Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (371)

Search Parameters:
Keywords = OER electrocatalyst

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
31 pages, 6351 KiB  
Review
Recent Development on the Synthesis Strategies and Mechanisms of Co3O4-Based Electrocatalysts for Oxygen Evolution Reaction: A Review
by Liangjuan Gao, Yifan Jia and Hongxing Jia
Molecules 2025, 30(15), 3238; https://doi.org/10.3390/molecules30153238 - 1 Aug 2025
Viewed by 114
Abstract
The usage of fossil fuels has resulted in increasingly severe environmental problems, such as climate change, air pollution, water pollution, etc. Hydrogen energy is considered one of the most promising clean energies to replace fossil fuels due to its pollution-free and high-heat properties. [...] Read more.
The usage of fossil fuels has resulted in increasingly severe environmental problems, such as climate change, air pollution, water pollution, etc. Hydrogen energy is considered one of the most promising clean energies to replace fossil fuels due to its pollution-free and high-heat properties. However, the oxygen evolution reaction (OER) remains a critical challenge due to its high overpotential and slow kinetics during water electrolysis for hydrogen production. Electrocatalysts play an important role in lowering the overpotential of OER and promoting the kinetics. Co3O4-based electrocatalysts have emerged as promising candidates for the oxygen evolution reaction (OER) due to their favorable catalytic activity and good compatibility compared with precious metal-based electrocatalysts. This review presents a summary of the recent developments in the synthesis strategies and mechanisms of Co3O4-based electrocatalysts for the OER. Various synthesis strategies have been explored to control the size, morphology, and composition of Co3O4 nanoparticles. These strategies enable the fabrication of well-defined nanostructures with enhanced catalytic performance. Additionally, the mechanisms of OER catalysis on Co3O4-based electrocatalysts have been elucidated. Coordinatively unsaturated sites, synergistic effects with other elements, surface restructuring, and pH dependency have been identified as crucial factors influencing the catalytic activity. The understanding of these mechanisms provides insights into the design and optimization of Co3O4-based electrocatalysts for efficient OER applications. The recent advancements discussed in this review offer valuable perspectives for researchers working on the development of electrocatalysts for the OER, with the goal of achieving sustainable and efficient energy conversion and storage systems. Full article
(This article belongs to the Special Issue Emerging Multifunctional Materials for Next-Generation Energy Systems)
Show Figures

Figure 1

16 pages, 3298 KiB  
Article
High-Performance Catalytic Oxygen Evolution with Nanocellulose-Derived Biocarbon and Fe/Zeolite/Carbon Nanotubes
by Javier Hernandez-Ortega, Chamak Ahmed, Andre Molina, Ronald C. Sabo, Lorena E. Sánchez Cadena, Bonifacio Alvarado Tenorio, Carlos R. Cabrera and Juan C. Noveron
Catalysts 2025, 15(8), 719; https://doi.org/10.3390/catal15080719 - 28 Jul 2025
Viewed by 395
Abstract
The oxygen evolution reaction (OER) plays a central role as an anode in electrocatalytic processes such as energy conversion and storage and the generation of molecular oxygen from the electrolysis of water. Currently, precious metal oxides such as IrO2 and RuO2 [...] Read more.
The oxygen evolution reaction (OER) plays a central role as an anode in electrocatalytic processes such as energy conversion and storage and the generation of molecular oxygen from the electrolysis of water. Currently, precious metal oxides such as IrO2 and RuO2 are recognized as reference OER electrocatalysts with reasonably high activity; however, their widespread use in practical devices has been severely hindered by their high cost and scarcity. It is essential to design alternative OER electrocatalysts made of low-cost and abundant earth elements with significant activity and robustness. We report four new nanocellulose-derived Fe–zeolite nanocomposites, namely Fe/Zeolite@CCNC (1), Fe/Zeolite@CCNF (2), Fe/Zeolite/CNT@CCNC (3), and Fe/Zeolite/CNT@CCNF (4). Two different types of nanocellulose were investigated: nanocellulose nanofibrils and nanocellulose nanocrystals. Characterization with TEM, SEM-EDS, PXRD, and XPS is reported. The nanocomposites exhibited electrocatalytic activity for OER that varies based on the origin of biocarbon and the composition content. The effect of adding carbon nanotubes to the nanocomposites was studied, and an improvement in OER catalysis was observed. The electrochemical double-layer capacitance and electrochemical impedance spectroscopy of the nanocomposites are reported. The nanocomposite 3 exhibited the highest performance, with an onset potential value of 1.654 V and an overpotential of 551 mV, which exceeds the activity of RuO2 for OER catalysis at 10 mA/cm2 in the glassy carbon electrode. A 24 h chronoamperometry study revealed that the catalyst is active for ~2 h under continuous operating conditions. BET surface analysis showed that the crystalline nanocellulose-derived composite exhibited 301.47 m2/g, and the fibril nanocellulose-derived composite exhibited 120.39 m2/g, indicating that the increased nanoporosity of the former contributes to the increase in OER catalysis. Full article
Show Figures

