Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (973)

Search Parameters:
Keywords = O3 mixing ratio

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
9 pages, 235 KiB  
Article
Ceftazidime-Avibactam Plus Aztreonam for the Treatment of Blood Stream Infection Caused by Klebsiella pneumoniae Resistant to All Beta-Lactame/Beta-Lactamase Inhibitor Combinations
by Konstantinos Mantzarlis, Efstratios Manoulakas, Dimitrios Papadopoulos, Konstantina Katseli, Athanasia Makrygianni, Vassiliki Leontopoulou, Periklis Katsiafylloudis, Stelios Xitsas, Panagiotis Papamichalis, Achilleas Chovas, Demosthenes Makris and George Dimopoulos
Antibiotics 2025, 14(8), 806; https://doi.org/10.3390/antibiotics14080806 - 7 Aug 2025
Abstract
Introduction: The combination of ceftazidime−avibactam (CAZ-AVI) with aztreonam (ATM) may be an option for the treatment of infections due to metallo-β-lactamases (MBLs) producing bacteria, as recommended by current guidelines. MBLs protect the pathogen from any available β-lactam/β-lactamase inhibitor (BL/BLI). Moreover, in vitro and [...] Read more.
Introduction: The combination of ceftazidime−avibactam (CAZ-AVI) with aztreonam (ATM) may be an option for the treatment of infections due to metallo-β-lactamases (MBLs) producing bacteria, as recommended by current guidelines. MBLs protect the pathogen from any available β-lactam/β-lactamase inhibitor (BL/BLI). Moreover, in vitro and clinical data suggest that double carbapenem therapy (DCT) may be an option for such infections. Materials and Methods: This retrospective study was conducted in two mixed intensive care units (ICUs) at the University Hospital of Larissa, Thessaly, Greece, and the General Hospital of Larissa, Thessaly, Greece, during a three-year period (2022−2024). Mechanically ventilated patients with bloodstream infection (BSI) caused by K. pneumoniae resistant to all BL/BLI combinations were studied. Patients were divided into three groups: in the first, patients were treated with CAZ-AVI + ATM; in the second, with DCT; and in the third, with antibiotics other than BL/BLIs that presented in vitro susceptibility. The primary outcome of the study was the change in Sequential Organ Failure Assessment (SOFA) score between the onset of infection and the fourth day of antibiotic treatment. Secondary outcomes were SOFA score evolution during the treatment period, total duration of mechanical ventilation (MV), ICU length of stay (LOS), and ICU mortality. Results: A total of 95 patients were recruited. Among them, 23 patients received CAZ-AVI + AZT, 22 received DCT, and 50 patients received another antibiotic regimen which was in vitro active against the pathogen. The baseline characteristics were similar. The mean (SE) overall age was 63.2 (1.3) years. Mean (SE) Acute Physiology and Chronic Health Evaluation II (APACHE II) and SOFA scores were 16.3 (0.6) and 7.6 (0.3), respectively. The Charlson Index was similar between groups. The control group presented a statistically lower SOFA score on day 4 compared to the other two groups [mean (SE) 8.9 (1) vs. 7.4 (0.9) vs. 6.4 (0.5) for CAZ-AVI + ATM, DCT and control group, respectively (p = 0.045)]. The duration of mechanical ventilation, ICU LOS, and mortality were similar between the groups (p > 0.05). Comparison between survivors and non-survivors revealed that survivors had a lower SOFA score on the day of BSI, higher PaO2/FiO2 ratio, higher platelet counts, and lower lactate levels (p < 0.05). Septic shock was more frequent among non-survivors (60.3%) in comparison to survivors (27%) (p = 0.0015). Independent factors for mortality were PaO2/FiO2 ratio and lactate levels (p < 0.05). None of the antibiotic regimens received by the patients was independently associated with survival. Conclusions: Treatment with CAZ-AVI + ATM or DCT may offer similar clinical outcomes for patients suffering from BSI caused by K. pneumoniae strains resistant to all available BL/BLIs. However, larger studies are required to confirm the findings. Full article
22 pages, 13925 KiB  
Article
Strontium-Decorated Ag2O Nanoparticles Obtained via Green Synthesis/Polyvinyl Alcohol Films for Wound Dressing Applications
by Vanita Ghatti, Sharanappa Chapi, Yogesh Kumar Kumarswamy, Nagaraj Nandihalli and Deepak R. Kasai
Materials 2025, 18(15), 3568; https://doi.org/10.3390/ma18153568 - 30 Jul 2025
Viewed by 384
Abstract
This study involved the fabrication of poly (vinyl alcohol) (PVA) nanocomposite films using the solution-casting process, which incorporated strontium-coated silver oxide (Sr-Ag2O) nanoparticles generated by a plant-extract assisted method. Various characterization techniques, such as XRD, SEM, TEM, UV, and FTIR, showed [...] Read more.
This study involved the fabrication of poly (vinyl alcohol) (PVA) nanocomposite films using the solution-casting process, which incorporated strontium-coated silver oxide (Sr-Ag2O) nanoparticles generated by a plant-extract assisted method. Various characterization techniques, such as XRD, SEM, TEM, UV, and FTIR, showed the formation and uniform distribution of Sr-Ag2O nanoparticles in the PVA film, which are biocompatible nanocomposite films. The presence of hydroxyl groups leads to appreciable mixing and interaction between the Sr-Ag2O nanoparticles and the PVA polymer. Mechanical and thermal results suggest enhanced tensile strength and increased thermal stability. In addition, the sample of PVA/Sr-Ag2O (1.94/0.06 wt. ratio) nanocomposite film showed decreased hydrophilicity, lower hemolysis, non-toxicity, and appreciable cell migration activity, with nearly 19.95% cell migration compared to the standard drug, and the presence of Sr-Ag2O nanoparticles favored the adhesion and spreading of cells, which triggered the reduction in the gaps. These research findings suggest that PVA/Sr-Ag2O nanocomposite films with good mechanical, antimicrobial, non-toxic, and biocompatible properties could be applied in biological wound-healing applications. Full article
(This article belongs to the Special Issue Nanoparticle Assembly: Fundamentals and Applications)
Show Figures

