Biosynthesis of Silver Nanoparticles via Medusomyces gisevii Fermentation with Origanum vulgare L. Extract: Antimicrobial Properties, Antioxidant Properties, and Phytochemical Analysis
Abstract
:1. Introduction
2. Results and Discussion
2.1. Determination of Phytochemical Composition and Antioxidant Activity
2.2. Scanning Electron Microscopy (SEM) Analysis
2.3. Transmission Electron Microscopy (TEM) Analysis
2.4. Antimicrobial Activity
3. Materials and Methods
3.1. Chemicals
3.2. Plant Materials
3.3. Preparation of Plant Extracts
3.4. Preparation of Medusomyces Gisevii Fremented Media
3.5. Green Synthesis of Silver Nanoparticles
3.6. Determination of Total Phenolic Content and Antioxidant Activity
3.7. Evaluation of Phenolic Compounds in Oregano Herb Samples Using the UHPLC-ESI-MS/MS Technique
3.8. Morphological Characterization of Plant Extracts and AgNPs
3.9. Antimicrobial Activity of O. vulgare
3.10. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mashau, M.E.; Mamagau, T.; Foforane, K.; Nethathe, B.; Ramphinwa, M.L.; Mudau, F.N. Biosynthesis of Silver Nanoparticles from Fermented Bush Tea (Athrixia phylicoides DC) Leaf Extract and Evaluation of Their Antioxidant and Antimicrobial Properties. Fermentation 2023, 9, 648. [Google Scholar] [CrossRef]
- Arumugam, D.S.; Jeyaraman, J.; Srinivasan, P. Green Synthesis of Silver Nanoparticles Using Lippia nodiflora Aerial Extract and Evaluation of Their Antioxidant, Antibacterial and Cytotoxic Effects. Resour. Effic. Technol. 2017, 3, 506–515. [Google Scholar] [CrossRef]
- Zehra, S.H.; Ramzan, K.; Viskelis, J.; Viskelis, P.; Balciunaitiene, A. Advancements in Green Synthesis of Silver-Based Nanoparticles: Antimicrobial and Antifungal Properties in Various Films. Nanomaterials 2025, 15, 252. [Google Scholar] [CrossRef] [PubMed]
- Zehra, S.H.; Khan, S.A.; Zehra, S.M.; Asad, M.Z. Removal of Cr6+ from Synthetic Polluted Water Using Fe Modified Sugarcane Bagasse & Peanut Shell Powder. J. Chem. Environ. 2023, 2, 1–13. [Google Scholar] [CrossRef]
- Roy, A.; Bulut, O.; Some, S.; Mandal, A.K.; Yilmaz, M.D. Green Synthesis of Silver Nanoparticles: Biomolecule-Nanoparticle Organizations Targeting Antimicrobial Activity. RSC Adv. 2019, 9, 2673–2702. [Google Scholar] [CrossRef]
- Gour, A.; Jain, N.K. Advances in Green Synthesis of Nanoparticles. Artif. Cells Nanomed. Biotechnol. 2019, 47, 844–851. [Google Scholar] [CrossRef]
- Naikoo, G.A.; Mustaqeem, M.; Hassan, I.U.; Awan, T.; Arshad, F.; Salim, H.; Qurashi, A. Bioinspired and Green Synthesis of Nanoparticles from Plant Extracts with Antiviral and Antimicrobial Properties: A Critical Review. J. Saudi Chem. Soc. 2021, 25, 101304. [Google Scholar] [CrossRef]
