Nickel Selenides in Electrocatalysis: Coupled Formate and Hydrogen Production Through Methanol Oxidation Reaction
Abstract
:1. Introduction
2. Electrocatalysts Based on Nickel Selenides
3. Recent Advances
Electrocatalysts | Synthesis Method | Morphology | Electrolyte | Performance mA cm−2 @ RHE | Product | FE | Reference |
---|---|---|---|---|---|---|---|
Ni3Se4 | hydrothermal | nanoparticles | 1 M KOH + 1 M methanol | 149.8 @ 1.5V | formate | 95.7% | [54] |
NiSe2 | solvothermal + annealing | 3D nanosheets | 1 M KOH + 1 M methanol | 5.6 @ 1.7V | n.a. | n.a. | [55] |
Ni0.75Fe0.25Se2 | ink solution | nanoparticles | 1 M KOH + 1 M methanol | 53.5 @ 1.5V | formate | 99% | [59] |
Ni0.9Co0.1Se | solution | nanosheets | 1 M NaOH + 1 M methanol | 185 @ 1.65V | formate | 84% | [60] |
NiPx-R | anionization + reconstruction | nanosheets | 1 M NaOH + 0.5 M methanol | ~200 @ 1.6V | formate | n.a. | [62] |
a-Se@NS-8.1% | hydrothermal | nanoparticles | 1 M KOH + 1 M methanol | 160 @ 1.6V | formate | 98% | [63] |
NiFe MOF@NiSex | solvothermal | nanosheets | 1 M KOH + 0.8 M methanol | ~500 @ 1.65V | n.a. | n.a. | [71] |
Carbon nanofibers@NiSe | colloidal | nanocrystals | 1 M KOH + 1 M methanol | ~300 @ 1.6V | formate | 97.9% | [72] |
NiCo2O4/NiCoSe2 | hydrothermal | flower-Like | 1 M KOH + 0.5 M methanol | ~130 @ 1.5V | n.a. | n.a. | [73] |
MnSe/NiSe | solvothermal | hydrangea-like | 1 M KOH + 0.07 M methanol | 50 @ 1.79V | n.a. | n.a. | [69] |
NiSe/MoSe2/CC | hydrothermal | nanowire | 1 M KOH + 1 M methanol | 100 @ 1.38V | formate | n.a. | [68] |
CeSe/Co3Se4@NiSe-NF | electrodeposition | flower-Like | 1 M NaOH + 0.5 M methanol | ~135.6 @ 1.45V | formate | n.a. | [74] |
NiSe2/NC | selenization | 3D architecture | 1 M KOH + 0.5 M methanol | ~164.5 @ 1.7V | n.a. | n.a. | [75] |
CeO2-Ni2Co1Se | annealing | nanosheets | 1 M KOH + 0.5 M methanol | ~175 @ 1.7V | n.a. | n.a. | [76] |
NiSe2@NiAl | coprecipitation + annealing | nanoparticles | 1 M KOH + 0.5 M methanol | ~200 @ 1.7V | n.a. | n.a. | [77] |
NiSe/carbon nanotube | colloidal | 3D network | 1 M KOH + 1 M methanol | ~345 @ 1.62V | formate | 95% | [78] |
NiSe/Ni foil | in situ growth | nanowire | 1 M KOH + 0.5 M methanol | ~130 @ 1.55V | n.a. | n.a. | [79] |
RGO/NiSe@P-NMPy | solution | 2D sheet-like | 0.5 M KOH + 1 M methanol | ~50 @ 1.5V | n.a. | n.a. | [80] |
NiSe/RGO | selenization + annealing | nanoparticles | 1 M KOH + 0.5 M methanol | ~56 @ 1.35V | n.a. | n.a. | [81] |
4. Conclusions and Outlook
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Manthiram, A.; Vadivel Murugan, A.; Sarkar, A.; Muraliganth, T. Nanostructured Electrode Materials for Electrochemical Energy Storage and Conversion. Energy Environ. Sci. 2008, 1, 621–638. [Google Scholar] [CrossRef]
- Turner, J.A. Sustainable Hydrogen Production. Science 2004, 305, 972–974. [Google Scholar] [CrossRef] [PubMed]
- Winsche, W.E.; Hoffman, K.C.; Salzano, F.J. Hydrogen: Its Future Role in the Nation’s Energy Economy. Science 1973, 180, 1325–1332. [Google Scholar] [CrossRef]
- Hao, Y.; Qiao, C.; Zhang, S.; Zhu, Y.; Ji, L.; Cao, C.; Zhang, J. Constructing Cation Vacancy Defects on NiFe-LDH Nanosheets for Efficient Oxygen Evolution Reaction. Energy Mater. Adv. 2023, 4, 0040. [Google Scholar] [CrossRef]