Graphical abstract

13 pages, 2832 KiB  
Article
Multiphase NiCoFe-Based LDH for Electrocatalytic Sulfion Oxidation Reaction Assisting Efficient Hydrogen Production
by Zengren Liang, Yong Nian, Hao Du, Peng Li, Mei Wang and Guanshui Ma
Materials 2025, 18(14), 3377; https://doi.org/10.3390/ma18143377 - 18 Jul 2025
Viewed by 295
Abstract
Sulfion oxidation reaction (SOR) has great potential in replacing oxygen evolution reaction (OER) and boosting highly efficient hydrogen evolution. The development of highly active and stable SOR electrocatalysts is crucial for assisting hydrogen production with low energy consumption. In this work, multiphase NiCoFe-based [...] Read more.
Sulfion oxidation reaction (SOR) has great potential in replacing oxygen evolution reaction (OER) and boosting highly efficient hydrogen evolution. The development of highly active and stable SOR electrocatalysts is crucial for assisting hydrogen production with low energy consumption. In this work, multiphase NiCoFe-based layered double hydroxide (namely NiCoFe-LDH) has been synthesized via a facile seed-assisted heterogeneous nucleation method. Benefiting from its unique microsized hydrangea-like structure and synergistic active phases, the catalyst delivers substantial catalytic interfaces and reactive centers for SOR. Consequently, NiCoFe-LDH electrode achieves a remarkably low potential of 0.381 V at 10 mA cm−2 in 1 M KOH + 0.1 M Na2S, representing a significant reduction of 0.98 V compared to conventional OER. Notably, under harsh industrial conditions (6 M KOH + 0.1 M Na2S, 80 °C), the electrolysis system based on NiCoFe-LDH||NF pair exhibits a cell potential of only 0.71 V at 100 mA cm−2, which shows a greater decreasing amplitude of 1.05 V compared with that of traditional OER/HER systems. Meanwhile, the NiCoFe-LDH||NF couple could maintain operational stability for 100 h without obvious potential fluctuation, as well as possessing a lower energy consumption of 1.42 kWh m−3 H2. Multiphase eletrocatalysis for SOR could indeed produce hydrogen with low-energy consumption. Full article
(This article belongs to the Special Issue High-Performance Materials for Energy Conversion)
Show Figures