Figure 1

19 pages, 2630 KiB  
Article
Experimental and Kinetic Modelling Study of the Heterogeneous Catalytic Conversion of Bioethanol into n-Butanol Using MgO–Al2O3 Mixed Oxide Catalyst
by Amosi Makoye, Anna Vikár, András Bence Nacsa, Róbert Barthos, József Valyon, Ferenc Lónyi and Tibor Nagy
Catalysts 2025, 15(8), 709; https://doi.org/10.3390/catal15080709 - 25 Jul 2025
Viewed by 299
Abstract
Ethanol upgrading via catalytic C–C coupling, commonly known as the Guerbet reaction, offers a sustainable route to produce 1-butanol, a high-performance biofuel. To address gaps in the mechanistic understanding of the catalytic reaction, we investigated the process involving a fixed-bed reactor, operated at [...] Read more.
Ethanol upgrading via catalytic C–C coupling, commonly known as the Guerbet reaction, offers a sustainable route to produce 1-butanol, a high-performance biofuel. To address gaps in the mechanistic understanding of the catalytic reaction, we investigated the process involving a fixed-bed reactor, operated at 275–325 °C, 21 bar, and weight hourly space velocities of 0.25–2.5 gEtOH/(gcat·h), using helium as a carrier gas, with a 5:1 He/EtOH molar ratio. The catalyst was a MgO–Al2O3 mixed oxide (Mg/Al = 2:1), derived from a hydrotalcite precursor. A detailed kinetic model was developed, encompassing 15 species and 27 reversible steps (10 sorption and 17 reaction steps), within a 1+1D sorption–reaction–transport framework. Four C4-forming pathways were included: aldol condensation to form crotonaldehyde, semi-direct coupling to form butyraldehyde and crotyl alcohol, and direct coupling to form 1-butanol. To avoid overfitting, Arrhenius parameters were grouped by reaction type, resulting in sixty rate parameters and one active site-specific density parameter. The optimized model achieved high accuracy, with an average prediction error of 1.44 times the experimental standard deviation. The mechanistic analysis revealed aldol condensation as the dominant pathway below 335 °C, with semi-direct coupling to crotyl alcohol prevailing above 340 °C. The resulting model provides a robust framework for understanding and predicting complex reaction networks in ethanol upgrading systems. Full article
(This article belongs to the Special Issue Biomass Catalytic Conversion to Value-Added Chemicals)
Show Figures

