Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (480)

Search Parameters:
Keywords = OH-TiO2

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 1436 KiB  
Article
Basalt Fiber Mechanical Properties After Low-Temperature Treatment
by Sergey I. Gutnikov, Evgeniya S. Zhukovskaya, Sergey S. Popov and Bogdan I. Lazoryak
Textiles 2025, 5(3), 32; https://doi.org/10.3390/textiles5030032 - 5 Aug 2025
Abstract
This study investigates the production and characterization of basalt continuous fibers (BCFs) with varying oxide contents (including Na2O, SiO2, CaO, TiO2, and Al2O3), derived from modified basalt bulk glasses. The fibers were created [...] Read more.
This study investigates the production and characterization of basalt continuous fibers (BCFs) with varying oxide contents (including Na2O, SiO2, CaO, TiO2, and Al2O3), derived from modified basalt bulk glasses. The fibers were created through a two-stage process that included the preparation of basalt glasses followed by fiber drawing. A key focus of the research was on evaluating the mechanical properties of BCF after low-temperature treatments. Tensile testing revealed that the maximum tensile strength of the fibers was 1915 MPa at room temperature, which decreased to 1714 MPa at −196 °C, representing a shift of −10.5%. The addition of sodium oxide not only broadened the fiber-forming temperature range but also increased the strength to 2351 MPa. However, significant reductions in strength were observed at cryogenic temperatures, particularly for the Na-rich sample, which experienced a decrease of 32.8%. These findings highlight the importance of optimizing oxide content and minimizing hydroxyl (OH) groups to enhance the performance of basalt fibers in low-temperature applications, positioning them as viable materials for use in extreme environments. Full article
(This article belongs to the Special Issue Advances in Technical Textiles)
Show Figures

Figure 1

16 pages, 3308 KiB  
Article
Photocatalytic Degradation of Typical Fibrates by N and F Co-Doped TiO2 Nanotube Arrays Under Simulated Sunlight Irradiation
by Xiangyu Chen, Hao Zhong, Juanjuan Yao, Jingye Gan, Haibing Cong and Tengyi Zhu
Water 2025, 17(15), 2261; https://doi.org/10.3390/w17152261 - 29 Jul 2025
Viewed by 245
Abstract
Fibrate pharmaceuticals (fibrates), as a widespread class of emerging contaminants, pose potential risks to both ecological systems and human health. The photocatalytic system based on nitrogen (N) and fluorine (F) co-doped TiO2 nanotube arrays (NF-TNAs) provides a renewable solution for fibrate pharmaceutical [...] Read more.
Fibrate pharmaceuticals (fibrates), as a widespread class of emerging contaminants, pose potential risks to both ecological systems and human health. The photocatalytic system based on nitrogen (N) and fluorine (F) co-doped TiO2 nanotube arrays (NF-TNAs) provides a renewable solution for fibrate pharmaceutical removal from water, powered by inexhaustible sunlight. In this study, the degradation of two typical fibrates, i.e., bezafibrate (BZF) and ciprofibrate (CPF), under simulated sunlight irradiation through NF-TNAs were investigated. The photocatalytic degradation of BZF/CPF was achieved through combined radical and non-radical oxidation processes, while the generation and reaction mechanisms of associated reactive oxygen species (ROS) were examined. Electron paramagnetic resonance detection and quenching tests confirmed the existence of h+, •OH, O2•−, and 1O2, with O2•− playing the predominant role. The transformation products (TPs) of BZF/CPF were identified through high-resolution mass spectrometry analysis combined with quantum chemical calculations to elucidate the degradation pathways. The influence of co-existing ions and typical natural organic matters (NOM) on BZF/CPF degradation were also tested. Eventually, the ecological risk of BZF/CPF transformation products was assessed through quantitative structure–activity relationship (QSAR) modeling, and the results showed that the proposed photocatalytic system can largely alleviate fibrate toxicity. Full article
Show Figures