- Kumar, N.; Biswas, K.; Gupta, R.K. Green synthesis of Ag nanoparticles in large quantity by cryomilling. RSC Adv. 2016, 6, 111380–111388. [Google Scholar] [CrossRef]
- Tian, Z.; Wu, W.; Wan, W.; Li, A.D.Q. Single-Chromophore-Based Photoswitchable Nanoparticles Enable Dual-Alternating-Color Fluorescence for Unambiguous Live Cell Imaging. J. Am. Chem. Soc. 2009, 131, 4245–4252. [Google Scholar] [CrossRef]
- Ghosh Chaudhuri, R.; Paria, S. Core/Shell Nanoparticles: Classes, Properties, Synthesis Mechanisms, Characterization, and Applications. Chem. Rev. 2012, 112, 2373–2433. [Google Scholar] [CrossRef]
- Ahmad, S.; Munir, S.; Zeb, N.; Ullah, A.; Khan, B.; Ali, J.; Bilal, M.; Omer, M.; Alamzeb, M.; Salman, S.M.; et al. Green Nanotechnology: A Review on Green Synthesis of Silver Nanoparticles—An Ecofriendly Approach. Int. J. Nanomed. 2019, 14, 5087–5107. [Google Scholar] [CrossRef] [PubMed]
- Molaei, R.; Farhadi, K.; Forough, M.; Hajizadeh, S. Green Biological Fabrication and Characterization of Highly Monodisperse Palladium Nanoparticles Using Pistacia Atlantica Fruit Broth. J. Nanostruct. 2018, 8, 47–54. [Google Scholar] [CrossRef]
- Ulug, B.; Haluk Turkdemir, M.; Cicek, A.; Mete, A. Role of Irradiation in the Green Synthesis of Silver Nanoparticles Mediated by Fig (Ficus carica) Leaf Extract. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2015, 135, 153–161. [Google Scholar] [CrossRef] [PubMed]
- Jafari, S.; Derakhshankhah, H.; Alaei, L.; Fattahi, A.; Varnamkhasti, B.S.; Saboury, A.A. Mesoporous Silica Nanoparticles for Therapeutic/Diagnostic Applications. Biomed. Pharmacother. 2019, 109, 1100–1111. [Google Scholar] [CrossRef]
- Hamdan, A.; Stafford, L. A Versatile Route for Synthesis of Metal Nanoalloys by Discharges at the Interface of Two Immiscible Liquids. Nanomaterials 2022, 12, 3603. [Google Scholar] [CrossRef]
- Kodhaiyolii, S.; Mohanraj, S.; Rengasamy, M.; Pugalenthi, V. Phytofabrication of Bimetallic Co–Ni Nanoparticles Using Boerhavia Diffusa Leaf Extract: Analysis of Phytocompounds and Application for Simultaneous Production of Biohydrogen and Bioethanol. Mater. Res. Express 2019, 6, 095051. [Google Scholar] [CrossRef]
- Pugazhendhi, A.; Prabhu, R.; Muruganantham, K.; Shanmuganathan, R.; Natarajan, S. Anticancer, Antimicrobial and Photocatalytic Activities of Green Synthesized Magnesium Oxide Nanoparticles (MgONPs) Using Aqueous Extract of Sargassum Wightii. J. Photochem. Photobiol. B Biol. 2019, 190, 86–97. [Google Scholar] [CrossRef]
- Verma, V.; Al-Dossari, M.; Singh, J.; Rawat, M.; Kordy, M.G.M.; Shaban, M. A Review on Green Synthesis of TiO2 NPs: Photocatalysis and Antimicrobial Applications. Polymers 2022, 14, 1444. [Google Scholar] [CrossRef]