Graphical abstract

20 pages, 3918 KiB  
Article
Engineered Cu0.5Ni0.5Al2O4/GCN Spinel Nanostructures for Dual-Functional Energy Storage and Electrocatalytic Water Splitting
by Abdus Sami, Sohail Ahmad, Ai-Dang Shan, Sijie Zhang, Liming Fu, Saima Farooq, Salam K. Al-Dawery, Hamed N. Harharah, Ramzi H. Harharah and Gasim Hayder
Processes 2025, 13(7), 2200; https://doi.org/10.3390/pr13072200 - 9 Jul 2025
Viewed by 356
Abstract
The rapid growth in population and industrialization have significantly increased global energy demand, placing immense pressure on finite and environmentally harmful conventional fossil fuel-based energy sources. In this context, the development of hybrid electrocatalysts presents a crucial solution for energy conversion and storage, [...] Read more.
The rapid growth in population and industrialization have significantly increased global energy demand, placing immense pressure on finite and environmentally harmful conventional fossil fuel-based energy sources. In this context, the development of hybrid electrocatalysts presents a crucial solution for energy conversion and storage, addressing environmental challenges while meeting rising energy needs. In this study, the fabrication of a novel bifunctional catalyst, copper nickel aluminum spinel (Cu0.5Ni0.5Al2O4) supported on graphitic carbon nitride (GCN), using a solid-state synthesis process is reported. Because of its effective interface design and spinel cubic structure, the Cu0.5Ni0.5Al2O4/GCN nanocomposite, as synthesized, performs exceptionally well in electrochemical energy conversion, such as the oxygen evolution reaction (OER), the hydrogen evolution reaction (HER), and energy storage. In particular, compared to noble metals, Pt/C- and IrO2-based water-splitting cells require higher voltages (1.70 V), while for the Cu0.5Ni0.5Al2O4/GCN nanocomposite, a voltage of 1.49 V is sufficient to generate a current density of 10 mA cm−2 in an alkaline solution. When used as supercapacitor electrode materials, Cu0.5Ni0.5Al2O4/GCN nanocomposites show a specific capacitance of 1290 F g−1 at a current density of 1 A g−1 and maintain a specific capacitance of 609 F g−1 even at a higher current density of 5 A g−1, suggesting exceptional rate performance and charge storage capacity. The electrode’s exceptional capacitive properties were further confirmed through the determination of the roughness factor (Rf), which represents surface heterogeneity and active area enhancement, with a value of 345.5. These distinctive characteristics render the Cu0.5Ni0.5Al2O4/GCN composite a compelling alternative to fossil fuels in the ongoing quest for a viable replacement. Undoubtedly, the creation of the Cu0.5Ni0.5Al2O4/GCN composite represents a significant breakthrough in addressing the energy crisis and environmental concerns. Owing to its unique composition and electrocatalytic characteristics, it is considered a feasible choice in the pursuit of ecologically sustainable alternatives to fossil fuels. Full article
Show Figures

Graphical abstract

32 pages, 4753 KiB  
Review
Prospective Obstacles and Improvement Strategies of Manganese-Based Materials in Achieving High-Performance Rechargeable Zinc–Air Batteries
by Zhangli Ye, Tianjing Wu, Lanhua Yi and Mingjun Jing
Batteries 2025, 11(7), 255; https://doi.org/10.3390/batteries11070255 - 8 Jul 2025
Viewed by 690
Abstract
Zinc–air batteries (ZABs) are crucial for renewable energy conversion and storage due to their cost-effectiveness, excellent safety, and superior cycling stability. However, developing efficient and affordable bifunctional electrocatalysts for the oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER) at the air [...] Read more.
Zinc–air batteries (ZABs) are crucial for renewable energy conversion and storage due to their cost-effectiveness, excellent safety, and superior cycling stability. However, developing efficient and affordable bifunctional electrocatalysts for the oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER) at the air cathode remains a significant challenge. Manganese (Mn)-based materials, known for their tunable oxidation states, adaptable crystal structures, and environmental friendliness, are regarded as the most promising candidates. This review systematically summarizes recent advances in Mn-based bifunctional catalysts, concentrating on four primary categories: Mn–N–C electrocatalysts, manganese oxides, manganates, and other Mn-based compounds. By examining the intrinsic merits and limitations of each category, we provide a comprehensive discussion of optimization strategies, which include morphological modulation, structural engineering, carbon hybridization, heterointerface construction, heteroatom doping, and defect engineering, aimed at enhancing catalytic performance. Additionally, we critically address existing challenges and propose future research directions for Mn-based materials in rechargeable ZABs, offering theoretical insights and design principles to advance the development of next-generation energy storage systems. Full article
Show Figures