Graphical abstract

23 pages, 4900 KiB  
Article
Degradation of Glyphosate in Water by Electro-Oxidation on Magneli Phase: Application to a Nanofiltration Concentrate
by Wiyao Maturin Awesso, Ibrahim Tchakala, Sophie Tingry, Geoffroy Lesage, Julie Mendret, Akpénè Amenuvevega Dougna, Eddy Petit, Valérie Bonniol, Mande Seyf-Laye Alfa-Sika and Marc Cretin
Molecules 2025, 30(15), 3153; https://doi.org/10.3390/molecules30153153 - 28 Jul 2025
Viewed by 295
Abstract
This study evaluates the efficiency of sub-stoichiometric Ti4O7 titanium oxide anodes for the electrochemical degradation of glyphosate, a persistent herbicide classified as a probable carcinogen by the World Health Organization. After optimizing the process operating parameters (pH and current density), [...] Read more.
This study evaluates the efficiency of sub-stoichiometric Ti4O7 titanium oxide anodes for the electrochemical degradation of glyphosate, a persistent herbicide classified as a probable carcinogen by the World Health Organization. After optimizing the process operating parameters (pH and current density), the mineralization efficiency and fate of degradation by-products of the treated solution were determined using a total organic carbon (TOC) analyzer and HPLC/MS, respectively. The results showed that at pH = 3, glyphosate degradation and mineralization are enhanced by the increased generation of hydroxyl radicals (OH) at the anode surface. A current density of 14 mA cm2 enables complete glyphosate removal with 77.8% mineralization. Compared with boron-doped diamond (BDD), Ti4O7 shows close performance for treatment of a concentrated glyphosate solution (0.41 mM), obtained after nanofiltration of a synthetic ionic solution (0.1 mM glyphosate), carried out using an NF-270 membrane at a conversion rate (Y) of 80%. At 10 mA cm2 for 8 h, Ti4O7 achieved 81.3% mineralization with an energy consumption of 6.09 kWh g1 TOC, compared with 90.5% for BDD at 5.48 kWh g1 TOC. Despite a slight yield gap, Ti4O7 demonstrates notable efficiency under demanding conditions, suggesting its potential as a cost-effective alternative to BDD for glyphosate electro-oxidation. Full article
(This article belongs to the Special Issue Advanced Oxidation Processes (AOPs) in Treating Organic Pollutants)
Show Figures

Figure 1

27 pages, 18125 KiB  
Review
Molecules and Chemistry in Red Supergiants
by Lucy M. Ziurys and Anita M. S. Richards
Galaxies 2025, 13(4), 82; https://doi.org/10.3390/galaxies13040082 - 21 Jul 2025
Viewed by 403
Abstract
The envelopes of Red Supergiants (RSGs) have a unique chemical environment not seen in other types of stars. They foster an oxygen-rich synthesis but are tempered by sporadic and chaotic mass loss, which distorts the envelope and creates complex outflow sub-structures consisting of [...] Read more.
The envelopes of Red Supergiants (RSGs) have a unique chemical environment not seen in other types of stars. They foster an oxygen-rich synthesis but are tempered by sporadic and chaotic mass loss, which distorts the envelope and creates complex outflow sub-structures consisting of knots, clumps, and arcs. Near the stellar photosphere, molecules and grains form under approximate LTE conditions, as predicted by chemical models. However, the complicated outflows appear to have distinct chemistries generated by shocks and dust destruction. Various RSG envelopes have been probed for their molecular content, mostly by radio and millimeter observations; however, VY Canis Majoris (VY CMa) and NML Cygni (NML Cyg) display the highest chemical complexity, and also the most complicated envelope structure. Thus far, over 29 different molecules have been identified in the envelopes of RSGs. Some molecules are common for circumstellar gas, including CO, SiO, HCN and H2O, which have abundances of ∼10−6–10−4, relative to H2. More exotic oxides have additionally been discovered, such as AlO, AlOH, PO, TiO2, and VO, with abundances of ∼10−9–10−7. RSG shells support intricate maser emission in OH, H2O and SiO, as well. Studies of isotope ratios in molecules suggest dredge-up at least into the H-burning shell, but further exploration is needed. Full article
(This article belongs to the Special Issue The Red Supergiants: Crucial Signposts for the Fate of Massive Stars)
Show Figures

