High-Pressure and High-Temperature Mineral Physics

A special issue of Minerals (ISSN 2075-163X). This special issue belongs to the section "Crystallography and Physical Chemistry of Minerals & Nanominerals".

Deadline for manuscript submissions: 25 September 2025 | Viewed by 690

Special Issue Editors

Crystal Structure Laboratory, Institute of Earth Sciences, State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Beijing 100083, China
Interests: mineral physics; genesis mineralogy

E-Mail Website
Guest Editor
School of Earth Sciences and Resources, China University of Geosciences, Beijing 100083, China
Interests: crystal chemistry; mineral physics

Special Issue Information

Dear Colleagues,

High-pressure and high-temperature (HPHT) mineral physics is essential for understanding the Earth's interior and its dynamic processes. By studying minerals under extreme conditions, scientists can simulate the environment of the deep Earth, providing insights into mantle convection, plate tectonics, and seismic activity. This knowledge is crucial for interpreting seismic data and understanding the mechanical properties and phase transitions of minerals, which influence geological phenomena like earthquakes and volcanic activity.

Recent progress in HPHT mineral physics includes significant advancements in experimental techniques and computational modeling. Synchrotron X-ray and neutron diffraction methods now allow for detailed examination of mineral structures under extreme conditions, leading to the discovery of new high-pressure phases. Laser heating techniques in diamond anvil cells have improved temperature control, enabling more accurate simulations of deep Earth conditions. Additionally, first-principle calculations and computational models have enhanced the predictive capabilities for mineral properties, guiding experimental designs and interpreting complex systems. These advancements have not only deepened our understanding of Earth's interior processes but also facilitated the discovery of new materials with industrial applications, such as superhard substances and novel electronic materials. Based on the above opportunities, we plan to prepare a Special Issue on progresses in High-pressure and High-temperature Mineral Physics.

Dr. Lin Li
Dr. Li Zhang
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Minerals is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2400 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • deep Earth
  • phase transitions
  • synchrotron X-ray
  • neutron diffraction
  • first-principle calculations
  • elemental enrichment

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Research

12 pages, 2785 KiB  
Article
Crystal Chemistry, High-Pressure Behavior, Water Content, and Thermal Stability of Natural Spodumene
by Yuhui Jiang, Jiayi Yu, Yuanze Ouyang, Li Zhang, Xiaoguang Li, Zhuoran Zhang and Yunxuan Li
Minerals 2025, 15(3), 307; https://doi.org/10.3390/min15030307 - 16 Mar 2025
Viewed by 361
Abstract
Spodumene (LiAlSi2O6) is a member of pyroxene-group minerals. It has the highest theoretical lithium abundance among all of the Li-bearing minerals. In the present work, in situ high-pressure Raman spectroscopic investigation of natural spodumene have been conducted up to [...] Read more.
Spodumene (LiAlSi2O6) is a member of pyroxene-group minerals. It has the highest theoretical lithium abundance among all of the Li-bearing minerals. In the present work, in situ high-pressure Raman spectroscopic investigation of natural spodumene have been conducted up to 19.04 GPa. Unheated spodumene and spodumene recovered after heat treatments (up to 1000 °C) have also been analyzed by X-ray diffraction and infrared spectroscopy. The results indicate that spodumene, after the displacive C2/cP21/c transformation triggered at ~3.2 GPa, remains stable at pressures up to 19 GPa at ambient temperature without undergoing decomposition, amorphization, or a second phase transition. The major OH bands of the spodumene samples are observed within the wavenumber range of 2580–3220 cm−1, implying a strong hydrogen bond interaction. The water content of the spodumene is estimated to be 19–97 ppm wt. H2O based on the integrated absorption area of the OH bands. The FTIR analysis of the spodumene samples recovered after heat treatments implies that spodumene can retain a significant amount of water (up to ~100 ppm H2O by weight) under high-temperature conditions up to 1000 °C. This suggests that spodumene in subducted slabs is unlikely to undergo dehydration at temperatures below 1000 °C, and is therefore not expected to trigger partial melting. Thus, spodumene may serve as a key carrier for Li, transporting it into the deep mantle without releasing Li into melts during subduction. Full article
(This article belongs to the Special Issue High-Pressure and High-Temperature Mineral Physics)
Show Figures

Figure 1

Back to TopTop