Influence of Oregano Essential Oil on the Rumen Microbiome of Organically Reared Alpine Goats: Implications for Methanobacteria Abundance
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Goats, Experimental Design and Diets
2.2. DNA Extraction, Sequencing and Taxonomy Analysis
2.3. Statistical Analysis
3. Results
3.1. Microbial Diversity Analysis
3.2. Microbial Abundance and Milk Yield Correlation
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pachauri, R.K.; Allen, M.R.; Barros, V.R.; Broome, J.; Cramer, W.; Christ, R.; Church, J.A.; Clarke, L.; Dahe, Q.; Dasgupta, P.; et al. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; IPCC: Geneva, Switzerland, 2014; p. 151. ISBN 978-92-9169-143-2. [Google Scholar]
- FAOSTAT. Emissions Database. 2022. Available online: https://www.fao.org/faostat/en/#data/GT (accessed on 26 October 2020).
- Global Methane Initiative. Global Methane Emissions and Mitigation Opportunities. Available online: https://www.globalmethane.org/documents/analysis_fs_en.pdf (accessed on 26 January 2025).
- Gerber, P.J.; Steinfeld, H.; Henderson, B.; Mottet, A.; Opio, C.; Dijkman, J.; Falcucci, A.; Tempio, G. Tackling Climate Change Through Livestock—A Global Assessment of Emissions and Mitigation Opportunities; Food and Agriculture Organization of the United Nations (FAO): Rome, Italy, 2013. [Google Scholar]
- Ripple, W.J.; Smith, P.; Haberl, H.; Montzka, S.A.; McAlpine, C.; Boucher, D.H. Ruminants, climate change and climate policy. Nat. Clim. Change 2014, 4, 2–5. [Google Scholar] [CrossRef]
- Beauchemin, K.A.; Ungerfeld, E.M.; Eckard, R.J.; Wang, M. Fifty years of research on rumen methanogenesis: Lessons learned and future challenges for mitigation. Animal 2020, 14, S2–S16. [Google Scholar] [CrossRef]
- Manabe, S. Role of greenhouse gas in climate change. Tellus A Dyn. Meteorol. Oceanogr. 2019, 71, 1620078. [Google Scholar] [CrossRef]
- Knaap, J.R.; Laur, G.L.; Vadas, P.A.; Weiss, W.P.; Tricarico, J.M. Enteric methane in dairy cattle production: Quantifying the opportunities and impact of reducing emissions. J. Dairy Sci. 2014, 97, 3231–3261. [Google Scholar] [CrossRef] [PubMed]
- Intergovernmental Panel on Climate Change (IPCC). Climate Change 2014: Mitigation of Climate Change, Working Group 3 Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC); Cambridge University Press: New York, NY, USA, 2014; Available online: https://www.ipcc.ch/pdf/assessment-report/ar5/wg3/ipcc_wg3_ar5_full.pdf (accessed on 10 May 2025).
- Johnson, K.A.; Johnson, D.E. Methane emissions from cattle. J. Anim. Sci. 1995, 73, 2483–2492. [Google Scholar] [CrossRef] [PubMed]
- Wallace, R.J.; John, A. Rooke, Nest McKain, Carol-Anne Duthie, Jimmy J. Hyslop, David W. Ross, Anthony Waterhouse, Mick Watson & Rainer Roehe The rumen microbial metagenome associated with high methane production in cattle. BMC Genom. 2015, 216, 839. [Google Scholar]
- Tapio, I.; Snelling, T.J.; Strozzi, F.; Wallace, R.J. The ruminal microbiome associated with methane emissions from ruminant livestock. J. Anim. Sci. Biotechnol. 2017, 8, 7. [Google Scholar] [CrossRef] [PubMed]