Figure 1

14 pages, 2050 KiB  
Article
Electrospun PANI/PEO-Luffa Cellulose/TiO2 Nanofibers: A Sustainable Biocomposite for Conductive Applications
by Gözde Konuk Ege, Merve Bahar Okuyucu and Özge Akay Sefer
Polymers 2025, 17(14), 1989; https://doi.org/10.3390/polym17141989 - 20 Jul 2025
Viewed by 485
Abstract
Herein, electrospun nanofibers composed of polyaniline (PANI), polyethylene oxide (PEO), and Luffa cylindrica (LC) cellulose, reinforced with titanium dioxide (TiO2) nanoparticles, were synthesized via electrospinning to investigate the effect of TiO2 nanoparticles on PANI/PEO/LC nanocomposites and the effect of conductivity [...] Read more.
Herein, electrospun nanofibers composed of polyaniline (PANI), polyethylene oxide (PEO), and Luffa cylindrica (LC) cellulose, reinforced with titanium dioxide (TiO2) nanoparticles, were synthesized via electrospinning to investigate the effect of TiO2 nanoparticles on PANI/PEO/LC nanocomposites and the effect of conductivity on nanofiber morphology. Cellulose extracted from luffa was added to the PANI/PEO copolymer solution, and two different ratios of TiO2 were mixed into the PANI/PEO/LC biocomposite. The morphological, vibrational, and thermal characteristics of biocomposites were systematically investigated using scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), differential scanning calorimetry (DSC), and thermogravimetric analysis (TGA). As anticipated, the presence of TiO2 enhanced the electrical conductivity of biocomposites, while the addition of Luffa cellulose further improved the conductivity of the cellulose-based nanofibers. FTIR analysis confirmed chemical interactions between Luffa cellulose and PANI/PEO matrix, as evidenced by the broadening of the hydroxyl (OH) absorption band at 3500–3200 cm−1. Additionally, the emergence of characteristic peaks within the 400–1000 cm−1 range in the PANI/PEO/LC/TiO2 spectra signified Ti–O–Ti and Ti–O–C vibrations, confirming the incorporation of TiO2 into the biocomposite. SEM images of the biocomposites reveal that the thickness of nanofibers decreases by adding Luffa to PANI/PEO nanofibers because of the nanofibers branching. In addition, when blending TiO2 nanoparticles with the PANI/PEO/LC biocomposite, this increment continued and obtained thinner and smother nanofibers. Furthermore, the incorporation of cellulose slightly improved the crystallinity of the nanofibers, while TiO2 contributed to the enhanced crystallinity of the biocomposite according to the XRD and DCS results. Similarly, the TGA results supported the DSC results regarding the increasing thermal stability of the biocomposite nanofibers with TiO2 nanoparticles. These findings demonstrate the potential of PANI/PEO/LC/TiO2 nanofibers for advanced applications requiring conductive and structurally optimized biomaterials, e.g., for use in humidity or volatile organic compound (VOC) sensors, especially where flexibility and environmental sustainability are required. Full article
Show Figures

Figure 1

23 pages, 15718 KiB  
Article
Trace and Rare-Earth-Element Chemistry of Quartz from the Tuztaşı Low-Sulfidation Epithermal Au-Ag Deposit, Western Türkiye: Implications for Gold Exploration from Quartz Mineral Chemistry
by Fatih Özbaş, Essaid Bilal and Ahmed Touil
Minerals 2025, 15(7), 758; https://doi.org/10.3390/min15070758 - 19 Jul 2025
Viewed by 439
Abstract
The Tuztaşı low-sulfidation epithermal Au–Ag deposit (Biga Peninsula, Türkiye) records a multi-stage hydrothermal history that can be interpreted through the trace and rare-earth-element (REE) chemistry of quartz. High-precision LA-ICP-MS analyses of five representative quartz samples (23 ablation spots; 10 analytically robust) reveal two [...] Read more.
The Tuztaşı low-sulfidation epithermal Au–Ag deposit (Biga Peninsula, Türkiye) records a multi-stage hydrothermal history that can be interpreted through the trace and rare-earth-element (REE) chemistry of quartz. High-precision LA-ICP-MS analyses of five representative quartz samples (23 ablation spots; 10 analytically robust) reveal two fluid stages. Early fluids were cold, dilute meteoric waters (δ18O₍H2O₎ ≈ −6.8 to +0.7‰), whereas later fluids circulated deeper, interacted with felsic basement rocks, and evolved in composition. Mineralized quartz displays marked enrichment in As (raw mean = 2854 ± 6821 ppm; filtered mean = 70 ± 93 ppm; one spot 16,775 ppm), K (498 ± 179 ppm), and Sb (57.8 ± 113 ppm), coupled with low Ti/Al (<0.005) and elevated Ge/Si (0.14–0.65 µmol mol−1). Chondrite-normalized REE patterns show pronounced but variable LREE enrichment ((La/Yb)n ≤ 45.3; ΣLREE/ΣHREE up to 10.8) and strongly positive Eu anomalies (δEu ≤ 9.3) with slightly negative Ce anomalies (δCe ≈ 0.29); negligible Ce–Eu covariance (r2 ≈ 0.05) indicates discrete redox pulses. These signatures indicate chemically evolved, reducing fluids conducive to Au–Ag deposition. By contrast, barren quartz is characterized by lower pathfinder-element contents, less fractionated REE profiles, higher Ti/Al, and weaker Eu anomalies. A composite exploration toolkit emerges: As > 700 ppm, As/Sb > 25, Ti/Al < 0.005, Ge/Si > 0.15 µmol mol−1, and δEu ≫ 1 reliably identify ore-bearing zones when integrated with δ18O data and fluid-inclusion microthermometry from earlier studies on the same vein system. This study provides one of the first systematic applications of integrated trace-element and REE analysis of quartz to a Turkish low-sulfidation epithermal system, offering an applicable model for vectoring mineralization in analogous settings worldwide. Full article
(This article belongs to the Section Mineral Deposits)
Show Figures