- Yadav, H.J.A.; Eraiah, B.; Kalasad, M.N.; Thippeswamy, M.; Rajasreelatha, V. Synthesis, Characterization of ZrO2:Tb3+ (1–9 Mol %) Nanophosphors for Blue Lighting Applications and Antibacterial Property. Biointerface Res. Appl. Chem. 2021, 12, 7147–7158. [Google Scholar] [CrossRef]
- Atalar, M.N.; Baran, A.; Baran, M.F.; Keskin, C.; Aktepe, N.; Yavuz, Ö.; İrtegun Kandemir, S. Economic Fast Synthesis of Olive Leaf Extract and Silver Nanoparticles and Biomedical Applications. Part. Sci. Technol. 2022, 40, 589–597. [Google Scholar] [CrossRef]
- Alwhibi, M.S.; Soliman, D.A.; Awad, M.A.; Alangery, A.B.; Al Dehaish, H.; Alwasel, Y.A. Green Synthesis of Silver Nanoparticles: Characterization and Its Potential Biomedical Applications. Green Process. Synth. 2021, 10, 412–420. [Google Scholar] [CrossRef]
- Chan, Y.Y.; Pang, Y.L.; Lim, S.; Chong, W.C. Facile Green Synthesis of ZnO Nanoparticles Using Natural-Based Materials: Properties, Mechanism, Surface Modification and Application. J. Environ. Chem. Eng. 2021, 9, 105417. [Google Scholar] [CrossRef]
- Lam, P.L.; Wong, R.M.; Lam, K.H.; Hung, L.K.; Wong, M.M.; Yung, L.H.; Ho, Y.W.; Wong, W.Y.; Hau, D.P.; Gambari, R.; et al. The role of reactive oxygen species in the biological activity of antimicrobial agents: An updated mini review. Chem. Biol. Interact. 2020, 320, 109023. [Google Scholar] [CrossRef] [PubMed]
- Banerjee, M.; Mallick, S.; Paul, A.; Chattopadhyay, A.; Ghosh, S.S. Heightened reactive oxygen species generation in the antimicrobial activity of a three-component iodinated chitosan− silver nanoparticle composite. Langmuir 2010, 26, 5901–5908. [Google Scholar] [CrossRef]
- Dhand, V.; Soumya, L.; Bharadwaj, S.; Chakra, S.; Bhatt, D.; Sreedhar, B. Green Synthesis of Silver Nanoparticles Using Coffea Arabica Seed Extract and Its Antibacterial Activity. Mater. Sci. Eng. C 2016, 58, 36–43. [Google Scholar] [CrossRef]
- Iravani, S.; Korbekandi, H.; Mirmohammadi, S.V.; Zolfaghari, B. Synthesis of Silver Nanoparticles: Chemical, Physical and Biological Methods. Res. Pharm. Sci. 2014, 9, 385–406. [Google Scholar]
- Lewandrowski, K.-U.; Da Silva, R.C.L.; Elfar, J.C.; Alhammoud, A.; Moghamis, I.S.; Burkhardt, B.W.; Oertel, J.M.; Landgraeber, S.; Fiorelli, R.K.A.; De Carvalho, P.S.T.; et al. Disability-Adjusted Life Years from Bone and Joint Infections Associated with Antimicrobial Resistance: An Insight from the 2019 Global Burden of Disease Study. Int. Orthop. 2024, 48, 1677–1688. [Google Scholar] [CrossRef]
- Balciunaitiene, A.; Januskevice, V.; Saunoriute, S.; Raubyte, U.; Viskelis, J.; Memvanga, P.B.; Viskelis, P. Antimicrobial Antioxidant Polymer Films with Green Silver Nanoparticles from Symphyti Radix. Polymers 2024, 16, 317. [Google Scholar] [CrossRef]
