Assessment of the Source and Dynamics of Water Inrush Based on Hydrochemical Mixing Model in Zhaxikang Mining Area, Tibet, China
Abstract
1. Introduction
2. Study Area
2.1. Structure and Lithology
2.2. Hydrogeological Conceptual Model
3. Methods
3.1. Sampling and Analysis
3.2. Geochemical Mixing Model
4. Results
4.1. Conceptual Model
4.2. Source Identification
4.3. Tracer Selection
4.4. End-Member Selection
4.5. Mixing Dynamics of Three Sources
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dong, S.; Zhou, W.; Wang, H. Introduction to Special Issue on Mine Water Inrushes: Risk Assessment, Mitigation, and Prevention. Mine Water Environ. 2021, 40, 321–323. [Google Scholar] [CrossRef]
- Wu, Q.; Dong, S.; Li, B.; Zhou, W. Mine Water Inrush. In Environmental Geology; LaMoreaux, J.W., Ed.; Springer: New York, NY, USA, 2019; pp. 127–148. [Google Scholar]
- Gai, Q.; Gao, Y.; Zhang, X.; He, M. A New Method for Evaluating Floor Spatial Failure Characteristics and Water Inrush Risk Based on Microseismic Monitoring. Rock Mech. Rock Eng. 2024, 57, 2847–2875. [Google Scholar] [CrossRef]
- Wang, D.; Ju, Q.; Wang, Y.; Hu, Y.; Liu, Q.; Chai, H.; Liu, Y. Source identification of mine water inrush based on the exponential whitenization function and the grey situation decision model. Energy Explor. Exploit. 2022, 40, 1217–1235. [Google Scholar] [CrossRef]
- Gu, H.; Ma, F.; Guo, J.; Li, S.; Deng, G. Source and pattern identification of ground deformation based on non-negative matrix factorization: A case study. Bull. Eng. Geol. Environ. 2023, 82, 141. [Google Scholar] [CrossRef]
- Knuth, K.H.; Vaughan, H.G. Convergent Bayesian Formulation of Blind Source Separation and Electromagnetic Source Separation. In Maximum Entropy and Bayesian Methods Garching, Germany 1998; Springer: Dordrecht, The Netherlands, 1998. [Google Scholar]
- Vivek, N.; Roland, P. Generalized blind delayed source seperation model for online noninvasive twin fetal sound seperation: A phantom study. J. Med. Syst. 2007, 32, 123–135. [Google Scholar]
- Zhang, W.; Chen, X.; Tan, H.; Zhang, Y.; Cao, J. Geochemical and isotopic data for restricting seawater intrusion and groundwater circulation in a series of typical volcanic islands in the South China Sea. Mar. Pollut. Bull. 2015, 93, 153–162. [Google Scholar] [CrossRef]
- Buttle, J.M. Isotope Hydrograph Separation of Runoff Sources. Encycl. Hydrol. Sci. 2005. [CrossRef]
- Zhang, M.; Chen, L.; Hou, X.; Hu, Y.; Zhang, J.; Zhang, Y.; Cai, X. Determination of spatiotemporal variations and mixed patterns for a multi-aquifer system in the Sulin mining area based on analyses of hydrochemical and isotopic characteristics. J. Geochem. Explor. 2024, 266, 107561. [Google Scholar] [CrossRef]
- Luo, A.; Dong, S.; Wang, H.; Ji, Z.; Wang, T.; Hu, X.; Wang, C.; Qu, S. Impact of long-term mining activity on groundwater dynamics in a mining district in Xinjiang coal Mine Base, Northwest China: Insight from geochemical fingerprint and machine learning. Environ. Sci. Pollut. Res. 2024, 31, 32136–32151. [Google Scholar] [CrossRef]
- Tubau, I.; Vazquez-Sune, E.; Jurado, A.; Carrera, J. Using EMMA and MIX analysis to assess mixing ratios and to identify hydrochemical reactions in groundwater. Sci. Total Environ. 2014, 470–471, 1120–1131. [Google Scholar] [CrossRef]
- Yuan, H.; Xu, Z.; Sun, Y.; Zhang, L.; Chen, G. A quantitative composition calculation model of mine water source based on “emblematic ions”. Hydrogeol. J. 2024, 32, 913–923. [Google Scholar] [CrossRef]
- Mathurin, F.A.; Åström, M.E.; Laaksoharju, M.; Kalinowski, B.E.; Tullborg, E.L. Effect of tunnel excavation on source and mixing of groundwater in a coastal granitoidic fracture network. Environ. Sci. Technol. 2012, 46, 12779–12786. [Google Scholar] [CrossRef]
- Christophersen, N.; Hooper, R.P. Multivariate analysis of stream water chemical data: The use of principal components analysis for the end-member mixing problem. Water Resour. Res. 1992, 28, 99–107. [Google Scholar] [CrossRef]