Figure 1

18 pages, 3495 KiB  
Article
Next-Generation Light Harvesting: MXene (Ti3C2Tx)-Based Metamaterial Absorbers for a Broad Wavelength Range from 0.3 μm to 18 μm
by Abida Parveen, Deepika Tyagi, Vijay Laxmi, Naeem Ullah, Faisal Ahmad, Ahsan Irshad, Keyu Tao and Zhengbiao Ouyang
Materials 2025, 18(14), 3273; https://doi.org/10.3390/ma18143273 - 11 Jul 2025
Viewed by 410
Abstract
Electromagnetic wave (EMW) absorption materials are crucial for a wide range of applications, yet most existing materials suffer from complex fabrication and narrow absorption bands, particularly under harsh environmental conditions. In this study, we introduce a broadband metamaterial absorber based on Ti3 [...] Read more.
Electromagnetic wave (EMW) absorption materials are crucial for a wide range of applications, yet most existing materials suffer from complex fabrication and narrow absorption bands, particularly under harsh environmental conditions. In this study, we introduce a broadband metamaterial absorber based on Ti3C2O2 MXene, a novel two-dimensional material that uniquely combines high electrical and metallic conductivity with hydrophilicity, biocompatibility, and an extensive surface area. Through advanced finite-difference time-domain (FDTD) simulations, the proposed absorber achieves over 95% absorption from 0.3 µm to 18 µm. Additionally, other MXene variants, including Ti3C2F2 and Ti3C2(OH)2, demonstrate robust absorption above 85%. This absorber not only outperforms previously reported structures in terms of efficiency and spectral coverage but also opens avenues for integration into applications such as infrared sensing, energy harvesting, wearable electronics, and Internet of Things (IoT) systems. Full article
Show Figures