- Li, Y.; Wei, X.; Chen, L.; Shi, J. Electrocatalytic Hydrogen Production Trilogy. Angew. Chem. Int. Ed. 2020, 60, 19550–19571. [Google Scholar] [CrossRef]
- Quan, L.; Jiang, H.; Mei, G.; Sun, Y.; You, B. Bifunctional Electrocatalysts for Overall and Hybrid Water Splitting. Chem. Rev. 2024, 124, 3694–3812. [Google Scholar] [CrossRef]
- Huang, C.; Huang, Y.; Liu, C.; Yu, Y.; Zhang, B. Integrating Hydrogen Production with Aqueous Selective Semi-Dehydrogenation of Tetrahydroisoquinolines over a Ni2P Bifunctional Electrode. Angew. Chem. Int. Ed. 2019, 58, 12014–12017. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.; Xu, X.; Chen, G.; Shao, Z. Perovskite Oxides as Electrocatalysts for Water Electrolysis: From Crystalline to Amorphous. Carbon Energy 2024, 6, e595. [Google Scholar] [CrossRef]
- Chen, F.Y.; Wu, Z.Y.; Adler, Z.; Wang, H. Stability Challenges of Electrocatalytic Oxygen Evolution Reaction: From Mechanistic Understanding to Reactor Design. Joule 2021, 5, 1704–1731. [Google Scholar] [CrossRef]
- Yan, Y.; Zhong, J.; Wang, R.; Yan, S.; Zou, Z. Trivalent Nickel-Catalyzing Electroconversion of Alcohols to Carboxylic Acids. J. Am. Chem. Soc. 2024, 146, 4814–4821. [Google Scholar] [CrossRef]
- Xia, Q.; Jin, C.; Huang, Y.L.; Zhai, Y.; Han, W.; Wu, J.; Xia, C.; Lin, C.C.; Zhao, X.; Zhang, X. Methanol-Facilitated Surface Reconstruction Catalysts for Near 200% Faradaic Efficiency in a Coupled System. Adv. Funct. Mater. 2024, 34, 2314596. [Google Scholar] [CrossRef]
- Meng, F.; Wu, Q.; Elouarzaki, K.; Luo, S.; Sun, Y.; Dai, C.; Xi, S.; Chen, Y.; Lin, X.; Fang, M.; et al. Essential Role of Lattice Oxygen in Methanol Electrochemical Refinery toward Formate. Sci. Adv. 2023, 9, eadh9487. [Google Scholar] [CrossRef]
- McCrory, C.C.L.; Jung, S.; Peters, J.C.; Jaramillo, T.F. Benchmarking Heterogeneous Electrocatalysts for the Oxygen Evolution Reaction. J. Am. Chem. Soc. 2013, 135, 16977–16987. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Shen, X.; Wang, M.; Zhang, L.; Qian, T.; Yan, C.; Lu, J. The Understanding, Rational Design, and Application of High-Entropy Alloys as Excellent Electrocatalysts: A Review. Sci. China Mater. 2023, 66, 2527–2544. [Google Scholar] [CrossRef]
- Kahlstorf, T.; Hausmann, J.N.; Sontheimer, T.; Menezes, P.W. Challenges for Hybrid Water Electrolysis to Replace the Oxygen Evolution Reaction on an Industrial Scale. Glob. Chall. 2023, 7, 2200242. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Wei, R.; Wang, X.; Zuo, Y.; Han, X.; Arbiol, J.; Llorca, J.; Yang, Y.; Cabot, A.; Cui, C. Selective Methanol-to-Formate Electrocatalytic Conversion on Branched Nickel Carbide. Angew. Chemie 2020, 132, 21012–21016. [Google Scholar] [CrossRef]
- Li, J.; Li, L.; Ma, X.; Wang, J.; Zhao, J.; Zhang, Y.; He, R.; Yang, Y.; Cabot, A.; Zhu, Y. Unraveling the Role of Iron on Ni-Fe Alloy Nanoparticles during the Electrocatalytic Ethanol-to-Acetate Process. Nano Res. 2024, 17, 2328–2336. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, R.; Ma, Y.; Jian, N.; Pan, H.; Liu, Y.; Deng, J.; Li, L.; Shao, Q.; Li, C.; et al. Nickel-Cobalt Oxide Nanoparticles as Superior Electrocatalysts for Enhanced Coupling Hydrogen Evolution and Selective Ethanol Oxidation Reaction. J. Mater. Chem. A 2024, 12, 17252–17259. [Google Scholar] [CrossRef]