- Hristov, A.N.; Gerber, P.J.; Henderson, B.; Makkar, H.P.S. Mitigation of Greenhouse Gas Emissions in Livestock Production: A Review of Technical Options for Non-CO2 Emissions; FAO Animal Production and Health Paper No. 177; FAO: Rome, Italy, 2013. [Google Scholar]
- Negussie, E.; de Haas, Y.; Dehareng, F.; Dewhurst, R.J.; Dijkstra, J.; Gengler, N.; Morgavi, D.P.; Sauvant, D.; Schmitz-Hsu, F.; Biscarini, F. Large-scale indirect measurements for enteric methane emissions in dairy cattle: A review of proxies and their potential for use in management and breeding decisions. J. Dairy Sci. 2017, 100, 2433–2453. [Google Scholar] [CrossRef]
- Goopy, J.P.; Donaldson, A.; Hegarty, R.; Vercoe, P.E.; Haynes, F.; Barnett, M.; Oddy, V.H. Low methane yield sheep have smaller rumens and shorter rumen retention time. Br. J. Nutr. 2014, 111, 578–585. [Google Scholar] [CrossRef]
- Pinares-Patiño, C.; Ebrahimi, S.H.; McEwan, J.; Dodds, K.; Clark, H.; Luo, D. Is rumen retention time implicated in sheep differences in methane emission? Proc. N. Z. Soc. Anim. Prod. 2011, 71, 219–222. [Google Scholar]
- Shi, W.; Moon, C.D.; Leahy, S.C.; Kang, D.; Froula, J.; Kittelmann, S.; Fan, C.; Deutsch, S.; Gagic, M.; Seedorf, H.; et al. Methane yield phenotypes linked to differential gene expression in the sheep rumen microbiome. Genome Res. 2014, 24, 1517–1525. [Google Scholar] [CrossRef]
- Johnson, D.E.; Hill, T.M.; Ward, G.M.; Johnson, K.A.; Branine, M.E.; Carmean, B.R.; Lodman, D.W. Ruminants and other animals. In Atmospheric Methane: Sources, Sinks and Role in Global Change; Khalil, M.A.K., Ed.; Springer: Berlin/Heidelberg, Germany, 1993; Volume 13, pp. 219–229. [Google Scholar]
- Okine, E.K.; Basarab, J.A.; Laki, A.; Goonewardene, L.A.; Mir, P. Residual feed intake and feed efficiency: Differences and implications. In Florida Ruminant Nutrition Symposium; University of Florida: Gainesville, FL, USA, 2004; Available online: http://dairy.ifas.ufl.edu/files/rns/2004/Okine.pdf (accessed on 23 May 2021).
- Ultee, A.; Bennik, M.H.J.; Moezelaar, R. The phenolic hydroxyl group of carvacrol is essential for action against the food-borne pathogen Bacillus cereus. Appl. Environ. Microbiol. 2002, 68, 1561–1568. [Google Scholar] [CrossRef] [PubMed]
- Benchaar, C.; Calsamiglia, S.; Franco, I.; Chaves, A.V.; Bach, A.; Duval, S.M. Use of essential oils to mitigate enteric methane emissions from ruminants: A review. Anim. Feed Sci. Technol. 2008, 145, 209–228. [Google Scholar] [CrossRef]
- Thauer, R.K. Biochemistry of methanogenesis: A tribute to Marjory Stephenson. Microbiology 1998, 144, 2377–2406. [Google Scholar] [CrossRef] [PubMed]
- O’Neil, M.J. The Merck Index—An Encyclopedia of Chemicals, Drugs, and Biologicals, 13th ed.; Merck and Co.: Whitehouse Station, NJ, USA, 2001. [Google Scholar]
- Raskin, L.; Stromley, J.M.; Rittmann, B.E.; Stahl, D.A. Group-specific 16S rRNA hybridization probes to describe natural communities of methanogens. Appl. Environ. Microbiol. 1994, 60, 1232–1240. [Google Scholar] [CrossRef]
- Takai, K.; Horikoshi, K. Rapid detection and quantification of members of the archaeal community by quantitative PCR using fluorogenic probes. Appl. Environ. Microbiol. 2000, 66, 5066–5072. [Google Scholar] [CrossRef]