Figure 1

27 pages, 7247 KiB  
Article
Layered Perovskite La2Ti2O7 Obtained by Sol–Gel Method with Photocatalytic Activity
by Alexandra Ilie, Luminița Predoană, Crina Anastasescu, Silviu Preda, Ioana Silvia Hosu, Ruxandra M. Costescu, Daniela C. Culiță, Veronica Brătan, Ioan Balint and Maria Zaharescu
Appl. Sci. 2025, 15(14), 7665; https://doi.org/10.3390/app15147665 - 8 Jul 2025
Viewed by 308
Abstract
This paper presents the synthesis of La2Ti2O7 nanoparticles by the sol–gel method starting from lanthanum nitrate and titanium alkoxide (noted as LTA). Subsequently, the lanthanum titanium oxide nanoparticles are modified with noble metals (platinum) using the chemical impregnation [...] Read more.
This paper presents the synthesis of La2Ti2O7 nanoparticles by the sol–gel method starting from lanthanum nitrate and titanium alkoxide (noted as LTA). Subsequently, the lanthanum titanium oxide nanoparticles are modified with noble metals (platinum) using the chemical impregnation method, followed by a reduction process with NaBH4. The comparative analysis of the structure and surface characteristics of the nanopowders subjected to thermal treatment at 900 °C is conducted using Fourier transform infrared spectroscopy (FT-IR), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) with energy-dispersive X-ray spectroscopy (EDX), transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray fluorescence (XRF), ultraviolet-visible (UV–Vis) spectroscopy, as well as specific surface area and porosity measurements. The photocatalytic activity is evaluated in the oxidative photodegradation of ethanol (CH3CH2OH) under simulated solar irradiation. The modified sample shows higher specific surfaces areas and improved photocatalytic properties, proving the better conversion of CH3CH2OH than the pure sample. The highest conversion of ethanol (29.75%) is obtained in the case of LTA-Pt after 3 h of simulated solar light irradiation. Full article
(This article belongs to the Special Issue Application of Nanomaterials in the Field of Photocatalysis)
Show Figures

Figure 1

14 pages, 4112 KiB  
Article
Thermal–Alkaline Etching of SiC Nanoparticles for Colloidal Stabilization and Enhanced Wear Resistance in Electrodeposited Co/SiC Coatings
by Mengnan Wu, Qipeng Bao, Rui Qin and Zhongwei Zhan
Coatings 2025, 15(7), 770; https://doi.org/10.3390/coatings15070770 - 29 Jun 2025
Viewed by 438
Abstract
Composite electrodeposited coatings hold significant potential for marine and aerospace applications due to their synergistic corrosion resistance and wear durability, yet nanoparticle agglomeration and interfacial incompatibility persistently undermine their performance. Conventional dispersion techniques—mechanical agitation, surfactants, or high-energy methods—fail to resolve these issues, often [...] Read more.
Composite electrodeposited coatings hold significant potential for marine and aerospace applications due to their synergistic corrosion resistance and wear durability, yet nanoparticle agglomeration and interfacial incompatibility persistently undermine their performance. Conventional dispersion techniques—mechanical agitation, surfactants, or high-energy methods—fail to resolve these issues, often introducing residual stresses, organic impurities, or thermal damage to substrates. This study addresses these challenges through a novel thermal-assisted alkaline etching (TAE) protocol that synergistically removes surface oxides and enhances colloidal stability in β-SiC nanoparticles. By combining NaOH-based etching with low-temperature calcination (250 °C), the method achieves oxide-free SiC surfaces with elevated hydrophilicity and a ζ-potential of −25 mV, enabling submicron clustering (300 nm) without surfactants. Electrodeposited Co/SiC coatings incorporating TAE-SiC exhibited current-modulated reinforcement, achieving optimal SiC incorporation (5.9 at% Si) at 8 A/dm2 through electrophoretic–hydraulic synergy, along with uniform cross-sectional distribution validated by SEM. Tribological assessments revealed shorter wear tracks in TAE-SiC-enhanced coatings compared to their untreated counterparts, suggesting enhanced interfacial coherence despite a comparable mass loss. Demonstrating scalability through cost-effective aqueous-phase chemistry, this methodology provides a generalized framework applicable to other ceramic-reinforced systems (e.g., Al2O3 and TiC), offering transformative potential for next-generation protective coatings in harsh operational environments. Full article
(This article belongs to the Section Corrosion, Wear and Erosion)
Show Figures