- Jian, N.; Ge, H.; Ma, Y.; Zhang, Y.; Li, L.; Liu, J.; Yu, J.; Li, C.; Li, J. Improved Methanol-to-Formate Electrocatalytic Reaction by Engineering of Nickel Hydroxide and Iron Oxyhydroxide Heterostructures. Sci. Energy Environ. 2025, 2, 3. [Google Scholar] [CrossRef]
- Ma, Y.; Ge, H.; Zhang, Y.; Jian, N.; Yu, J.; Arbiol, J.; Li, C.; Zhong, Y.; Li, L.; Kang, H.; et al. Selective Electrooxidation of Ethylene Glycol to Formate with Hydrogen Cogeneration in Ni3S2 Nanodomains on NiFeMn-LDH Nanosheet Arrays. ACS Sustain. Chem. Eng. 2025, 13, 5601–5612. [Google Scholar] [CrossRef]
- Liu, Y.P.; Zhao, S.F.; Guo, S.X.; Bond, A.M.; Zhang, J.; Zhu, G.; Hill, C.L.; Geletii, Y.V. Electrooxidation of Ethanol and Methanol Using the Molecular Catalyst [{Ru4O4(OH)2(H2O)4}(γ-SiW10O36)2]10−. J. Am. Chem. Soc. 2016, 138, 2617–2628. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Chao, T.; Dou, Y.; Xiong, Y.; Liu, X.; Wang, D. Isolated Metal Centers Activate Small Molecule Electrooxidation: Mechanisms and Applications. Adv. Mater. 2025, 37, 2418504. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.M.; Hong, Q.L.; Wang, X.H.; Huang, H.; Yu, C.; Li, S.N. Rup Nanoparticles Anchored on N-Doped Graphene Aerogels for Hydrazine Oxidation-Boosted Hydrogen Production. Wuli Huaxue Xuebao/Acta Phys. Chim. Sin. 2023, 39, 2303028. [Google Scholar] [CrossRef]
- Mao, Q.; Wang, W.; Deng, K.; Yu, H.; Wang, Z.; Xu, Y.; Li, X.; Wang, L.; Wang, H. Low-Content Pt-Triggered the Optimized d-Band Center of Rh Metallene for Energy-Saving Hydrogen Production Coupled with Hydrazine Degradation. J. Energy Chem. 2023, 85, 58–66. [Google Scholar] [CrossRef]
- Li, J.; Ma, Y.; Yu, J.; Li, L.; Yang, H.; Gu, W.; Shi, J.; Wang, J.; Zhu, Y. Enhanced Methanol Electrooxidation and Supercapacitive Performance via Compositional Engineering of Colloidal Ni-Co Alloying Nanoparticles. ChemSusChem 2024, 18, e202401098. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Liu, M.; Wang, M.; Ren, T.; Ren, K.; Wang, Z.; Li, X.; Wang, L.; Wang, H. Methanol Electroreforming Coupled to Green Hydrogen Production over Bifunctional NiIr-Based Metal-Organic Framework Nanosheet Arrays. Appl. Catal. B Environ. 2022, 300, 120753. [Google Scholar] [CrossRef]
- Sun, H.; Xu, X.; Fei, L.; Zhou, W.; Shao, Z. Electrochemical Oxidation of Small Molecules for Energy-Saving Hydrogen Production. Adv. Energy Mater. 2024, 14, 2401242. [Google Scholar] [CrossRef]
- Ghasemzadeh, K.; Sadati Tilebon, S.M.; Nasirinezhad, M.; Basile, A. Economic Assessment of Methanol Production. In Methanol: Science and Engineering; Elsevier: Amsterdam, The Netherlands, 2017; pp. 613–632. ISBN 9780444640109. [Google Scholar]
- Kishi, R.; Ogihara, H.; Yoshida-Hirahara, M.; Shibanuma, K.; Yamanaka, I.; Kurokawa, H. Green Synthesis of Methyl Formate via Electrolysis of Pure Methanol. ACS Sustain. Chem. Eng. 2020, 8, 11532–11540. [Google Scholar] [CrossRef]
- Ma, Y.; Li, L.; Zhang, Y.; Jian, N.; Pan, H.; Deng, J.; Li, J. Nickel Foam Supported Mn-Doped NiFe-LDH Nanosheet Arrays as Efficient Bifunctional Electrocatalysts for Methanol Oxidation and Hydrogen Evolution. J. Colloid Interface Sci. 2024, 663, 971–980. [Google Scholar] [CrossRef]