- Takahashi, S.; Tomita, J.; Nishioka, K.; Hisada, T.; Nishijima, M. Development of a Prokaryotic Universal Primer for Simultaneous Analysis of Bacteria and Archaea Using Next-Generation Sequencing. PLoS ONE 2014, 9, e105592. [Google Scholar] [CrossRef] [PubMed]
- Bolyen, E.; Rideout, J.R.; Dillon, M.R.; Bokulich, N.A.; Abnet, C.C.; Al-Ghalith, G.A.; Alexander, H.; Alm, E.J.; Arumugam, M.; Asnicar, F.; et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 2019, 37, 852–857. [Google Scholar] [CrossRef]
- Molano, L.G.; Vega-Abellaneda, S.; Manichanh, C. GSR-DB: A manually curated and optimized taxonomical database for 16S rRNA amplicon analysis. mSystems 2024, 9, e00950-23. [Google Scholar] [CrossRef]
- Shannon, C.E. A mathematical theory of communication. Bell Syst. Tech. J. 1948, 27, 379–423. [Google Scholar] [CrossRef]
- Simpson, E.H. Measurement of Diversity. Nature 1949, 163, 688. [Google Scholar] [CrossRef]
- Bray, J.R.; Curtis, J.T. An Ordination of the Upland Forest Communities of Southern Wisconsin. Ecol. Monogr. 1957, 27, 325–349. [Google Scholar] [CrossRef]
- Giannenas, I.; Skoufos, J.; Giannakopoulos, C.; Wiemann, M.; Gortzi, O.; Lalas, S.; Kyriazakis, I. Effects of essential oils on milk production, milk composition, and rumen microbiota in Chios dairy ewes. J. Dairy Sci. 2011, 94, 5569–5577. [Google Scholar] [CrossRef] [PubMed]
- Cobellis, G.; Trabalza-Marinucci, M.; Marcotullio, M.C.; Yu, Z. Evaluation of different essential oils in modulating methane and ammonia production, rumen fermentation, and rumen bacteria in vitro. Anim. Feed Sci. Technol. 2016, 215, 25–36. [Google Scholar] [CrossRef]
- Patra, A.K.; Yu, Z. Effects of essential oils on methane production and fermentation by, and abundance and diversity of, rumen microbial populations. Appl. Environ. Microbiol. 2012, 78, 4271–4280. [Google Scholar] [CrossRef]
- Paraskevakis, N. Effects of dietary Greek oregano (Origanum vulgare ssp. hirtum) supplementation on rumen fermentation, enzyme profile and microbial communities in goats. J. Anim. Physiol. Anim. Nutr. 2018, 102, 701–705. [Google Scholar] [CrossRef] [PubMed]
- Abd El-Aziz, A.; Elfadadny, A.; Abo Ghanima, M.; Cavallini, D.; Fusaro, I.; Giammarco, M.; Buonaiuto, G.; El-Sabrout, K. Nutritional Value of Oregano-Based Products and Its Effect on Rabbit Performance and Health. Animals 2024, 14, 3021. [Google Scholar] [CrossRef]
- Benchaar, C. Feeding oregano oil and its main component carvacrol does not affect ruminal fermentation, nutrient utilization, methane emissions, milk production, or milk fatty acid composition of dairy cows. J. Dairy Sci. 2020, 103, 1516–1527. [Google Scholar] [CrossRef]
- Lejonklev, J.; Kidmose, U.; Jensen, S.; Petersen, M.; Helwing, A.L.F.; Mortensen, G.; Weisbjerg, M.R.; Larsen, M. Short communication: Effect of oregano and caraway essential oils on the production and flavor of cow’s milk. J. Dairy Sci. 2016, 99, 7898–7903. [Google Scholar] [CrossRef]
- Tekippe, J.A.; Hristov, A.N.; Heyler, K.S.; Cassidy, T.W.; Zheljazkov, V.D.; Ferreira, J.F.S.; Karnati, S.K.; Varga, G.A. Rumen fermentation and production effects of Origanum vulgare L. leaves in lactating dairy cows. J. Dairy Sci. 2011, 94, 5065–5079. [Google Scholar] [CrossRef]