Figure 1

10 pages, 2314 KiB  
Article
One-Step Hydrothermal Synthesis and Characterization of Highly Dispersed Sb-Doped SnO2 Nanoparticles for Supercapacitor Applications
by Viet-Hung Hoang, Duc-Long Nguyen, Nguyen Tu, Van-Dang Tran, Van-Nang Lam and Thanh-Tung Duong
Electrochem 2025, 6(2), 22; https://doi.org/10.3390/electrochem6020022 - 16 Jun 2025
Cited by 1 | Viewed by 634
Abstract
Highly dispersion antimony-doped tin oxide (ATO) nanoparticles were synthesized using a (220 °C, 2 L autoclave, medium scale) one-step hydrothermal method with Na2SnO3 and KSb(OH)6 as precursors without a post-sintering process. The particle size reduces to a few nanometers [...] Read more.
Highly dispersion antimony-doped tin oxide (ATO) nanoparticles were synthesized using a (220 °C, 2 L autoclave, medium scale) one-step hydrothermal method with Na2SnO3 and KSb(OH)6 as precursors without a post-sintering process. The particle size reduces to a few nanometers with the increase in Sb content. The resulting various Sb-doping content ATO nanoparticles were coated onto a Ti foil substrate as an electrode for further electrochemical evaluation. The findings demonstrate that the prepared 30% Sb-doped ATO nanoparticles serve as a high-conductivity electrode material with excellent reversibility, substantial specific capacitance, and superior capacitance retention. The 30% ATO electrode exhibits the highest specific capacitance of 343.2 F g−1 at a current density of 1 A g−1 and maintains 93% of its capacitance after the first 10 charge/discharge cycles. The results indicate that ATO materials prepared by the hydrothermal method are promising candidates for supercapacitor electrodes. Full article
Show Figures

Figure 1

13 pages, 2746 KiB  
Article
A Cl-Dominant Analogue of Annite Occurs at the Eastern Edge of the Oktyabrsky Cu-Ni-PGE Deposit, Norilsk, Russia
by Andrei Y. Barkov, Giovanni Orazio Lepore, Luca Bindi, Robert F. Martin, Taras Panikorovskii, Ivan I. Nikulin and Sergey A. Silyanov
Minerals 2025, 15(6), 640; https://doi.org/10.3390/min15060640 - 12 Jun 2025
Viewed by 366
Abstract
A Cl-rich annitic mica is present in zones in taxitic gabbro–dolerite enriched in base metal sulfides in the eastern portion of the Oktyabrsky deposit in the Norilsk complex (Russia). Other Cl-enriched minerals in the assemblage include hastingsite (4.06 wt.% Cl), ferro-hornblende (2.53 wt.%), [...] Read more.
A Cl-rich annitic mica is present in zones in taxitic gabbro–dolerite enriched in base metal sulfides in the eastern portion of the Oktyabrsky deposit in the Norilsk complex (Russia). Other Cl-enriched minerals in the assemblage include hastingsite (4.06 wt.% Cl), ferro-hornblende (2.53 wt.%), and chlorapatite (>6 wt.%). New wavelength-dispersive electron probe analyses reveal compositions with up to 7.75 wt.% Cl, corresponding to the formula K0.742Na0.047Ca0.007)Σ0.796 (Fe2+2.901Mg0.078Mn0.047Ti0.007Cr0.003)Σ3.036 (Si3.190Al0.782)Σ3.972O10 (Cl1.105OH0.854F0.041)Σ2.000 based on 22 negative charges per formula unit, in which OH(calc.) = 2 − (Cl + F). Unfortunately, the grain size of the Cl-dominant mica precluded a single-crystal X-ray diffraction study even though its EBSD pattern confirms its identity as a member of the Mica group. We present results of a refinement of a crystal from the same mineralized sample containing 0.90(6) apfu Cl [R1 = 7.89% for 3720 unique reflections]. The mica is monoclinic, space group C2/m, a 5.3991(4), b 9.3586(6), c 10.2421(10) Å, β 100.873(9)°, V = 508.22(7) Å3, Z = 2. We also describe physical properties and provide a Raman spectrum. Among the mica compositions acquired from the same sample, a high Cl content is correlated with relative enrichment in Si, Mn, and Na and with a depletion in Al, Mg (low Mg#), K, Cr, and Ti. The buildup in Cl in the ore-forming environment is ultimately due to efficient fractional crystallization of the basic magma, with possible contributions from the Devonian metasedimentary sequences that it intruded. Full article
(This article belongs to the Collection New Minerals)
Show Figures