Figure 1

21 pages, 3361 KiB  
Article
Alternative Supports for Electrocatalysis of the Oxygen Evolution Reaction in Alkaline Media
by Gwénaëlle Kéranguéven, Ivan Filimonenkov, Thierry Dintzer and Matthieu Picher
Electrochem 2025, 6(3), 23; https://doi.org/10.3390/electrochem6030023 - 25 Jun 2025
Viewed by 449
Abstract
The anodic stability of tungsten carbide (WC) and iron oxide with a spinel structure (Fe3O4) were compared against similar data for nanostructured, boron-doped diamond (BDD), and the benchmark Vulcan XC72 carbon, in view of their eventual application as alternative [...] Read more.
The anodic stability of tungsten carbide (WC) and iron oxide with a spinel structure (Fe3O4) were compared against similar data for nanostructured, boron-doped diamond (BDD), and the benchmark Vulcan XC72 carbon, in view of their eventual application as alternative supports for the anion exchange membrane electrolyzer anode. To this end, metal oxide composites were prepared by the in situ autocombustion (ISAC) method, and the anodic behavior of materials (composites as well as supports alone) was investigated in 1 M NaOH electrolyte by the rotating ring–disc electrode method, which enables the separation oxygen evolution reaction and materials’ degradation currents. Among all supports, BDD has proven to be the most stable, while Vulcan XC72 is the least stable under the anodic polarization, with Fe3O4 and WC demonstrating intermediate behavior. The Co3O4-BDD, -Fe3O4, -WC, and -Vulcan composites prepared by the ISAC method were then tested as catalysts of the oxygen evolution reaction. The Co3O4-BDD and Co3O4-Fe3O4 composites appear to be competitive electrocatalysts for the OER in alkaline medium, showing activity comparable to the literature and higher support stability towards oxidation, either in cyclic voltammetry or chronoamperometry stability tests. On the contrary, WC- and Vulcan-based composites are prone to degradation. Full article
(This article belongs to the Topic Electrocatalytic Advances for Sustainable Energy)
Show Figures

Graphical abstract

13 pages, 6776 KiB  
Article
Bimetallic Ir-Sn Non-Carbon Supported Anode Catalysts for PEM Water Electrolysis
by Iveta Boshnakova, Elefteria Lefterova, Galin Borisov, Denis Paskalev and Evelina Slavcheva
Inorganics 2025, 13(7), 210; https://doi.org/10.3390/inorganics13070210 - 20 Jun 2025
Viewed by 412
Abstract
Nanostructured bimetallic IrSn composites deposited on the natural aluminosilicate montmorillonite were synthesized and evaluated as anode electrocatalysts for polymer electrolyte membrane electrolysis cells (PEMECs). The test series prepared via the sol–gel method consisted of samples with 30 wt. % total metal content and [...] Read more.
Nanostructured bimetallic IrSn composites deposited on the natural aluminosilicate montmorillonite were synthesized and evaluated as anode electrocatalysts for polymer electrolyte membrane electrolysis cells (PEMECs). The test series prepared via the sol–gel method consisted of samples with 30 wt. % total metal content and varying Ir:Sn ratio. The performed X-ray diffraction analysis and high-resolution transmission electron icroscopy registered very fine nanostructure of the composites with metal particles size of 2–3 nm homogeneously dispersed on the support surface and also intercalated in the basal space of its layered structure. The electrochemical behavior was investigated by cyclic voltammetry and steady-state polarization techniques. The initial screening was performed in 0.5 M H2SO4. Then, the catalysts were integrated as anodes in membrane electrode assemblies (MEAs) and tested in a custom-made PEMEC. The electrochemical tests revealed that the catalysts with Ir:Sn ratio 15:15 and 18:12 wt. % demonstrated high efficiency toward the oxygen evolution reaction during repetitive potential cycling and sustainable performance with current density in the range 140–120 mA cm−2 at 1.6 V vs. RHE during long-term stability tests. The results obtained give credence to the studied IrSn/MMT nanocomposites to be considered promising, cost-efficient catalysts for the oxygen evolution reaction (OER). Full article
Show Figures