- Zhang, X.-F.; Liu, Z.-G.; Shen, W.; Gurunathan, S. Silver Nanoparticles: Synthesis, Characterization, Properties, Applications, and Therapeutic Approaches. Int. J. Mol. Sci. 2016, 17, 1534. [Google Scholar] [CrossRef]
- Ramphinwa, M.L.; Mchau, G.R.A.; Madala, N.E.; Nengovhela, N.; Ogola, J.B.O.; Mudau, F.N. Response of Plant Growth and Development, and Accumulation of Hydroxyl-Cinnamoyl Acid Derivatives to Selected Shade Nets and Seasonality of Field-Grown Bush Tea (Athrixia phylicoides DC.). HortScience 2022, 57, 87–96. [Google Scholar] [CrossRef]
- Joseph, S.; Mathew, B. Microwave-Assisted Facile Synthesis of Silver Nanoparticles in Aqueous Medium and Investigation of Their Catalytic and Antibacterial Activities. J. Mol. Liq. 2014, 197, 346–352. [Google Scholar] [CrossRef]
- Kumar Ghosh, S.; Kundu, S.; Mandal, M.; Nath, S.; Pal, T. Studies on the Evolution of Silver Nanoparticles in Micelle by UV-Photoactivation. J. Nanoparticle Res. 2003, 5, 577–587. [Google Scholar] [CrossRef]
- Bruna, T.; Maldonado-Bravo, F.; Jara, P.; Caro, N. Silver nanoparticles and their antibacterial applications. Int. J. Mol. Sci. 2021, 22, 7202. [Google Scholar] [CrossRef] [PubMed]
- Pastoriza-Santos, I.; Liz-Marzán, L.M. Formation of PVP-Protected Metal Nanoparticles in DMF. Langmuir 2002, 18, 2888–2894. [Google Scholar] [CrossRef]
- Zhang, W.; Qiao, X.; Chen, J. Synthesis and Characterization of Silver Nanoparticles in AOT Microemulsion System. Chem. Phys. 2006, 330, 495–500. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef] [PubMed]
- Khatoon, U.T.; Nageswara Rao, G.V.S.; Mohan, K.M.; Ramanaviciene, A.; Ramanavicius, A. Antibacterial and Antifungal Activity of Silver Nanospheres Synthesized by Tri-Sodium Citrate Assisted Chemical Approach. Vacuum 2017, 146, 259–265. [Google Scholar] [CrossRef]
- Qin, Y.; Ji, X.; Jing, J.; Liu, H.; Wu, H.; Yang, W. Size Control over Spherical Silver Nanoparticles by Ascorbic Acid Reduction. Colloids Surf. A Physicochem. Eng. Asp. 2010, 372, 172–176. [Google Scholar] [CrossRef]
- Song, K.C.; Lee, S.M.; Park, T.S.; Lee, B.S. Preparation of Colloidal Silver Nanoparticles by Chemical Reduction Method. Korean J. Chem. Eng. 2009, 26, 153–155. [Google Scholar] [CrossRef]
- Taleb, A.; Petit, C.; Pileni, M.P. Synthesis of Highly Monodisperse Silver Nanoparticles from AOT Reverse Micelles: A Way to 2D and 3D Self-Organization. Chem. Mater. 1997, 9, 950–959. [Google Scholar] [CrossRef]
- Zehra, S.M.; Bibi, M.; Mahmood, A.; Khattak, A.; Asad, M.Z.; Zehra, S.H. Phenol–Furfural Resin/Graphite/Ag-Based Electrically Conductive Adhesive Composites from Waste Bagasse with Enhanced Thermo-Electric Properties. Polymers 2023, 15, 3283. [Google Scholar] [CrossRef] [PubMed]