Figure 1

19 pages, 4666 KiB  
Article
Effects of Al/Ti Additions on the Corrosion Behavior of Laser-Cladded Hastelloy C276 Coatings
by Yong Chen, Peng Rong, Xin Fang, Yan Liu, Ying Wu, Zhenlin Zhang, Shaoting Cao, Ruiwen Chen, Ting Wen, Shixiang Cheng, Xiong Yang and Yarong Chen
Coatings 2025, 15(6), 678; https://doi.org/10.3390/coatings15060678 - 4 Jun 2025
Viewed by 533
Abstract
This study investigates the effects of aluminum (Al) and titanium (Ti) additions on the porosity, microstructure, and corrosion performance of Hastelloy C276-based coatings fabricated via laser cladding on nodular cast iron substrates. Nickel-based alloy powders blended with varying Ti (1–10 wt.%) and Al [...] Read more.
This study investigates the effects of aluminum (Al) and titanium (Ti) additions on the porosity, microstructure, and corrosion performance of Hastelloy C276-based coatings fabricated via laser cladding on nodular cast iron substrates. Nickel-based alloy powders blended with varying Ti (1–10 wt.%) and Al (0.5–2.5 wt.%) contents were deposited under optimized laser parameters. Microstructural characterization revealed that Ti addition refined the grain structure and promoted the formation of TiC phases, while Al addition dispersed eutectic networks into isolated island-like structures. Both elements effectively suppressed porosity by reducing gas entrapment during solidification. However, excessive Ti (10 wt.%) induced brittle fracture due to TiC agglomeration, and Al addition caused interfacial cracks owing to Al2O3 formation. Electrochemical tests in a 3.5 wt.% NaCl solution indicated that Al/Ti additions enhanced initial passivation but reduced corrosion resistance due to weakened oxide film stability. XPS analysis revealed that Al-enriched coatings formed Al2O3 and Al(OH)3, whereas Ti-modified coatings developed TiO2 and TiC, both influencing the passivation behavior. These findings provide critical insights into tailoring laser-clad coatings for marine applications by balancing porosity suppression and corrosion resistance. Full article
(This article belongs to the Special Issue Advanced Surface Technology and Application)
Show Figures

Figure 1

18 pages, 2369 KiB  
Article
Heat-Induced Mn2+ and Fe2+ Oxidation in Heterophyllosilicates: Kupletskite and Kupletskite-(Cs)
by Elena S. Zhitova, Andrey A. Zolotarev, Rezeda M. Sheveleva, Roman Yu. Shendrik, Frank C. Hawthorne, Anton A. Nuzhdaev, Natalia S. Vlasenko, Ekaterina V. Kaneva and Victor N. Yakovenchuk
Minerals 2025, 15(6), 587; https://doi.org/10.3390/min15060587 - 30 May 2025
Viewed by 427
Abstract
The crystal–chemical behavior of two layered titanosilicate minerals with porous crystal structures, kupletskite, K2NaMn72+Ti2(Si4O12)2O2(OH)4F, and kupletskite-(Cs), Cs2NaMn72+Ti2(Si4O [...] Read more.
The crystal–chemical behavior of two layered titanosilicate minerals with porous crystal structures, kupletskite, K2NaMn72+Ti2(Si4O12)2O2(OH)4F, and kupletskite-(Cs), Cs2NaMn72+Ti2(Si4O12)2O2(OH)4F, was investigated under high-temperature conditions using single-crystal and powder X-ray diffraction; infrared and optical absorption spectroscopy and electron-microprobe analysis. Both minerals undergo topotactic transformation to dehydroxylated and oxidized high-temperature (HT) modifications at temperature above 500 °C while maintaining the basic bond topology of the astrophyllite structure-type. The high-temperature structures show contraction of the unit-cell parameters similar to that of Fe2+-dominant astrophyllite, indicating that Mn2+ oxidizes along with Fe2+ in M(2)–M(4) sites. The oxidation of Mn2+ is confirmed by the increase of the Mn3+-related absorption (in optical spectra) that is inversely correlated with the intensity of O–H bands in the infrared spectra. The Fe,Mn-oxidation is also evident by the contraction of the M(2), M(3), and M(4)O6 octahedra. The M(1)–O bond length increases slightly, indicating a preference for mono- and divalent cations to occupy the M(1) site in the heated structure; this may be due to site-selective oxidation and/or migration of unoxidized cations (as previously shown for lobanovite) to this site. The role of extra framework A-site cations (K, Cs) in thermal expansion of these minerals is discussed. Full article
(This article belongs to the Special Issue High-Pressure and High-Temperature Mineral Physics)
Show Figures