- Ma, Y.; Li, L.; Tang, J.; Hu, Z.; Zhang, Y.; Ge, H.; Jian, N.; Zhao, J.; Cabot, A.; Li, J. Electrochemical PET Recycling to Formate through Ethylene Glycol Oxidation on Ni-Co-S Nanosheet Arrays. J. Mater. Chem. A 2024, 12, 33917–33925. [Google Scholar] [CrossRef]
- Ullah, N.; Ullah, S.; Khan, S.; Guziejewski, D.; Mirceski, V. A Review: Metal-Organic Framework Based Electrocatalysts for Methanol Electro-Oxidation Reaction. Int. J. Hydrogen Energy 2023, 48, 3340–3354. [Google Scholar] [CrossRef]
- Majumdar, D.; Bhattacharya, S.K. Recent Developments of Methanol Electrooxidation Using Nickel-Based Nanocatalysts. ChemistrySelect 2022, 7, e202201807. [Google Scholar] [CrossRef]
- Chen, Z.; Han, N.; Zheng, R.; Ren, Z.; Wei, W.; Ni, B. Design of Earth-abundant Amorphous Transition Metal-based Catalysts for Electrooxidation of Small Molecules: Advances and Perspectives. SusMat 2023, 3, 290–319. [Google Scholar] [CrossRef]
- Zhao, L.; Zhu, Z.; Wang, J.; Zuo, J.; Chen, H.; Qi, X.; Niu, X.; Blackwood, D.J.; Chen, J.S.; Wu, R. Unlocking Proton Exchange Membrane Fuel Cell Performance with Porous PtCoV Alloy Catalysts. Adv. Mater. 2025, 2502457. [Google Scholar] [CrossRef]
- Liu, J.; Liu, H.; Wang, Q.; Li, T.; Yang, T.; Zhang, W.; Xu, H.; Li, H.; Qi, X.; Wang, Y.; et al. Phosphorus Doped PdMo Bimetallene as a Superior Bifunctional Fuel Cell Electrocatalyst. Chem. Eng. J. 2024, 486, 150258. [Google Scholar] [CrossRef]
- Liu, J.; Li, T.; Wang, Q.; Liu, H.; Wu, J.; Sui, Y.; Li, H.; Tang, P.; Wang, Y. Bifunctional PdMoPt Trimetallene Boosts Alcohol-Water Electrolysis. Chem. Sci. 2024, 15, 16660–16668. [Google Scholar] [CrossRef]
- Liu, H.; Li, T.; Wu, Z.; Xu, H.; Li, H.; Jing, R.; Wang, Y.; Liu, J. Integration of Phosphorus in PdCr Metallene for Enhanced CO-Tolerant Alcohol Electrooxidation. Inorg. Chem. 2024, 64, 123–132. [Google Scholar] [CrossRef]
- Kakati, N.; Maiti, J.; Lee, S.H.; Jee, S.H.; Viswanathan, B.; Yoon, Y.S. Anode Catalysts for Direct Methanol Fuel Cells in Acidic Media: Do We Have Any Alternative for Pt or Pt-Ru? Chem. Rev. 2014, 114, 12397–12429. [Google Scholar] [CrossRef]
- Liu, X.L.; Jiang, Y.C.; Huang, J.T.; Zhong, W.; He, B.; Jin, P.J.; Chen, Y. Bifunctional PdPt Bimetallenes for Formate Oxidation-Boosted Water Electrolysis. Carbon Energy 2023, 5, e367. [Google Scholar] [CrossRef]
- Cheng, H.; Wang, J.; Wu, C.; Liu, Z. Electrocatalysts for Formic Acid-Powered PEM Fuel Cells: Challenges and Prospects. Energy Mater. Adv. 2023, 4, 0067. [Google Scholar] [CrossRef]
- Swesi, A.T.; Masud, J.; Nath, M. Nickel Selenide as a High-Efficiency Catalyst for Oxygen Evolution Reaction. Energy Environ. Sci. 2016, 9, 1771–1782. [Google Scholar] [CrossRef]
- Yuan, B.; Luan, W.; Tu, S.T. One-Step Solvothermal Synthesis of Nickel Selenide Series: Composition and Morphology Control. CrystEngComm 2012, 14, 2145–2151. [Google Scholar] [CrossRef]
- Li, J.; Li, L.; Ma, X.; Han, X.; Xing, C.; Qi, X.; He, R.; Arbiol, J.; Pan, H.; Zhao, J.; et al. Selective Ethylene Glycol Oxidation to Formate on Nickel Selenide with Simultaneous Evolution of Hydrogen. Adv. Sci. 2023, 10, 2300841. [Google Scholar] [CrossRef]