Graphical abstract

25 pages, 4161 KiB  
Article
Indoor/Outdoor Particulate Matter and Related Pollutants in a Sensitive Public Building in Madrid (Spain)
by Elisabeth Alonso-Blanco, Francisco Javier Gómez-Moreno, Elías Díaz-Ramiro, Javier Fernández, Esther Coz, Carlos Yagüe, Carlos Román-Cascón, Dulcenombre Gómez-Garre, Adolfo Narros, Rafael Borge and Begoña Artíñano
Int. J. Environ. Res. Public Health 2025, 22(8), 1175; https://doi.org/10.3390/ijerph22081175 - 25 Jul 2025
Viewed by 382
Abstract
According to the World Health Organization (WHO), indoor air quality (IAQ) is becoming a serious global concern due to its significant impact on human health. However, not all relevant health parameters are currently regulated. For example, particle number concentration (PNC) and its associated [...] Read more.
According to the World Health Organization (WHO), indoor air quality (IAQ) is becoming a serious global concern due to its significant impact on human health. However, not all relevant health parameters are currently regulated. For example, particle number concentration (PNC) and its associated carbonaceous species, such as black carbon (BC), which are classified as carcinogenic by the International Agency for Research on Cancer (IARC), are not currently regulated. Compared with IAQ studies in other types of buildings, studies focusing on IAQ in hospitals or other healthcare facilities are scarce. Therefore, this study aims to evaluate the impact of these outdoor pollutants, among others, on the indoor environment of a hospital under different atmospheric conditions. To identify the seasonal influence, two different periods of two consecutive seasons (summer 2020 and winter 2021) were selected for the measurements. Regulated pollutants (NO, NO2, O3, PM10, and PM2.5) and nonregulated pollutants (PM1, PNC, and equivalent BC (eBC)) in outdoor air were simultaneously measured indoor and outdoor. This study also investigated the impact of indoor activities on indoor air quality. In the absence of indoor activities, outdoor sources significantly contribute to indoor traffic-related pollutants. Indoor and outdoor (I-O) measurements showed similar behavior, but indoor concentrations were lower, with peak levels delayed by up to two hours. Seasonal variations in indoor/outdoor (I/O) ratios were lower for particles than for associated gaseous pollutants. Particle infiltration depended on particle size, with it being higher the smaller the particle size. Indoor activities also significantly affected indoor pollutants. PMx (especially PM10 and PM2.5) concentrations were mainly modulated by walking-induced particle resuspension. Vertical eBC profiles indicated a relatively well-mixed environment. Ventilation through open windows rapidly altered indoor air quality. Outdoor-dominant pollutants (PNC, eBC, and NOX) had I/O ratios ≥ 1. Staying in the room with an open window had a synergistic effect, increasing the I/O ratios for all pollutants. Higher I/O ratios were associated with turbulent outdoor conditions in both unoccupied and occupied conditions. Statistically significant differences were observed between stable (TKE ≤ 1 m2 s−2) and unstable (TKE > 1 m2 s−2) conditions, except for NO2 in summer. This finding was particularly significant when the wind direction was westerly or easterly during unstable conditions. The results of this study highlight the importance of understanding the behavior of indoor particulate matter and related pollutants. These pollutants are highly variable, and knowledge about them is crucial for determining their health effects, particularly in public buildings such as hospitals, where information on IAQ is often limited. More measurement data is particularly important for further research into I-O transport mechanisms, which are essential for developing preventive measures and improving IAQ. Full article
Show Figures

Figure 1

16 pages, 4134 KiB  
Article
Effect of Oxygen-Containing Functional Groups on the Performance of Palladium/Carbon Catalysts for Electrocatalytic Oxidation of Methanol
by Hanqiao Xu, Hongwei Li, Xin An, Weiping Li, Rong Liu, Xinhong Zhao and Guixian Li
Catalysts 2025, 15(8), 704; https://doi.org/10.3390/catal15080704 - 24 Jul 2025
Viewed by 326
Abstract
The methanol oxidation reaction (MOR) of direct methanol fuel cells (DMFCs) is limited by the slow kinetic process and high reaction energy barrier, significantly restricting the commercial application of DMFCs. Therefore, developing MOR catalysts with high activity and stability is very important. In [...] Read more.
The methanol oxidation reaction (MOR) of direct methanol fuel cells (DMFCs) is limited by the slow kinetic process and high reaction energy barrier, significantly restricting the commercial application of DMFCs. Therefore, developing MOR catalysts with high activity and stability is very important. In this paper, oxygen-functionalised activated carbon (FAC) with controllable oxygen-containing functional groups was prepared by adjusting the volume ratio of H2SO3/HNO3 mixed acid, and Pd/AC and Pd/FAC catalysts were synthesised via the hydrazine hydrate reduction method. A series of characterisation techniques and electrochemical performance tests were used to study the catalyst. The results showed that when V(H2SO3):V(HNO3) = 2:3, more defects were generated on the surface of the AC, and more oxygen-containing functional groups represented by C=O and C–OH were attached to the surface of the support, which increased the anchor sites of Pd and improved the dispersion of Pd nanoparticles (Pd NPs) on the support. At the same time, the mass–specific activity of Pd/FAC for MOR was 2320 mA·mgPd, which is 1.5 times that of Pd/AC, and the stability was also improved to a certain extent. In situ infrared spectroscopy further confirmed that oxygen functionalisation treatment promoted the formation and transformation of *COOH intermediates, accelerated the transformation of COL into COB, reduced the poisoning of COads species adsorbed to the catalyst, optimised the reaction path and improved the catalytic kinetic performance. Full article
Show Figures