Graphical abstract

14 pages, 2652 KiB  
Article
Rational Construction of Nano-Scaled FeOOH/NiFe-LDH for Efficient Water Splitting
by Juan Yu, Xiubing Fu, Haoqi Wang, Shun Lu and Bing Li
Nanomaterials 2025, 15(12), 949; https://doi.org/10.3390/nano15120949 - 18 Jun 2025
Viewed by 423
Abstract
In this paper, we use the facile approach for preparing novel, low-cost, efficient electrocatalysts for electrocatalytic water splitting. Interfacial engineering can significantly enhance the intrinsic performance of electrocatalysts. Herein, self-supporting FeOOH/NiFe-layered double hydroxide (LDH) nanosheet arrays were synthesized via hydrothermal and impregnation methods. [...] Read more.
In this paper, we use the facile approach for preparing novel, low-cost, efficient electrocatalysts for electrocatalytic water splitting. Interfacial engineering can significantly enhance the intrinsic performance of electrocatalysts. Herein, self-supporting FeOOH/NiFe-layered double hydroxide (LDH) nanosheet arrays were synthesized via hydrothermal and impregnation methods. The resulting FeOOH/NiFe-LDH can provide more active regions, which provide more active regions for co-reaction to proceed and accelerates electron transmit processes. Additionally, the amorphous FeOOH provides abundant active sites with low coordination, leading to excellent activity. The FeOOH/NiFe-LDH demonstrates remarkable two half-reaction electrocatalytic activity, along with excellent overpotentials of 168 mV (OER) and 155 mV (HER). This research introduces a sophisticated and scalable methodology for the creation of remarkably efficient and resilient alkaline conditions specifically designed for the HER and OER. Full article
Show Figures

Graphical abstract

24 pages, 6108 KiB  
Review
In Situ Characterization Method to Reveal the Surface Reconstruction Process of an Electrocatalyst
by Yiqin Zhan, Tao Yang, Shuang Liu, Liming Yang, Enhui Wang, Xiangtao Yu, Hongyang Wang, Kuo-Chih Chou and Xinmei Hou
Nanomaterials 2025, 15(12), 917; https://doi.org/10.3390/nano15120917 - 12 Jun 2025
Viewed by 496
Abstract
Renewable energy-driven water electrolysis is widely regarded as a pivotal approach for achieving carbon-free hydrogen production. The development of highly efficient electrocatalysts is crucial to advancing the efficiency and scalability of electrolytic water splitting. Recent advancements in characterization techniques have revealed that catalysts [...] Read more.
Renewable energy-driven water electrolysis is widely regarded as a pivotal approach for achieving carbon-free hydrogen production. The development of highly efficient electrocatalysts is crucial to advancing the efficiency and scalability of electrolytic water splitting. Recent advancements in characterization techniques have revealed that catalysts often undergo surface reconstruction during the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER), leading to the formation of real active species. Understanding the surface reconstruction process through advanced characterization methods is essential for the rational design of high-performance catalysts. However, the surface reconstruction of catalysts is a highly complex phenomenon, and conventional ex situ characterization techniques often fall short of capturing the dynamic evolution of the catalyst surface. Consequently, in situ characterization methods have emerged as indispensable tools for elucidating the surface reconstruction process. This paper provides a detailed review of the process of surface reconstruction, the reasons behind it, and the in situ characterization methods, and finally discusses the challenges faced by the characterization methods for the reconstruction of water electrolysis catalysts in future development. Full article
Show Figures