- Anantharaj, S.; Noda, S. Nickel Selenides as Pre-Catalysts for Electrochemical Oxygen Evolution Reaction: A Review. Int. J. Hydrogen Energy 2020, 45, 15763–15784. [Google Scholar] [CrossRef]
- Xia, X.; Wang, L.; Sui, N.; Colvin, V.L.; Yu, W.W. Recent Progress in Transition Metal Selenide Electrocatalysts for Water Splitting. Nanoscale 2020, 12, 12249–12262. [Google Scholar] [CrossRef]
- Yang, C.; Lu, Y.; Duan, W.; Kong, Z.; Huang, Z.; Yang, T.; Zou, Y.; Chen, R.; Wang, S. Recent Progress and Prospective of Nickel Selenide-Based Electrocatalysts for Water Splitting. Energy Fuels 2021, 35, 14283–14303. [Google Scholar] [CrossRef]
- Li, J.; Yu, J.; Zhang, Y.; Li, C.; Ma, Y.; Ge, H.; Jian, N.; Li, L.; Zhang, C.Y.; Zhou, J.Y.; et al. Boosting Polysulfide Conversion on Fe-Doped Nickel Diselenide Toward Robust Lithium–Sulfur Batteries. Adv. Funct. Mater. 2025, 2501485. [Google Scholar] [CrossRef]
- Li, J.; Wang, X.; Xing, C.; Li, L.; Mu, S.; Han, X.; He, R.; Liang, Z.; Martinez, P.; Yi, Y.; et al. Electrochemical Reforming of Ethanol with Acetate Co-Production on Nickel Cobalt Selenide Nanoparticles. Chem. Eng. J. 2022, 440, 135817. [Google Scholar] [CrossRef]
- Wu, T.; Xu, Z.; Wang, X.; Luo, M.; Xia, Y.; Zhang, X.; Li, J.; Liu, J.; Wang, J.; Wang, H.L.; et al. Surface-Confined Self-Reconstruction to Sulfate-Terminated Ultrathin Layers on NiMo3S4 toward Biomass Molecule Electro-Oxidation. Appl. Catal. B Environ. 2023, 323, 122126. [Google Scholar] [CrossRef]
- Wang, X.; Ma, R.; Li, S.; Xu, M.; Liu, L.; Feng, Y.; Thomas, T.; Yang, M.; Wang, J. In Situ Electrochemical Oxyanion Steering of Water Oxidation Electrocatalysts for Optimized Activity and Stability. Adv. Energy Mater. 2023, 13, 2300765. [Google Scholar] [CrossRef]
- Li, S.; Liu, D.; Wang, G.; Ma, P.; Wang, X.; Wang, J.; Ma, R. Vertical 3D Nanostructures Boost Efficient Hydrogen Production Coupled with Glycerol Oxidation Under Alkaline Conditions. Nano-Micro Lett. 2023, 15, 189. [Google Scholar] [CrossRef]
- She, Z.W.; Kibsgaard, J.; Dickens, C.F.; Chorkendorff, I.; Nørskov, J.K.; Jaramillo, T.F. Combining Theory and Experiment in Electrocatalysis: Insights into Materials Design. Science 2017, 355, eaad4998. [Google Scholar] [CrossRef]
- Ren, J.; Zhang, Y.; Li, J.; Liu, J.; Hu, J.; Li, C.; Ke, Y.; Zhao, J.; Cabot, A.; Tang, B. Hydrothermal Nickel Selenides as Efficient Electrodes in Alkaline Media: Application to Supercapacitors and Methanol Oxidation Reaction. Dalt. Trans. 2024, 53, 18736–18744. [Google Scholar] [CrossRef]
- Ullah, N.; Guziejewski, D.; Mahmood, A.; Ullah, S.; Khan, S.; Hussain, S.; Imran, M. Three-Dimensionally Arranged NiSe2 Nanosheets as an Efficient Electrocatalyst for Methanol Electrooxidation Reaction. Energy Technol. 2024, 12, 2400390. [Google Scholar] [CrossRef]
- Jana, M.; Xu, R.; Cheng, X.B.; Yeon, J.S.; Park, J.M.; Huang, J.Q.; Zhang, Q.; Park, H.S. Rational Design of Two-Dimensional Nanomaterials for Lithium-Sulfur Batteries. Energy Environ. Sci. 2020, 13, 1049–1075. [Google Scholar] [CrossRef]