Graphical abstract

16 pages, 4204 KiB  
Article
Assessment of the Source and Dynamics of Water Inrush Based on Hydrochemical Mixing Model in Zhaxikang Mining Area, Tibet, China
by Hongyu Gu, Yujie Liu, Huizhong Liu, Xinyu Cen, Jinxian Zhong, Dewei Wang and Lei Yi
Water 2025, 17(15), 2201; https://doi.org/10.3390/w17152201 - 23 Jul 2025
Viewed by 246
Abstract
Water source identification and dynamic assessment are critical for mining safety, particularly in mines governed by complex geological structures. The hydrochemical mixing model demonstrates a natural advantage for early warning of water intrusion compared to geophysical monitoring techniques. This study discusses core issues [...] Read more.
Water source identification and dynamic assessment are critical for mining safety, particularly in mines governed by complex geological structures. The hydrochemical mixing model demonstrates a natural advantage for early warning of water intrusion compared to geophysical monitoring techniques. This study discusses core issues related to the mixing model, including the conceptual framework, selection of end-members, and choice of tracers, and formulates principles for general applicability. In this study, three sources were identified using the conceptual model and hydrochemical analysis: water in F7 (main fault), shallow fracture water, and river water. A correlation analysis and variability analysis were applied to determine the tracers, and the 18O, D, Cl, B, and Li were determined. The end-members of the three sources are time-dependent in July and September, especially the shallow fracture water’s end-members. The dynamics of the mixing ratios of the three sources suggest that river water contributes only to the inrush (1–4%), with this being especially low in September, as the increasing hydraulic gradient from south to north prevents recharge. The water in F7 accounts for at least 70% of the inrush water. Shallow fracture water accounts for the rest and increases slightly in September as the precipitation increases in mining-disturbed areas. Finally, this work makes the later water control work more targeted. Full article
(This article belongs to the Section Hydrogeology)
Show Figures

Figure 1

36 pages, 8968 KiB  
Article
Stabilization of High-Volume Circulating Fluidized Bed Fly Ash Composite Gravels via Gypsum-Enhanced Pressurized Flue Gas Heat Curing
by Nuo Xu, Rentuoya Sa, Yuqing He, Jun Guo, Yiheng Chen, Nana Wang, Yuchuan Feng and Suxia Ma
Materials 2025, 18(15), 3436; https://doi.org/10.3390/ma18153436 - 22 Jul 2025
Viewed by 200
Abstract
Circulating fluidized bed fly ash (CFBFA) stockpiles release alkaline dust, high-pH leachate, and secondary CO2/SO2—an environmental burden that exceeds 240 Mt yr−1 in China alone. Yet, barely 25% is recycled, because the high f-CaO/SO3 contents destabilize conventional [...] Read more.
Circulating fluidized bed fly ash (CFBFA) stockpiles release alkaline dust, high-pH leachate, and secondary CO2/SO2—an environmental burden that exceeds 240 Mt yr−1 in China alone. Yet, barely 25% is recycled, because the high f-CaO/SO3 contents destabilize conventional cementitious products. Here, we presents a pressurized flue gas heat curing (FHC) route to bridge this scientific deficit, converting up to 85 wt% CFBFA into structural lightweight gravel. The gypsum dosage was optimized, and a 1:16 (gypsum/CFBFA) ratio delivered the best compromise between early ettringite nucleation and CO2-uptake capacity, yielding the highest overall quality. The optimal mix reaches 9.13 MPa 28-day crushing strength, 4.27% in situ CO2 uptake, 1.75 g cm−3 bulk density, and 3.59% water absorption. Multi-technique analyses (SEM, XRD, FTIR, TG-DTG, and MIP) show that FHC rapidly consumes expansive phases, suppresses undesirable granular-ettringite formation, and produces a dense calcite/needle-AFt skeleton. The FHC-treated CFBFA composite gravel demonstrates 30.43% higher crushing strength than JTG/TF20-2015 standards, accompanied by a water absorption rate 28.2% lower than recent studies. Its superior strength and durability highlight its potential as a low-carbon lightweight aggregate for structural engineering. A life-cycle inventory gives a cradle-to-gate energy demand of 1128 MJ t−1 and a process GWP of 226 kg CO2-eq t−1. Consequently, higher point-source emissions paired with immediate mineral sequestration translate into a low overall climate footprint and eliminate the need for CFBFA landfilling. Full article
(This article belongs to the Section Advanced Composites)
Show Figures