Figure 1

12 pages, 2549 KiB  
Article
MOF-Derived Electrocatalysts for High-Efficiency Hydrogen Production via Water Electrolysis
by Nan Zhang, Pengfei Cui, Jinrong Zhang and Yang Qiao
Catalysts 2025, 15(6), 579; https://doi.org/10.3390/catal15060579 - 10 Jun 2025
Viewed by 918
Abstract
Water electrolysis for hydrogen production has garnered significant attention in the context of increasing global energy demands and the “dual-carbon” strategy. However, practical implementation is hindered by challenges such as high overpotentials, high catalysts costs, and insufficient catalytic activity. In this study, three [...] Read more.
Water electrolysis for hydrogen production has garnered significant attention in the context of increasing global energy demands and the “dual-carbon” strategy. However, practical implementation is hindered by challenges such as high overpotentials, high catalysts costs, and insufficient catalytic activity. In this study, three mono and bimetallic metal−organic framework (MOFs)-derived electrocatalysts, Fe-MOFs, Fe/Co-MOFs, and Fe/Mn-MOFs, were synthesized via a one-step hydrothermal method, using nitro-terephthalic acid (NO2-BDC) as the ligand and N,N-dimethylacetamide (DMA) as the solvent. Electrochemical tests demonstrated that the Fe/Mn-MOFs catalyst exhibited superior performance, achieving an overpotential of 232.8 mV and a Tafel slope of 59.6 mV·dec−1, alongside the largest electrochemical active surface area (ECSA). In contrast, Fe/Co-MOFs displayed moderate catalytic activity, while Fe-MOFs exhibited the lowest efficiency. Stability tests revealed that Fe/Mn-MOFs retained 92.3% of its initial current density after 50 h of continuous operation, highlighting its excellent durability for the oxygen evolution reaction (OER). These findings emphasize the enhanced catalytic performance of bimetallic MOFs compared to monometallic counterparts and provide valuable insights for the development of high-efficiency MOF-based electrocatalysts for sustainable hydrogen production. Full article
(This article belongs to the Section Catalytic Materials)
Show Figures

Figure 1

15 pages, 3620 KiB  
Article
ZIF-L/PBA-Derived Self-Supporting Ni-Doped CoFeP Electrocatalysts for Bifunctional Water Splitting
by Lanqi Wang, Hui Ni, Jianing Yu, Jingyuan Zhang and Bin Zhao
Catalysts 2025, 15(6), 576; https://doi.org/10.3390/catal15060576 - 10 Jun 2025
Viewed by 1031
Abstract
In recent years, transition metal-based catalytic materials have garnered considerable attention, particularly those exhibiting high catalytic efficiency toward both the oxygen evolution reaction (OER) and hydrogen evolution reaction (HER). In this work, a self-supporting ternary transition metal phosphide (CoFeNi0.2P) with a [...] Read more.
In recent years, transition metal-based catalytic materials have garnered considerable attention, particularly those exhibiting high catalytic efficiency toward both the oxygen evolution reaction (OER) and hydrogen evolution reaction (HER). In this work, a self-supporting ternary transition metal phosphide (CoFeNi0.2P) with a hierarchical structure was synthesized using the Prussian blue analogue (PBA)/zeolitic imidazolate framework-L (ZIF-L) template. Benefiting from the hierarchical structure of the PBA/ZIF-L precursor and the electronic structure modulation induced by Ni doping, the resulting CoFeNi0.2P demonstrates impressive bifunctional electrocatalytic activity. Specifically, in 1 M KOH electrolyte, the CoFeNi0.2P catalyst requires an overpotential of only 88 mV to deliver 10 mA cm−2 for the HER and 248 mV to achieve 50 mA cm−2 for the OER. Moreover, it demonstrates satisfactory stability toward both the HER and OER. When integrated into a two-electrode electrolyzer, CoFeNi0.2P enables a current density of 10 mA cm−2 at a cell voltage of 1.59 V, maintaining robust performance for over 25 h. This study provides a feasible strategy for the rational design of hierarchical electrocatalysts for efficient overall water splitting. Full article
(This article belongs to the Special Issue Two-Dimensional (2D) Materials in Catalysis)
Show Figures