- Li, J.; Luo, Z.; He, F.; Zuo, Y.; Zhang, C.; Liu, J.; Du, R.; Yu, X.; Zhang, T.; Tang, P.; et al. Colloidal Ni-Co-Sn Nanoparticles as Efficient Electrocatalysts for the Methanol Oxidation Reaction. J. Mater. Chem. A 2018, 6, 22915–22924. [Google Scholar] [CrossRef]
- Dubale, A.A.; Zheng, Y.; Wang, H.; Hübner, R.; Li, Y.; Yang, J.; Zhang, J.; Sethi, N.K.; He, L.; Zheng, Z.; et al. High-Performance Bismuth-Doped Nickel Aerogel Electrocatalyst for the Methanol Oxidation Reaction. Angew. Chemie-Int. Ed. 2020, 59, 13891–13899. [Google Scholar] [CrossRef]
- Li, J.; Xing, C.; Zhang, Y.; Zhang, T.; Spadaro, M.C.; Wu, Q.; Yi, Y.; He, S.; Llorca, J.; Arbiol, J.; et al. Nickel Iron Diselenide for Highly Efficient and Selective Electrocatalytic Conversion of Methanol to Formate. Small 2021, 17, 2006623. [Google Scholar] [CrossRef]
- Ganguly, S.; Paul, S.; Khurana, D.; Khan, T.S.; Giri, P.K.; Loha, C.; Ghosh, S. Ternary Ni-Co-Se Nanostructure for Electrocatalytic Oxidative Value Addition of Biomass Platform Chemicals. ACS Appl. Energy Mater. 2023, 6, 5331–5341. [Google Scholar] [CrossRef]
- Meshesha, M.M.; Chanda, D.; Balu, R.; Jang, S.G.; Ahmed, S.; Yang, B.L. Efficient Green Hydrogen Production through Metal–Organic Framework-Derived Ni and Co Mediated Iron Selenide Hexagonal Nanorods and Wireless Coupled with Photovoltaics for Urea and Alkaline Water Electrolysis. Appl. Catal. B Environ. 2024, 344, 123635. [Google Scholar] [CrossRef]
- Li, S.; Ma, R.; Hu, J.; Li, Z.; Liu, L.; Wang, X.; Lu, Y.; Sterbinsky, G.E.; Liu, S.; Zheng, L.; et al. Coordination Environment Tuning of Nickel Sites by Oxyanions to Optimize Methanol Electro-Oxidation Activity. Nat. Commun. 2022, 13, 4679. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, R.; Ma, Y.; Jian, N.; Ge, H.; Pan, H.; Zhang, Y.; Zhang, C.; Liu, Y.; Deng, J.; et al. Surface Selenium Coating Promotes Selective Methanol-to-Formate Electrooxidation on Ni3Se4 Nanoparticles. Inorg. Chem. 2024, 63, 23328–23337. [Google Scholar] [CrossRef]
- Xin, Y.; Sun, L.; Huo, L.; Zhao, H. Co-Ni-P Nanoneedle Array Heterostructures with Built-In Potential for Selective Methanol Oxidation Coupled with H2 Evolution. ACS Appl. Nano Mater. 2023, 6, 10312–10321. [Google Scholar] [CrossRef]
- Wang, D.; Li, Y. Bimetallic Nanocrystals: Liquid-Phase Synthesis and Catalytic Applications. Adv. Mater. 2011, 23, 1044–1060. [Google Scholar] [CrossRef]
- Zhang, Q.; Jiang, Q.; Yang, X.; Zhang, C.; Zhang, J.; Yang, L.; He, H.; Ying, G.; Huang, H. Heterointerface Engineering of Rhombic Rh Nanosheets Confined on MXene for Efficient Methanol Oxidation. J. Energy Chem. 2024, 93, 419–428. [Google Scholar] [CrossRef]
- Liu, X.; Fang, Z.; Xiong, D.; Gong, S.; Niu, Y.; Chen, W.; Chen, Z. Upcycling PET in Parallel with Energy-Saving H2 Production via Bifunctional Nickel-Cobalt Nitride Nanosheets. Nano Res. 2023, 16, 4625–4633. [Google Scholar] [CrossRef]
- Peng, X.; Xie, S.; Wang, X.; Pi, C.; Liu, Z.; Gao, B.; Hu, L.; Xiao, W.; Chu, P.K. Energy-Saving Hydrogen Production by the Methanol Oxidation Reaction Coupled with the Hydrogen Evolution Reaction Co-Catalyzed by a Phase Separation Induced Heterostructure. J. Mater. Chem. A 2022, 10, 20761–20769. [Google Scholar] [CrossRef]