- Sharma, V.K.; Yngard, R.A.; Lin, Y. Silver Nanoparticles: Green Synthesis and Their Antimicrobial Activities. Adv. Colloid Interface Sci. 2009, 145, 83–96. [Google Scholar] [CrossRef] [PubMed]
- Abishad, P.; Vergis, J.; Unni, V.; Ram, V.P.; Niveditha, P.; Yasur, J.; Juliet, S.; John, L.; Byrappa, K.; Nambiar, P.; et al. Green Synthesized Silver Nanoparticles Using Lactobacillus acidophilus as an Antioxidant, Antimicrobial, and Antibiofilm Agent Against Multi-Drug Resistant Enteroaggregative Escherichia coli. Probiotics Antimicrob. Proteins 2022, 14, 904–914. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, A.; Mukherjee, P.; Senapati, S.; Mandal, D.; Khan, M.I.; Kumar, R.; Sastry, M. Extracellular Biosynthesis of Silver Nanoparticles Using the Fungus Fusarium oxysporum. Colloids Surf. B Biointerfaces 2003, 28, 313–318. [Google Scholar] [CrossRef]
- Waghmare, S.R.; Mulla, M.N.; Marathe, S.R.; Sonawane, K.D. Ecofriendly Production of Silver Nanoparticles Using Candida utilis and Its Mechanistic Action against Pathogenic Microorganisms. 3 Biotech 2015, 5, 33–38. [Google Scholar] [CrossRef]
- Elangovan, D.; Rahman, H.B.H.; Dhandapani, R.; Palanivel, V.; Thangavelu, S.; Paramasivam, R.; Muthupandian, S. Coating of Wallpaper with Green Synthesized Silver Nanoparticles from Passiflora foetida Fruit and Its Illustrated Antifungal Mechanism. Process Biochem. 2022, 112, 177–182. [Google Scholar] [CrossRef]
- Hanachi, P.; Gharari, Z.; Sadeghinia, H.; Walker, T.R. Synthesis of Bioactive Silver Nanoparticles with Eco-Friendly Processes Using Heracleum persicum Stem Extract and Evaluation of Their Antioxidant, Antibacterial, Anticancer and Apoptotic Potential. J. Mol. Struct. 2022, 1265, 133325. [Google Scholar] [CrossRef]
- Khane, Y.; Benouis, K.; Albukhaty, S.; Sulaiman, G.M.; Abomughaid, M.M.; Al Ali, A.; Aouf, D.; Fenniche, F.; Khane, S.; Chaibi, W.; et al. Green Synthesis of Silver Nanoparticles Using Aqueous Citrus limon Zest Extract: Characterization and Evaluation of Their Antioxidant and Antimicrobial Properties. Nanomaterials 2022, 12, 2013. [Google Scholar] [CrossRef]
- Periasamy, S.; Jegadeesan, U.; Sundaramoorthi, K.; Rajeswari, T.; Tokala, V.N.B.; Bhattacharya, S.; Muthusamy, S.; Sankoh, M.; Nellore, M.K. Comparative Analysis of Synthesis and Characterization of Silver Nanoparticles Extracted Using Leaf, Flower, and Bark of Hibiscus Rosasinensis and Examine Its Antimicrobicidal Activity. J. Nanomater. 2022, 2022, 8123854. [Google Scholar] [CrossRef]
- Rajkumar, G.; Sundar, R. Biogenic One-Step Synthesis of Silver Nanoparticles (AgNPs) Using an Aqueous Extract of Persea Americana Seed: Characterization, Phytochemical Screening, Antibacterial, Antifungal and Antioxidant Activities. Inorg. Chem. Commun. 2022, 143, 109817. [Google Scholar] [CrossRef]