Graphical abstract

19 pages, 3082 KiB  
Review
Nickel Selenides in Electrocatalysis: Coupled Formate and Hydrogen Production Through Methanol Oxidation Reaction
by Hong Tu, Yan Zhong, Zhihao Yang, Caihong Zhang, Yi Ma, Yong Zhang, Ning Jian, Huan Ge and Junshan Li
Catalysts 2025, 15(6), 516; https://doi.org/10.3390/catal15060516 - 23 May 2025
Viewed by 605
Abstract
The hydrogen economy, associated with electrochemical water splitting, represents a promising pathway to mitigate reliance on fossil fuels. However, the efficiency of this process is constrained by the sluggish oxygen evolution reaction (OER) at the anode, with low commercial interests of the produced [...] Read more.
The hydrogen economy, associated with electrochemical water splitting, represents a promising pathway to mitigate reliance on fossil fuels. However, the efficiency of this process is constrained by the sluggish oxygen evolution reaction (OER) at the anode, with low commercial interests of the produced oxygen. As a promising solution, OER can be replaced with the methanol oxidation reaction (MOR), which not only accelerates the hydrogen evolution reaction (HER) but also yields valuable formate as a product, depending on the nature of the anode electrocatalysts. In this context, nickel selenides have emerged as highly efficient and cost-effective electrocatalysts due to their rich compositional diversity, tunable electronic structures, and superior conductivity. Additionally, nickel selenides exist in multiple stoichiometric and nonstoichiometric phases, and also in the engineering versatility for optimizing catalytic MOR performance. This review comprehensively presents the design principles of electrocatalysts, provides a strategy for the optimization of performance, and discusses the mechanistic understanding of nickel selenide-based electrocatalysts for coupled HER and MOR systems, particularly focusing on the MOR. By bridging fundamental insights with practical applications, it additionally highlights the latest advancements in their catalytic MOR performance, offering insights into their potential for future energy and chemical applications. Full article
(This article belongs to the Special Issue Catalysis for Energy Storage and Batteries)
Show Figures

Figure 1

14 pages, 5171 KiB  
Article
Cobalt-Decorated Carbonized Wood as an Efficient Electrocatalyst for Water Splitting
by Zichen Cheng, Zekun Li, Shou Huang, Junfan Pan, Jiaxian Mei, Siqi Zhang, Xingyu Peng, Wen Lu and Lei Yan
Catalysts 2025, 15(5), 503; https://doi.org/10.3390/catal15050503 - 21 May 2025
Viewed by 736
Abstract
The efficient mass transport and enhanced accessibility of active sites are crucial for high-performance electrocatalysts in water splitting. Inspired by the hierarchical structure of natural wood, we engineered a monolithic electrocatalyst, cobalt nanoparticles encapsulated in nitrogen-doped carbon layers on carbonized wood (Co@NC/CW), by [...] Read more.
The efficient mass transport and enhanced accessibility of active sites are crucial for high-performance electrocatalysts in water splitting. Inspired by the hierarchical structure of natural wood, we engineered a monolithic electrocatalyst, cobalt nanoparticles encapsulated in nitrogen-doped carbon layers on carbonized wood (Co@NC/CW), by carbonizing wood to create a three-dimensional framework with vertically aligned macropores. The unique architecture encapsulates cobalt nanoparticles within in situ-grown nitrogen-doped graphene layers on wood-derived microchannels, facilitating ultrafast electrolyte infusion and anisotropic electron transport. As a result, the optimized freestanding Co@NC/CW electrode exhibits remarkable bifunctional activity, achieving overpotentials of 403 mV and 227 mV for the oxygen evolution reaction (OER) and hydrogen evolution reaction (HER), respectively, at a current density of 50 mA cm−2. Furthermore, the integrated hybrid electrolyzer combining the HER and the OER delivers an impressive 50 A cm−2 at a cell voltage of 1.72 V while maintaining a Faradaic efficiency near 99.5% and sustaining long-term stability over 120 h of continuous operation. Co@NC/CW also demonstrates performance in the complete decomposition of alkaline seawater, underscoring its potential for scalable applications. This wood-derived catalyst design not only leverages the natural hierarchical porosity of wood but also offers a sustainable platform for advanced electrochemical systems. Full article
(This article belongs to the Special Issue Recent Progress on Electrocatalytic Hydrogen Evolution Reaction)
Show Figures