- Hu, L.; Zhong, P.; Zhu, J.; Wang, J.; Zheng, Y.; Zhang, Y.; Yang, H. Interfacial Engineering of Hydrangea-like MnSe/NiSe Heterostructure Catalysts for Methanol-Assisted Water Splitting. Mater. Lett. 2024, 377, 137417. [Google Scholar] [CrossRef]
- Du, J.; You, S.; Li, X.; Tang, B.; Jiang, B.; Yu, Y.; Cai, Z.; Ren, N.; Zou, J. In Situ Crystallization of Active NiOOH/CoOOH Heterostructures with Hydroxide Ion Adsorption Sites on Velutipes-like CoSe/NiSe Nanorods as Catalysts for Oxygen Evolution and Cocatalysts for Methanol Oxidation. ACS Appl. Mater. Interfaces 2020, 12, 686–697. [Google Scholar] [CrossRef]
- Hu, W.; Yan, Q.; Ma, S.; Gao, R.; Wang, Q.; Yuan, W. Surface-Selenization Formed NiFe MOF@NiSex Heterogeneous Arrays for Enhanced Oxygen Evolution and Methanol Electrooxidation. J. Electroanal. Chem. 2024, 975, 118789. [Google Scholar] [CrossRef]
- Zhao, B.; Liu, J.W.; Yin, Y.R.; Wu, D.; Luo, J.L.; Fu, X.Z. Carbon Nanofibers@NiSe Core/Sheath Nanostructures as Efficient Electrocatalysts for Integrating Highly Selective Methanol Conversion and Less-Energy Intensive Hydrogen Production. J. Mater. Chem. A 2019, 7, 25878–25886. [Google Scholar] [CrossRef]
- Gopalakrishnan, A.; Badhulika, S. Hierarchical Architectured Dahlia Flower-Like NiCo2O4/NiCoSe2 as a Bifunctional Electrode for High-Energy Supercapacitor and Methanol Fuel Cell Application. Energy Fuels 2021, 35, 9646–9659. [Google Scholar] [CrossRef]
- Jalali, F.; Sheikhi, S.; Hassani, N. Novel Selenide Composite as an Effective Bifunctional Electrocatalyst for Energy-Saving Hydrogen Production through Methanol-Assisted Water Electrolysis. Energy Fuels 2024, 39, 992–1004. [Google Scholar] [CrossRef]
- Shi, Y.; Li, H.; Ao, D.; Chang, Y.; Xu, A.; Jia, M.; Jia, J. 3D Nickel Diselenide Architecture on Nitrogen-Doped Carbon as a Highly Efficient Electrode for the Electrooxidation of Methanol and Urea. J. Alloys Compd. 2021, 885, 160919. [Google Scholar] [CrossRef]
- Cao, R.; Chang, Y.; Jia, J. CeO2-Ni2Co1Sex Catalysts Grown on N-Doped Carbon Substrates for Electrocatalytic Oxidation of Methanol and Urea. J. Alloys Compd. 2025, 1017, 179058. [Google Scholar] [CrossRef]
- Wang, X.; Wang, J.; Xu, A.; Chang, Y.; Jia, J.; Jia, M. Effect of in Situ Growth of NiSe2 on NiAl Layered Double Hydroxide on Its Electrocatalytic Properties for Methanol and Urea. Int. J. Hydrogen Energy 2023, 48, 22060–22068. [Google Scholar] [CrossRef]
- Zhao, B.; Liu, J.; Xu, C.; Feng, R.; Sui, P.; Wang, L.; Zhang, J.; Luo, J.L.; Fu, X.Z. Hollow NiSe Nanocrystals Heterogenized with Carbon Nanotubes for Efficient Electrocatalytic Methanol Upgrading to Boost Hydrogen Co-Production. Adv. Funct. Mater. 2021, 31, 2008812. [Google Scholar] [CrossRef]
- Luo, Q.; Peng, M.; Sun, X.; Asiri, A.M. In Situ Growth of Nickel Selenide Nanowire Arrays on Nickel Foil for Methanol Electro-Oxidation in Alkaline Media. RSC Adv. 2015, 5, 87051–87054. [Google Scholar] [CrossRef]
- Kavitha, M.; Alagarsamy, S.; Chen, S.M.; Muthuchudarkodi, R.R.; Shakina, J.; Tharmaraj, P. NiSe Integrated with Polymerized Reduced Carbon Sheet: As an Effective Electrocatalyst for Methanol Oxidation Reaction. Int. J. Hydrogen Energy 2024, 51, 1050–1059. [Google Scholar] [CrossRef]