- Riyanto; Mulwandari, M.; Asysyafiiyah, L.; Sirajuddin, M.I.; Cahyandaru, N. Direct Synthesis of Lemongrass (Cymbopogon citratus L.) Essential Oil-Silver Nanoparticles (EO-AgNPs) as Biopesticides and Application for Lichen Inhibition on Stones. Heliyon 2022, 8, e09701. [Google Scholar] [CrossRef] [PubMed]
- Valarmathi, N.; Ameen, F.; Almansob, A.; Kumar, P.; Arunprakash, S.; Govarthanan, M. Utilization of Marine Seaweed Spyridia filamentosa for Silver Nanoparticles Synthesis and Its Clinical Applications. Mater. Lett. 2020, 263, 127244. [Google Scholar] [CrossRef]
- Yassin, M.T.; Mostafa, A.A.-F.; Al-Askar, A.A.; Al-Otibi, F.O. Facile Green Synthesis of Silver Nanoparticles Using Aqueous Leaf Extract of Origanum majorana with Potential Bioactivity against Multidrug Resistant Bacterial Strains. Crystals 2022, 12, 603. [Google Scholar] [CrossRef]
- Natesan, K.; Ponmurugan, P.; Gnanamangai, B.M.; Suganya, M.; Kavitha, S. Biosynthesis of Silver Nanoparticles from Streptomyces spp., Characterization and Evaluating of Its Efficacy against Phomopsis Theae and Poria Hypolateria in Tea Plants (Camellia sinensis). Nano Biomed. Eng. 2020, 12, 272–280. [Google Scholar] [CrossRef]
- Bello, B.A.; Khan, S.A.; Khan, J.A.; Syed, F.Q.; Mirza, M.B.; Shah, L.; Khan, S.B. Anticancer, Antibacterial and Pollutant Degradation Potential of Silver Nanoparticles from Hyphaene Thebaica. Biochem. Biophys. Res. Commun. 2017, 490, 889–894. [Google Scholar] [CrossRef]
- Pennington, J.A.T.; Fisher, R.A. Classification of Fruits and Vegetables. J. Food Compos. Anal. 2009, 22, S23–S31. [Google Scholar] [CrossRef]
- Karre, L.; Lopez, K.; Getty, K.J.K. Natural Antioxidants in Meat and Poultry Products. Meat Sci. 2013, 94, 220–227. [Google Scholar] [CrossRef]
- Banerjee, R.; Verma, A.K.; Das, A.K.; Rajkumar, V.; Shewalkar, A.A.; Narkhede, H.P. Antioxidant Effects of Broccoli Powder Extract in Goat Meat Nuggets. Meat Sci. 2012, 91, 179–184. [Google Scholar] [CrossRef]
- Ham, Y.-K.; Hwang, K.-E.; Song, D.-H.; Kim, Y.-J.; Shin, D.-J.; Kim, K.-I.; Lee, H.-J.; Kim, N.-R.; Kim, C.-J. Lotus (Nelumbo nucifera) Rhizome as an Antioxidant Dietary Fiber in Cooked Sausage: Effects on Physicochemical and Sensory Characteristics. Korean J. Food Sci. Anim. Resour. 2017, 37, 219–227. [Google Scholar] [CrossRef]
- García-Lomillo, J.; Gonzalez-SanJose, M.L.; Del Pino-García, R.; Ortega-Heras, M.; Muñiz-Rodríguez, P. Antioxidant Effect of Seasonings Derived from Wine Pomace on Lipid Oxidation in Refrigerated and Frozen Beef Patties. LWT 2017, 77, 85–91. [Google Scholar] [CrossRef]
- Munekata, P.E.S.; Paseto Fernandes, R.D.P.; De Melo, M.P.; Trindade, M.A.; Lorenzo, J.M. Influence of Peanut Skin Extract on Shelf-Life of Sheep Patties. Asian Pac. J. Trop. Biomed. 2016, 6, 586–596. [Google Scholar] [CrossRef]