Graphical abstract

14 pages, 3464 KiB  
Article
Dual-Engineering Tailored Co3O4 Hollow Microspheres Assembled by Nanosheets for Boosting Oxygen Evolution Reaction
by Yinghan Cui, Shiduo Yang, Jianqiang Zhu, Zaidong Wang, Sen Chen, Jian Qi and Huan Wang
Molecules 2025, 30(10), 2181; https://doi.org/10.3390/molecules30102181 - 16 May 2025
Viewed by 450
Abstract
The development of efficient, low-cost electrocatalysts for the oxygen evolution reaction (OER) is crucial for advancing sustainable hydrogen production through water splitting. This study presents a dual-engineering strategy to enhance the OER performance of Co3O4 by synthesizing hollow microspheres assembled [...] Read more.
The development of efficient, low-cost electrocatalysts for the oxygen evolution reaction (OER) is crucial for advancing sustainable hydrogen production through water splitting. This study presents a dual-engineering strategy to enhance the OER performance of Co3O4 by synthesizing hollow microspheres assembled from nanosheets (HMNs) with abundant oxygen vacancies and highly active crystal facet exposure. Through a modified one-step hydrothermal process, Co3O4 HMNs with exposed (111) and (100) crystal facets were successfully fabricated, demonstrating superior OER activity compared to Co3O4 nanocubes (NCs) with only (100) facet exposure. The optimized Co3O4-5% HMNs exhibited a low overpotential of 330 mV at 10 mA cm−2 and a Tafel slope of 69 mV dec−1. The enhanced performance was attributed to the synergistic effects of crystal facet engineering and defect engineering, which optimized the Co-O bond energy, increased the number of active sites, and improved conductivity. The unique hollow structure further facilitated mass transport and prevented nanosheet stacking, exposing more edge sites for catalytic reactions. This work highlights the potential of geometric and electronic structure modulation in designing high-performance OER catalysts for sustainable energy applications. Full article
Show Figures

Graphical abstract

17 pages, 5229 KiB  
Article
CuNb2O6 Particles Obtained via Solid-State Reaction and Application as Electrocatalyst for Oxygen Evolution Reaction
by Kívia F. G. de Araújo, Cleber S. Lourenço, Vitor M. S. F. Souza, Matheus D. da Silva, Gabriel D. S. Vasconcelos, Maria J. S. Lima, Jakeline R. D. Santos, Kelly C. Gomes, Francisco J. A. Loureiro, Marco A. Morales and Uílame U. Gomes
Ceramics 2025, 8(2), 55; https://doi.org/10.3390/ceramics8020055 - 13 May 2025
Viewed by 1206
Abstract
Copper niobate (CuNb2O6) is an important compound due to its low cost and polymorphism, presenting monoclinic and orthorhombic phases, which leads to unique physical–chemical properties. The electrochemical performance of efficient electrocatalysts for the oxygen evolution reaction (OER) is of [...] Read more.
Copper niobate (CuNb2O6) is an important compound due to its low cost and polymorphism, presenting monoclinic and orthorhombic phases, which leads to unique physical–chemical properties. The electrochemical performance of efficient electrocatalysts for the oxygen evolution reaction (OER) is of importance in order to produce hydrogen gas from water. In this context, this work reports the synthesis of CuNb2O6 particles by high-energy milling for 5 and 10 h, and subsequent thermal treatment at 900 °C for 3 h. The samples were characterized by XRD, XRF, FESEM, RAMAN, UV–Vis, and FT-IR techniques, and were applied as electrocatalysts for the OER. The samples had both monoclinic and orthorhombic crystalline phases. The band gaps were in the range of 1.92 to 2.06 eV. In the application for the OER, the particles obtained by 5 and 10 h of milling exhibited overpotentials of 476 and 347 mV vs. RHE at 10 mA cm−2, respectively. In chronopotentiometry experiments for 15 h, the samples exhibited excellent chemical stability. The electrochemical performance of the sample milled for 10 h showed superior performance (347 mV vs. RHE) when compared with electrocatalysts of the same type, demonstrating that the methodology used to synthesize the samples is promising for energy applications. Full article
(This article belongs to the Special Issue Advances in Electronic Ceramics, 2nd Edition)
Show Figures

Graphical abstract

Back to TopTop