Graphical abstract

17 pages, 8540 KiB  
Article
Effects of N-P-K Ratio in Root Nutrient Solutions on Ectomycorrhizal Formation and Seedling Growth of Pinus armandii Inoculated with Tuber indicum
by Li Huang, Rui Wang, Fuqiang Yu, Ruilong Liu, Chenxin He, Lanlan Huang, Shimei Yang, Dong Liu and Shanping Wan
Agronomy 2025, 15(7), 1749; https://doi.org/10.3390/agronomy15071749 - 20 Jul 2025
Viewed by 347
Abstract
Ectomycorrhizal symbiosis is a cornerstone of ecosystem health, facilitating nutrient uptake, stress tolerance, and biodiversity maintenance in trees. Optimizing Pinus armandiiTuber indicum mycorrhizal synthesis enhances the ecological stability of coniferous forests while supporting high-value truffle cultivation. This study conducted a pot [...] Read more.
Ectomycorrhizal symbiosis is a cornerstone of ecosystem health, facilitating nutrient uptake, stress tolerance, and biodiversity maintenance in trees. Optimizing Pinus armandiiTuber indicum mycorrhizal synthesis enhances the ecological stability of coniferous forests while supporting high-value truffle cultivation. This study conducted a pot experiment to compare the effects of three root nutrient regulations—Aolu 318S (containing N-P2O5-K2O in a ratio of 15-9-11 (w/w%)), Aolu 328S (11-11-18), and Youguduo (19-19-19)—on the mycorrhizal synthesis of P. armandiiT. indicum. The results showed that root nutrient supplementation significantly improved the seedling crown, plant height, ground diameter, biomass dry weight, and mycorrhizal infection rate of both the control and mycorrhizal seedlings, with the slow-release fertilizers Aolu 318S and 328S outperforming the quick-release fertilizer Youguduo. The suitable substrate composition in this experiment was as follows: pH 6.53–6.86, organic matter content 43.25–43.49 g/kg, alkali-hydrolyzable nitrogen 89.25–90.3 mg/kg, available phosphorus 83.69–87.32 mg/kg, available potassium 361.5–364.65 mg/kg, exchangeable magnesium 1.17–1.57 mg/kg, and available iron 33.06–37.3 mg/kg. It is recommended to mix the Aolu 318S and 328S solid fertilizers evenly into the substrate, with a recommended dosage of 2 g per plant. These results shed light on the pivotal role of a precise N-P-K ratio regulation in fostering sustainable ectomycorrhizal symbiosis, offering a novel paradigm for integrating nutrient management with mycorrhizal biotechnology to enhance forest restoration efficiency in arid ecosystems. Full article
Show Figures

Figure 1

14 pages, 2050 KiB  
Article
Electrospun PANI/PEO-Luffa Cellulose/TiO2 Nanofibers: A Sustainable Biocomposite for Conductive Applications
by Gözde Konuk Ege, Merve Bahar Okuyucu and Özge Akay Sefer
Polymers 2025, 17(14), 1989; https://doi.org/10.3390/polym17141989 - 20 Jul 2025
Viewed by 506
Abstract
Herein, electrospun nanofibers composed of polyaniline (PANI), polyethylene oxide (PEO), and Luffa cylindrica (LC) cellulose, reinforced with titanium dioxide (TiO2) nanoparticles, were synthesized via electrospinning to investigate the effect of TiO2 nanoparticles on PANI/PEO/LC nanocomposites and the effect of conductivity [...] Read more.
Herein, electrospun nanofibers composed of polyaniline (PANI), polyethylene oxide (PEO), and Luffa cylindrica (LC) cellulose, reinforced with titanium dioxide (TiO2) nanoparticles, were synthesized via electrospinning to investigate the effect of TiO2 nanoparticles on PANI/PEO/LC nanocomposites and the effect of conductivity on nanofiber morphology. Cellulose extracted from luffa was added to the PANI/PEO copolymer solution, and two different ratios of TiO2 were mixed into the PANI/PEO/LC biocomposite. The morphological, vibrational, and thermal characteristics of biocomposites were systematically investigated using scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), differential scanning calorimetry (DSC), and thermogravimetric analysis (TGA). As anticipated, the presence of TiO2 enhanced the electrical conductivity of biocomposites, while the addition of Luffa cellulose further improved the conductivity of the cellulose-based nanofibers. FTIR analysis confirmed chemical interactions between Luffa cellulose and PANI/PEO matrix, as evidenced by the broadening of the hydroxyl (OH) absorption band at 3500–3200 cm−1. Additionally, the emergence of characteristic peaks within the 400–1000 cm−1 range in the PANI/PEO/LC/TiO2 spectra signified Ti–O–Ti and Ti–O–C vibrations, confirming the incorporation of TiO2 into the biocomposite. SEM images of the biocomposites reveal that the thickness of nanofibers decreases by adding Luffa to PANI/PEO nanofibers because of the nanofibers branching. In addition, when blending TiO2 nanoparticles with the PANI/PEO/LC biocomposite, this increment continued and obtained thinner and smother nanofibers. Furthermore, the incorporation of cellulose slightly improved the crystallinity of the nanofibers, while TiO2 contributed to the enhanced crystallinity of the biocomposite according to the XRD and DCS results. Similarly, the TGA results supported the DSC results regarding the increasing thermal stability of the biocomposite nanofibers with TiO2 nanoparticles. These findings demonstrate the potential of PANI/PEO/LC/TiO2 nanofibers for advanced applications requiring conductive and structurally optimized biomaterials, e.g., for use in humidity or volatile organic compound (VOC) sensors, especially where flexibility and environmental sustainability are required. Full article
Show Figures

