, J.-Y.; Wang, M.; Shi, J.-W.; Li, B.L.; Liu, L.; Duan, P.-F.; Chen, Z.-J. The Effects of Microplastics and Heavy Metals Individually and in Combination on the Growth of Water Spinach (Ipomoea aquatic) and Rhizosphere Microorganisms. Agronomy 2025, 15, 1319. https://doi.org/10.3390/agronomy15061319
Wang J-Y, Wang M, Shi J-W, Li BL, Liu L, Duan P-F, Chen Z-J. The Effects of Microplastics and Heavy Metals Individually and in Combination on the Growth of Water Spinach (Ipomoea aquatic) and Rhizosphere Microorganisms. Agronomy. 2025; 15(6):1319. https://doi.org/10.3390/agronomy15061319
Chicago/Turabian StyleWang, Jing-Yi, Meng Wang, Jian-Wei Shi, B. Larry Li, Ling Liu, Peng-Fei Duan, and Zhao-Jin Chen. 2025. "The Effects of Microplastics and Heavy Metals Individually and in Combination on the Growth of Water Spinach (Ipomoea aquatic) and Rhizosphere Microorganisms" Agronomy 15, no. 6: 1319. https://doi.org/10.3390/agronomy15061319
APA StyleWang, J.-Y., Wang, M., Shi, J.-W., Li, B. L., Liu, L., Duan, P.-F., & Chen, Z.-J. (2025). The Effects of Microplastics and Heavy Metals Individually and in Combination on the Growth of Water Spinach (Ipomoea aquatic) and Rhizosphere Microorganisms. Agronomy, 15(6), 1319. https://doi.org/10.3390/agronomy15061319