Figure 1

23 pages, 6315 KiB  
Article
BiOBr@PZT Nanocomposite Membranes via Electrospinning-SILAR Technology: A Sustainable Green Material for Photocatalytic Degradation in Coloration-Related Wastewater Remediation
by Zhengyu Ding, Jun Zhang, Zheyao Xia, Binjie Xin, Jiali Yu and Xiaoyuan Lei
Sustainability 2025, 17(11), 4984; https://doi.org/10.3390/su17114984 - 29 May 2025
Viewed by 617
Abstract
The textile industry encounters serious environmental challenges from wastewater with persistent organic pollutants, demanding sustainable solutions for remediation. Herein, we report a novel green synthesis of flexible BiOBr@PZT nanocomposite membranes via electrospinning and successive ionic layer adsorption and reaction (SILAR) for visible-light-driven photocatalytic [...] Read more.
The textile industry encounters serious environmental challenges from wastewater with persistent organic pollutants, demanding sustainable solutions for remediation. Herein, we report a novel green synthesis of flexible BiOBr@PZT nanocomposite membranes via electrospinning and successive ionic layer adsorption and reaction (SILAR) for visible-light-driven photocatalytic degradation. The hierarchical structure integrates leaf-like BiOBr nanosheets with PAN/ZnO/TiO2 (PZT) nanofibers, forming a Z-scheme heterojunction. This enhances the separation of photogenerated carriers while preserving mechanical integrity. SILAR-enabled low temperature deposition ensures eco-friendly fabrication by avoiding toxic precursors and cutting energy use. Optimized BiOBr@PZT-5 shows exceptional photocatalytic performance, achieving 97.6% tetracycline hydrochloride (TCH) degradation under visible light in 120 min. It also has strong tensile strength (4.29 MPa) and cycling stability. Mechanistic studies show efficient generation of O2 and OH radicals through synergistic light absorption, charge transfer, and turbulence-enhanced mass diffusion. The material’s flexibility allows reusable turbulent flow applications, overcoming rigid catalyst limitations. Aligning with green chemistry and UN SDGs, this work advances multifunctional photocatalytic systems for scalable, energy-efficient wastewater treatment, offering a paradigm that integrates environmental remediation with industrial adaptability. Full article
Show Figures

Figure 1

18 pages, 6191 KiB  
Article
Gradient Recovery of Tungsten, Cerium, and Titanium from Spent W-Ce/TiO2 Catalysts
by Hongping Wu, Zhihong Peng, Junting Hao, Fiseha Tesfaye and Leiting Shen
Processes 2025, 13(6), 1678; https://doi.org/10.3390/pr13061678 - 27 May 2025
Viewed by 442
Abstract
In this work, a gradient leaching strategy for stepwise extraction of tungsten and cerium from a spent W-Ce/TiO2 catalyst has been developed. Results of a thermodynamic analysis indicated that high-temperature alkaline leaching and low-temperature acid leaching were conducive to the extraction of [...] Read more.
In this work, a gradient leaching strategy for stepwise extraction of tungsten and cerium from a spent W-Ce/TiO2 catalyst has been developed. Results of a thermodynamic analysis indicated that high-temperature alkaline leaching and low-temperature acid leaching were conducive to the extraction of W and Ce, respectively. The effects of leaching agent type, concentration, temperature, and liquid-to-solid ratio on the leaching rates of W and Ce were systematically investigated. Experimental results revealed that the leaching ratio of W reached 90.92% under optimized conditions of 3 mol/L NaOH, 100 °C, 1 h, and a liquid-to-solid ratio of 20:1 for the alkaline leaching in the first stage. The leaching ratio for Ce reached 91.96% under optimized conditions of 1 mol/L H2SO4, 50 °C, 2 h, and a liquid-to-solid ratio of 12:1 for acidic leach in the second stage. The leaching ratios of titanium and aluminum were limited to 1.76% and 4.42%, respectively, indicating that >90% of these elements were virtually undissolved during the two-stage leaching process. The final leaching residue after the two-stage leaching contained >91.88 wt% TiO2. Consequently, this study not only demonstrated effective separation of W, Ce, and Ti, but also provided an innovative solution for the environmentally friendly treatment and resource utilization for spent W-Ce/TiO2 catalysts. Full article
(This article belongs to the Special Issue Novel Recovery Technologies from Wastewater and Waste)
Show Figures

Figure 1

Back to TopTop