- González-Burgos, E.; Liaudanskas, M.; Viškelis, J.; Žvikas, V.; Janulis, V.; Gómez-Serranillos, M.P. Antioxidant activity, neuroprotective properties and bioactive constituents analysis of varying polarity extracts from Eucalyptus globulus leaves. J. Food Drug Anal. 2018, 26, 1293–1302. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
Compound | OrV, µg/g | OrV-AgNPs, µg/g | OrV-F-AgNPs, µg/g |
---|---|---|---|
Luteolin | 16.88 ± 1.44 | 51.38 ± 0.69 | 19.94 ± 0.40 |
Luteolin-4′-O-glucoside | 12.59 ± 0.47 | 21.32 ± 1.79 | 47.72 ± 3.24 |
Luteolin-7-rutinoside | 11.66 ± 0.67 | 19.64 ± 1.61 | 38.17 ± 1.91 |
Chlorogenic acid | 24.54 ± 1.52 | 22.78 ± 0.50 | 43.55 ± 4.05 |
Quercetin | 48.00 ± 4.28 | 28.47 ± 0.58 | 37.95 ± 2.63 |
Isorhamnetin-3-O-rutinoside | 76.98 ± 5.64 | 71.63 ± 6.86 | 27.29 ± 1.39 |
p–Coumaric acid | 55.47 ± 4.57 | 46.47 ± 4.12 | 35.6 ± 1.96 |
Galangin | 45.12 ± 3.12 | 57.29 ± 5.16 | 54.19 ± 4.29 |
Isorhamnetin | 74.11 ± 4.54 | 12.78 ± 0.52 | 13.33 ± 0.97 |
Apigenin | 48.44 ± 3.06 | 16.56 ± 0.64 | 87.78 ± 8.40 |
Rutin | 14.22 ± 0.67 | 68.89 ± 2.20 | 13.83 ± 1.08 |
Hyperoside | 32.22 ± 1.75 | 37.16 ± 1.95 | 96.18 ± 1.86 |
Naringenin | 47.78 ± 4.21 | 28.67 ± 1.62 | 24.78 ± 2.17 |
Rosmarinic acid | 3793 ± 255.3 | 256.3 ± 11.6 | 3272 ± 213.8 |
Luteolin-7-O-glucoside | 22.47 ± 1.14 | 14.37 ± 1.22 | 14.35 ± 0.64 |
Total | 4323 ± 285.6 | 753.68 ± 66.16 | 3827.17 ± 99.88 |
Compound Name | OrV | OrV-AgNPs | OrV-F-AgNPs |
---|---|---|---|
The total content of phenolic compounds, mg GAE/g DW | 210.17 ± 6.48 | 206.00 ± 0.59 | 257.25 ± 8.25 |
The total amount of proanthocyanidins, mg EE/g DW | 102.1 ± 0.03 | 87.5 ± 0.01 | 145.00 ± 0.02 |
The total amount of hydroxycinnamic acid derivatives, mg CAE/g DW | 2.78 ± 0.02 | 1.32 ± 0.04 | 2.86 ± 0.01 |
The total amount of phenolic compounds, mg GAE/g DW | 3.05 ± 0.01 | 1.90 ± 0.02 | 2.56 ± 0.01 |
The total amount of flavonoids, mg RE/g DW | 0.67 ± 0.01 | 0.17 ± 0.01 | 0.55 ± 0.01 |
Assay | OrV | OrV-AgNPs | OrV-F-AgNPs |
---|---|---|---|
ABTS, mmol TE/g | 0.74 ± 0.002 | 0.65 ± 0.006 | 0.59 ± 0.023 |
FRAP, mmol TE/g | 1.11 ± 0.04 | 1.02 ± 0.08 | 0.95 ± 0.04 |
CUPRAC, mmol TE/g | 1.59 ± 0.003 | 1.54 ± 0.007 | 1.45 ± 0.048 |
Cultures of Microorganisms | OrV | OrV-AgNPs | OrV-F-AgNPs |
---|---|---|---|
Inhibition zone (mm) | |||
Staphylococcus aureus | 1.40 ± 0.12 | 10.30 ± 0.04 | 11.54 ± 0.10 |
ß-streptococcus | 0.40 ± 0.10 | 9.40 ± 0.05 | 10.85 ± 0.05 |
Staphylococcus epidermidis | 0.00 ± 0.00 | 9.05 ± 0.15 | 10.95 ± 0.40 |
Escherichia coli | 0.00 ± 0.00 | 5.50 ± 0.20 | 5.80 ± 0.03 |
Klebsiella pneumoniae | 0.00 ± 0.00 | 4.20 ± 0.01 | 5.15 ± 0.01 |