- Hristov, A.N.; Lee, C.; Cassidy, T.; Heyler, K.; Tekippe, J.A.; Varga, G.A.; Corl, B.; Brandt, R.C. Effect of Origanum vulgare L. leaves on rumen fermentation, production, and milk fatty acid composition in lactating dairy cows. J. Dairy Sci. 2013, 96, 1189–1202. [Google Scholar] [CrossRef] [PubMed]
- Khiaosa-Ard, R.; Zebeli, Q. Meta-analysis of the effects of essential oils and their bioactive compounds on rumen fermentation characteristics and feed efficiency in ruminants. J. Anim. Sci. 2013, 91, 1819–1830. [Google Scholar] [CrossRef] [PubMed]
Compound | Yield (%) |
---|---|
α-thujene | 0.04 |
α-pinene | 0.06 |
1-octen-3-ol | 0.03 |
β-myrcene | 0.09 |
α-terpinene | 0.13 |
p-cymene | 0.73 |
β-phellandrene | 0.07 |
γ-terpinene | 0.52 |
α-terpinolene | 0.04 |
borneol | 0.33 |
terpinen-4-ol | 0.40 |
α-terpineol | 0.14 |
carvacrol methyl ether | 0.05 |
thymol | 2.22 |
carvacrol | 92.80 |
β-caryophyllene | 0.99 |
α-humulene | 0.13 |
β-bisabolene | 0.72 |
δ-cadinene | 0.07 |
caryophyllene oxide | 0.24 |
Universal Prokaryotic Primer Pair | Archaeal Primer Pair | |
---|---|---|
Variable | p-Value | p-Value |
Day of sampling | 0.000 * | 0.000 * |
Group | 0.002 * | 0.000 * |
Milk yield | 0.000 * | 0.000 * |
Universal Prokaryotic Primer Pair | Archaeal Primer Pair | |
---|---|---|
Comparison Between Days | p-Value | p-Value |
Day 15 and 30 | 0.000 * | 0.000 * |
Day 30 and 45 | 0.000 * | 0.000 * |
Day 15 and 45 | 0.000 * | 0.000 * |
Universal Prokaryotic Primer Pair | Archaeal Primer Pair | |
---|---|---|
Comparison Between Groups | p-Value | p-Value |
Group 1 and 2 | 0.391 | 0.000 * |
Group 2 and 3 | 0.010 * | 0.087 |
Group 1 and 3 | 0.002 * | 0.000 * |
Universal Prokaryotic Primer Pair | Archaeal Primer Pair | |
---|---|---|
Comparison Between Groups | p-Value | p-Value |
Group 1 and 2 | 0.005 * | 0.000 * |
Group 2 and 3 | 0.000 * | 0.001 * |
Group 1 and 3 | 0.000 * | 0.000 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kyrtsoudis, D.; Alvanou, M.V.; Loukovitis, D.; Gourdouvelis, D.; Bampidis, V.A.; Chatziplis, D.; Mitsopoulos, I.K. Influence of Oregano Essential Oil on the Rumen Microbiome of Organically Reared Alpine Goats: Implications for Methanobacteria Abundance. Animals 2025, 15, 1937. https://doi.org/10.3390/ani15131937
Kyrtsoudis D, Alvanou MV, Loukovitis D, Gourdouvelis D, Bampidis VA, Chatziplis D, Mitsopoulos IK. Influence of Oregano Essential Oil on the Rumen Microbiome of Organically Reared Alpine Goats: Implications for Methanobacteria Abundance. Animals. 2025; 15(13):1937. https://doi.org/10.3390/ani15131937
Chicago/Turabian StyleKyrtsoudis, Dimitrios, Maria V. Alvanou, Dimitrios Loukovitis, Dimitrios Gourdouvelis, Vasileios A. Bampidis, Dimitrios Chatziplis, and Ioannis K. Mitsopoulos. 2025. "Influence of Oregano Essential Oil on the Rumen Microbiome of Organically Reared Alpine Goats: Implications for Methanobacteria Abundance" Animals 15, no. 13: 1937. https://doi.org/10.3390/ani15131937
APA StyleKyrtsoudis, D., Alvanou, M. V., Loukovitis, D., Gourdouvelis, D., Bampidis, V. A., Chatziplis, D., & Mitsopoulos, I. K. (2025). Influence of Oregano Essential Oil on the Rumen Microbiome of Organically Reared Alpine Goats: Implications for Methanobacteria Abundance. Animals, 15(13), 1937. https://doi.org/10.3390/ani15131937