Figure 1

26 pages, 6009 KiB  
Article
Integrated Mechanical and Eco-Economical Assessments of Fly Ash-Based Geopolymer Concrete
by Qasim Shaukat Khan, Raja Hilal Ahmad, Asad Ullah Qazi, Syed Minhaj Saleem Kazmi, Muhammad Junaid Munir and Muhammad Hassan Javed
Buildings 2025, 15(14), 2555; https://doi.org/10.3390/buildings15142555 - 20 Jul 2025
Viewed by 281
Abstract
This research evaluates the mechanical properties, environmental impacts, and cost-effectiveness of Hub Coal fly ash (FA)-based geopolymer concrete (FAGPC) as a sustainable alternative to ordinary Portland cement (OPC) concrete. This local FA has not been investigated previously. A total of 24 FAGPC mixes [...] Read more.
This research evaluates the mechanical properties, environmental impacts, and cost-effectiveness of Hub Coal fly ash (FA)-based geopolymer concrete (FAGPC) as a sustainable alternative to ordinary Portland cement (OPC) concrete. This local FA has not been investigated previously. A total of 24 FAGPC mixes were tested under both ambient and heat curing conditions, varying the molarities of sodium hydroxide (NaOH) solution (10-M, 12-M 14-M and 16-M), sodium silicate to sodium hydroxide (Na2SiO3/NaOH) ratios (1.5, 2.0, and 2.5), and alkaline activator solution to fly ash (AAS/FA) ratios (0.5 and 0.6). The test results demonstrated that increasing NaOH molarity enhances the compressive strength (CS.) by 145% under ambient curing, with a peak CS. of 32.8 MPa at 16-M NaOH, and similarly, flexural strength (FS.) increases by 90% with a maximum FS. of 6.5 MPa at 14-M NaOH. Conversely, increasing the Na2SiO3/NaOH ratio to 2.5 reduced the CS. and FS. of ambient-cured specimens by 12.5% and 10.5%, respectively. Microstructural analysis revealed that higher NaOH molarity produced a denser, more homogeneous matrix, supported by increased Si–O–Al bond formation observed through energy-dispersive X-ray spectrometry. Environmentally, FAGPC demonstrated a 35–40% reduction in embodied CO2 emissions compared to OPC, although the production costs of FAGPC were 30–35% higher, largely due to the expense of alkaline activators. These findings highlight the potential of FAGPC as a low-carbon alternative to OPC concrete, balancing enhanced mechanical performance with sustainability. New, green, and cheap activation solutions are sought for a new generation of more sustainable and affordable FAGPC. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

15 pages, 7741 KiB  
Article
Experimental Study on Low-Shrinkage Concrete Mix Proportion for Post-Casting Belt of Full-Section Casting in Immersed Tube
by Bang-Yan Liang, Wen-Huo Sun, Chun-Lin Deng, Qian Hu and Yong-Hui Huang
Materials 2025, 18(14), 3315; https://doi.org/10.3390/ma18143315 - 14 Jul 2025
Viewed by 238
Abstract
Full-section interval casting technology was adopted for the integral immersed tube of the Chebei Immersed Tunnel. Field tests (Chebei Immersed Tunnel) were conducted to establish the time-dependent development of the concrete shrinkage strain of the full-section casting segments. And laboratory experiments were then [...] Read more.
Full-section interval casting technology was adopted for the integral immersed tube of the Chebei Immersed Tunnel. Field tests (Chebei Immersed Tunnel) were conducted to establish the time-dependent development of the concrete shrinkage strain of the full-section casting segments. And laboratory experiments were then carried out to investigate the influence of factors such as the reinforcement ratio and stress, expansive agent content and composition, fly ash content, and curing temperature and humidity on the expansive effect of calcium–magnesium composite expansive agents. Field tests revealed that casting segments exhibit initial expansion followed by shrinkage, reaching a final strain of 348 με (microstrain). Laboratory investigations demonstrated that reinforcement (20–30 MPa stress) in post-casting belts effectively restrains segments without compromising the performance of calcium–magnesium composite expansive agents. The optimal 5:3:2 ratio of CaO, MgO 90s, and MgO 200s agents controlled shrinkage strain within 80 με by combining CaO’s rapid early expansion with MgO’s sustained effect. Field validation confirmed the mix’s effectiveness in preventing cracking, with key findings: (1) fly ash content and curing conditions significantly influence expansive behavior, and (2) shrinkage development can be precisely regulated through agent composition adjustments. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