Pseudomonas aeruginosa | 0.00 ± 0.00 | 3.85 ± 0.10 | 4.02 ± 0.10 |
Proteus vulgaris | 0.00 ± 0.00 | 4.10 ± 0.25 | 5.17 ± 0.16 |
Bacillus cereus | 0.00 ± 0.00 | 5.85 ± 0.17 | 7.00 ± 0.08 |
Enterococcus faecalis | 0.00 ± 0.00 | 6.85 ± 0.05 | 8.50 ± 0.05 |
Candida albicans | 0.00 ± 0.00 | 4.89 ± 0.10 | 6.25 ± 0.10 |
Compound | Parent Ion (m/z) | Daughter Ion (m/z) | Cone Voltage, V | Collision Energy, eV |
---|---|---|---|---|
p–Coumaric acid | 163 | 93 | 28 | 22 |
Galangin | 269 | 171 | 50 | 30 |
Apigenin | 269 | 117 | 54 | 36 |
Naringenin | 271 | 151 | 46 | 18 |
Luteolin | 285 | 133 | 58 | 36 |
Quercetin | 301 | 151 | 48 | 18 |
Isorhamnetin | 315 | 300 | 44 | 22 |
Chlorogenic acid | 353 | 191 | 32 | 14 |
Rosmarinic acid | 359 | 161 | 36 | 16 |
Luteolin-4′-O-glucoside | 447 | 285 | 36 | 16 |
Luteolin-7-O-glucoside | 447 | 285 | 66 | 26 |
Hyperoside | 463 | 300 | 50 | 26 |
Luteolin-7-rutinoside | 593 | 285 | 82 | 36 |
Rutin | 609 | 300 | 70 | 38 |
Isorhamnetin-3-O-rutinoside | 623 | 315 | 70 | 32 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Balciunaitiene, A.; Zehra, S.H.; Liaudanskas, M.; Zvikas, V.; Viskelis, J.; Nuapia, Y.B.; Siukscius, A.; Singh, P.K.; Janulis, V.; Viskelis, P. Biosynthesis of Silver Nanoparticles via Medusomyces gisevii Fermentation with Origanum vulgare L. Extract: Antimicrobial Properties, Antioxidant Properties, and Phytochemical Analysis. Molecules 2025, 30, 1706. https://doi.org/10.3390/molecules30081706
Balciunaitiene A, Zehra SH, Liaudanskas M, Zvikas V, Viskelis J, Nuapia YB, Siukscius A, Singh PK, Janulis V, Viskelis P. Biosynthesis of Silver Nanoparticles via Medusomyces gisevii Fermentation with Origanum vulgare L. Extract: Antimicrobial Properties, Antioxidant Properties, and Phytochemical Analysis. Molecules. 2025; 30(8):1706. https://doi.org/10.3390/molecules30081706
Chicago/Turabian StyleBalciunaitiene, Aiste, Syeda Hijab Zehra, Mindaugas Liaudanskas, Vaidotas Zvikas, Jonas Viskelis, Yannick Belo Nuapia, Arturas Siukscius, Pradeep Kumar Singh, Valdimaras Janulis, and Pranas Viskelis. 2025. "Biosynthesis of Silver Nanoparticles via Medusomyces gisevii Fermentation with Origanum vulgare L. Extract: Antimicrobial Properties, Antioxidant Properties, and Phytochemical Analysis" Molecules 30, no. 8: 1706. https://doi.org/10.3390/molecules30081706
APA StyleBalciunaitiene, A., Zehra, S. H., Liaudanskas, M., Zvikas, V., Viskelis, J., Nuapia, Y. B., Siukscius, A., Singh, P. K., Janulis, V., & Viskelis, P. (2025). Biosynthesis of Silver Nanoparticles via Medusomyces gisevii Fermentation with Origanum vulgare L. Extract: Antimicrobial Properties, Antioxidant Properties, and Phytochemical Analysis. Molecules, 30(8), 1706. https://doi.org/10.3390/molecules30081706