- Jia, J.; Zhao, L.; Chang, Y.; Jia, M.; Wen, Z. Understanding the Growth of NiSe Nanoparticles on Reduced Graphene Oxide as Efficient Electrocatalysts for Methanol Oxidation Reaction. Ceram. Int. 2020, 46, 10023–10028. [Google Scholar] [CrossRef]
- Zhu, W.; Zhang, R.; Qu, F.; Asiri, A.M.; Sun, X. Design and Application of Foams for Electrocatalysis. ChemCatChem 2017, 9, 1721–1743. [Google Scholar] [CrossRef]
- Zhu, M.; Zhai, C.; Sun, M.; Hu, Y.; Yan, B.; Du, Y. Ultrathin Graphitic C3N4 Nanosheet as a Promising Visible-Light-Activated Support for Boosting Photoelectrocatalytic Methanol Oxidation. Appl. Catal. B Environ. 2017, 203, 108–115. [Google Scholar] [CrossRef]
- Zhang, C.Y.; Zhang, C.; Sun, G.W.; Pan, J.L.; Gong, L.; Sun, G.Z.; Biendicho, J.J.; Balcells, L.; Fan, X.L.; Morante, J.R.; et al. Spin Effect to Promote Reaction Kinetics and Overall Performance of Lithium-Sulfur Batteries under External Magnetic Field. Angew. Chemie-Int. Ed. 2022, 61, e202211570. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; He, R.; Botifoll, M.; Zhang, Y.; Ding, Y.; Di, C.; He, C.; Xu, Y.; Balcells, L.; Arbiol, J.; et al. Enhanced Oxygen Evolution and Zinc-Air Battery Performance via Electronic Spin Modulation in Heterostructured Catalysts. Adv. Mater. 2024, 36, 2400572. [Google Scholar] [CrossRef]
- Huang, Y.; Zhu, M.; Huang, Y.; Pei, Z.; Li, H.; Wang, Z.; Xue, Q.; Zhi, C. Multifunctional Energy Storage and Conversion Devices. Adv. Mater. 2016, 28, 8344–8364. [Google Scholar] [CrossRef]
- Liu, Z.; Tan, H.; Liu, D.; Liu, X.; Xin, J.; Xie, J.; Zhao, M.; Song, L.; Dai, L.; Liu, H. Promotion of Overall Water Splitting Activity Over a Wide PH Range by Interfacial Electrical Effects of Metallic NiCo-Nitrides Nanoparticle/NiCo2O4 Nanoflake/Graphite Fibers. Adv. Sci. 2019, 6, 1801829. [Google Scholar] [CrossRef]
- Zhao, Z.; Shen, X.; Luo, X.; Chen, M.; Zhang, M.; Yu, R.; Jin, R.; Zheng, H. Electric Field Redistribution Triggered Surface Adsorption and Mass Transfer to Boost Electrocatalytic Glycerol Upgrading Coupled with Hydrogen Evolution. Adv. Energy Mater. 2024, 14, 2400851. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tu, H.; Zhong, Y.; Yang, Z.; Zhang, C.; Ma, Y.; Zhang, Y.; Jian, N.; Ge, H.; Li, J. Nickel Selenides in Electrocatalysis: Coupled Formate and Hydrogen Production Through Methanol Oxidation Reaction. Catalysts 2025, 15, 516. https://doi.org/10.3390/catal15060516
Tu H, Zhong Y, Yang Z, Zhang C, Ma Y, Zhang Y, Jian N, Ge H, Li J. Nickel Selenides in Electrocatalysis: Coupled Formate and Hydrogen Production Through Methanol Oxidation Reaction. Catalysts. 2025; 15(6):516. https://doi.org/10.3390/catal15060516
Chicago/Turabian StyleTu, Hong, Yan Zhong, Zhihao Yang, Caihong Zhang, Yi Ma, Yong Zhang, Ning Jian, Huan Ge, and Junshan Li. 2025. "Nickel Selenides in Electrocatalysis: Coupled Formate and Hydrogen Production Through Methanol Oxidation Reaction" Catalysts 15, no. 6: 516. https://doi.org/10.3390/catal15060516
APA StyleTu, H., Zhong, Y., Yang, Z., Zhang, C., Ma, Y., Zhang, Y., Jian, N., Ge, H., & Li, J. (2025). Nickel Selenides in Electrocatalysis: Coupled Formate and Hydrogen Production Through Methanol Oxidation Reaction. Catalysts, 15(6), 516. https://doi.org/10.3390/catal15060516