20 pages, 5652 KiB  
Article
Capacitive Sensing of Solid Debris in Used Lubricant of Transmission System: Multivariate Statistics Classification Approach
by Surapol Raadnui and Sontinan Intasonti
Lubricants 2025, 13(7), 304; https://doi.org/10.3390/lubricants13070304 - 14 Jul 2025
Viewed by 353
Abstract
The quantification of solid debris in used lubricating oil is essential for assessing transmission system wear and optimizing maintenance strategies. This study introduces a low-cost capacitive proximity sensor for monitoring total solid particle contamination in lubricants, with a focus on ferrous (Fe), non-ferrous [...] Read more.
The quantification of solid debris in used lubricating oil is essential for assessing transmission system wear and optimizing maintenance strategies. This study introduces a low-cost capacitive proximity sensor for monitoring total solid particle contamination in lubricants, with a focus on ferrous (Fe), non-ferrous (Al), and non-metallic (SiO2) debris. Controlled tests were performed using five mixing ratios of large-to-small particles (100:0, 75:25, 50:50, 25:75, and 0:100) at a fixed debris mass of 0.5 g per 25 mL of SAE 85W-140 automotive gear oil. Cubic regression analysis yielded high predictive accuracy, with average R2 values of 0.994 for Fe, 0.943 for Al, and 0.992 for SiO2. Further dimensionality reduction using Principal Component Analysis (PCA), along with Linear Discriminant Analysis (LDA) of multivariate statistical analysis, effectively classifies debris types and enhances interpretability. These results demonstrate the potential of capacitive sensing as an offline, non-invasive alternative to traditional techniques for wear debris monitoring in transmission systems. These results confirm the potential of capacitive sensing, supported by statistical modeling, as a non-invasive, cost-effective technique for offline classification and monitoring of wear debris in transmission systems. Full article
(This article belongs to the Special Issue Tribological Research on Transmission Systems)
Show Figures

Figure 1

28 pages, 2882 KiB  
Article
Additive Manufacturing as an Alternative to Core Sampling in Concrete Strength Assessment
by Darya Anop, Marzhan Sadenova, Nail Beisekenov, Olga Rudenko, Zulfiya Aubakirova and Assel Jexembayeva
Appl. Sci. 2025, 15(14), 7737; https://doi.org/10.3390/app15147737 - 10 Jul 2025
Viewed by 292
Abstract
Additive manufacturing reshapes concrete construction, yet routine strength verification of printed elements still depends on destructive core sampling. This study evaluates whether standard 70 mm cubes—corrected by a single factor—can provide an equally reliable measure of in situ compressive strength. Five Portland-cement mixes, [...] Read more.
Additive manufacturing reshapes concrete construction, yet routine strength verification of printed elements still depends on destructive core sampling. This study evaluates whether standard 70 mm cubes—corrected by a single factor—can provide an equally reliable measure of in situ compressive strength. Five Portland-cement mixes, with and without ash-slag techno-mineral filler, were extruded into wall blocks on a laboratory 3D printer. For each mix, the compressive strengths of the cubes and ∅ 28 mm drilled cores were measured at 7, 14 and 28 days. The core strengths were consistently lower than the cube strengths, but their ratios remained remarkably stable: the transition coefficient clustered between 0.82 and 0.85 (mean 0.83). Ordinary least-squares regression of the pooled data produced the linear relation R^core [MPa] = 0.97 R^cube − 4.9, limiting the prediction error to less than 2 MPa (under 3% across the 40–300 MPa range) and outperforming more complex machine-learning models. Mixtures containing up to 30% ash-slag filler maintained structural-grade strength while reducing clinker demand, underscoring their sustainability potential. The results deliver a simple, evidence-based protocol for non-destructive strength assessment of 3D-printed concrete and provide quantitative groundwork for future standardisation of quality-control practices in additive construction. Full article
(This article belongs to the Special Issue Sustainable Concrete Materials and Resilient Structures)
Show Figures

Figure 1

16 pages, 8495 KiB  
Article
Utilization of Waste Clay–Diatomite in the Production of Durable Mullite-Based Insulating Materials
by Svetlana Ilić, Jelena Maletaškić, Željko Skoko, Marija M. Vuksanović, Željko Radovanović, Ivica Ristović and Aleksandra Šaponjić
Appl. Sci. 2025, 15(13), 7512; https://doi.org/10.3390/app15137512 - 4 Jul 2025
Viewed by 298
Abstract
Microstructural, mechanical and qualitative phase identification of durable mullite-based ceramics obtained by utilization of waste clay–diatomite has been studied. Mullite-based ceramics were fabricated using waste clay–diatomite from the Baroševac open-cast coal mine, Kolubara (Serbia). The raw material consists mainly of SiO2 (70.5 [...] Read more.
Microstructural, mechanical and qualitative phase identification of durable mullite-based ceramics obtained by utilization of waste clay–diatomite has been studied. Mullite-based ceramics were fabricated using waste clay–diatomite from the Baroševac open-cast coal mine, Kolubara (Serbia). The raw material consists mainly of SiO2 (70.5 wt%) and a moderately high content of Al2O3 (13.8 wt%). In order to achieve the stoichiometric mullite composition (3Al2O3-2SiO2), the raw material was mixed with an appropriate amount of Al(NO3)3·9H2O. After preparing the precursor powder, the green compacts were sintered at 1300, 1400 and 1500 °C for 2 h. During the process, rod-shaped mullite grains were formed, measuring approximately 5 µm in length and a diameter of 500 nm (aspect ratio 10:1). The microstructure of the sample sintered at 1500 °C resulted in a well-developed, porous, nest-like morphology. According to the X-ray diffraction analysis, the sample at 1400 °C consisted of mullite, cristobalite and corundum phases, while the sample sintered at 1500 °C contained mullite (63.24 wt%) and an amorphous phase that reached 36.7 wt%. Both samples exhibited exceptional compressive strength—up to 188 MPa at 1400 °C. However, the decrease in compressive strength to 136 MPa at 1500 °C is attributed to changes in the phase composition, the disappearance of the corundum phase and alterations in the microstructure. This occurred despite an increase in bulk density to 2.36 g/cm3 (approximately 82% of theoretical density) and a complete reduction in open porosity. The residual glassy phase (36.7 wt% at 1500 °C) is probably the key factor influencing the mechanical properties at room temperature in these ceramics produced from waste clay–diatomite. However, the excellent mechanical stability of the samples sintered at 1400 and 1500 °C, achieved without binders or additives and using mined diatomaceous earth, supports further research into mullite-based insulating materials. Mullite-based materials obtained from mining waste might be successfully used in the field of energy-efficient refractory materials and thermal insulators. for high-temperature applications Full article
Show Figures

Figure 1

24 pages, 4363 KiB  
Article
Ni Supported on Pr-Doped Ceria as Catalysts for Dry Reforming of Methane
by Antonella R. Ponseggi, Amanda de C. P. Guimarães, Renata O. da Fonseca, Raimundo C. Rabelo-Neto, Yutao Xing, Andressa A. A. Silva, Fábio B. Noronha and Lisiane V. Mattos
Processes 2025, 13(7), 2119; https://doi.org/10.3390/pr13072119 - 3 Jul 2025
Viewed by 466
Abstract
The use of CH4 and CO2 as fuels in direct internal reforming solid oxide fuel cells (DIR-SOFCs) is a promising strategy for efficient power generation with reduced greenhouse gas emissions. In this study, Ni catalysts supported on Ce–Pr mixed oxides with [...] Read more.
The use of CH4 and CO2 as fuels in direct internal reforming solid oxide fuel cells (DIR-SOFCs) is a promising strategy for efficient power generation with reduced greenhouse gas emissions. In this study, Ni catalysts supported on Ce–Pr mixed oxides with varying Pr contents (0–80 mol%) were synthesized, calcined at 1200 °C, and tested for dry reforming of methane (DRM), aiming at their application as catalytic layers in SOFC anodes. Physicochemical characterization (XRD, TPR, TEM) showed that increasing Pr loading enhances catalyst reducibility and promotes the formation of the Pr2NiO4 phase, which contributes to the generation of smaller Ni0 particles after reduction. Catalytic tests revealed that all samples exhibited low-carbon deposition, attributed to the large Ni crystallites. The catalyst with 80 mol% Pr showed the best performance, achieving the highest CH4 conversion (72%), a H2/CO molar ratio of 0.89, and improved stability. These findings suggest that Ni/Ce0.2Pr0.8 could be a promising candidate for use as a catalyst layer of anodes in DIR-SOFC anodes. Although electrochemical data are not yet available, future work will evaluate the catalyst’s performance and durability under SOFC-relevant conditions. Full article
(This article belongs to the Special Issue Advances in Synthesis and Applications of Supported Nanocatalysts)
Show Figures

Graphical abstract

Back to TopTop