- James, A.L.; Roulet, N.T. Investigating the applicability of end-member mixing analysis (EMMA) across scale: A study of eight small, nested catchments in a temperate forested watershed. Water Resour. Res. 2006, 42, W08434. [Google Scholar] [CrossRef]
- Mackas, D.L.; Denman, K.L.; Bennett, A.F. Least squares multiple tracer analysis of water mass composition. J. Geophys. Res. Ocean. 1987, 92, 2907–2918. [Google Scholar] [CrossRef]
- Laaksoharju, M.; Skårman, C.; Skårman, E. Multivariate mixing and mass balance (M3) calculations, a new tool for decoding hydrogeochemical information. Appl. Geochem. 1999, 14, 861–871. [Google Scholar] [CrossRef]
- Carrera, J.; Vazquez-Sune, E.; Castillo, O.; Sanchez-Vila, X. A methodology to compute mixing ratios with uncertain end-members. Water Resour. Res. 2004, 40, 3687–3696. [Google Scholar] [CrossRef]
- QIing, C.; Zhang, Z.; Zhang, L.; Li, G.; Dong, S.; Wang, Y.; Gao, K. The element zonation characteristics of No. XV ore body in Zhaxikang lead-zinc polymetallic deposit, Tibet. Sediment. Geol. Tethyan Geol. 2023, 43, 130–144. [Google Scholar]
- Gu, H.; Ni, H.; Wang, Y.; Liu, Y.; Zhang, Z. Hydrogeochemical Characteristics and Impact of Arsenic Released from a Gold Deposit in Tibet. Mine Water Environ. 2020, 39, 746–757. [Google Scholar] [CrossRef]
- Zhou, Q.; Li, W.; Qing, C.; Lai, Y.; Tian, E. Origin and tectonic implications of the Zhaxikang Pb–Zn–Sb–Ag deposit in northern Himalaya: Evidence from structures, Re–Os–Pb–S isotopes, and fluid inclusions. Miner. Depos. 2017, 53 (Suppl. S2), 1–16. [Google Scholar] [CrossRef]
- Wang, Y.; Gu, H.; Li, D.; Lyu, M.; Song, R. Hydrochemical characteristics and genesis analysis of geothermal fluid in the Zhaxikang geothermal field in Cuona County, southern Tibet. Environ. Earth Sci. 2021, 80, 415. [Google Scholar] [CrossRef]
- Gu, H.; Ni, H.; Ma, F.; Liu, G.; Hui, X.; Cao, J. Using mixing model to interpret the water sources and ratios in an under-sea mine. Nat. Hazards 2020, 104, 1705–1722. [Google Scholar] [CrossRef]
- Hu, S.; Mcdonald, R.; Martuzevicius, D.; Biswas, P.; Grinshpun, S.A.; Kelley, A.; Reponen, T.; Lockey, J.; Lemasters, G. UNMIX modeling of ambient PM(2.5) near an interstate highway in Cincinnati, OH, USA. Atmos. Environ. 2006, 40, 378–395. [Google Scholar] [CrossRef]
- Barthold, F.K.; Tyralla, C.; Schneider, K.; Vaché, K.B.; Frede, H.-G.; Breuer, L. How many tracers do we need for end member mixing analysis (EMMA)? A sensitivity analysis. Water Resour. Res. 2011, 47, W08519. [Google Scholar] [CrossRef]
- Hooper, R.P. Diagnostic tools for mixing models of stream water chemistry. Water Resour. Res. 2003, 39, 249–256. [Google Scholar] [CrossRef]
- Schemel, L.E.; Cox, M.H.; Runkel, R.L.; Kimball, B.A. Multiple injected and natural conservative tracers quantify mixing in a stream confluence affected by acid mine drainage near Silverton, Colorado. Hydrol. Process. 2010, 20, 2727–2743. [Google Scholar] [CrossRef]
- Valder, J.F.; Long, A.J.; Davis, A.D.; Kenner, S.J. Multivariate statistical approach to estimate mixing proportions for unknown end members. J. Hydrol. 2012, 460–461, 65–76. [Google Scholar] [CrossRef]
Value | δ18O | δD | Cl | B | Li | |
---|---|---|---|---|---|---|
Objective function, | −7.44 | July | ||||
Contrib. to obj.fun (%) | 0.06 | 0.93 | 0.43 | 73.54 | 25.05 | |
Objective function, | −1.12 | September | ||||
Contrib. to obj.fun (%) | 0.89 | 1.20 | 25.17 | 27.83 | 44.91 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gu, H.; Liu, Y.; Liu, H.; Cen, X.; Zhong, J.; Wang, D.; Yi, L. Assessment of the Source and Dynamics of Water Inrush Based on Hydrochemical Mixing Model in Zhaxikang Mining Area, Tibet, China. Water 2025, 17, 2201. https://doi.org/10.3390/w17152201
Gu H, Liu Y, Liu H, Cen X, Zhong J, Wang D, Yi L. Assessment of the Source and Dynamics of Water Inrush Based on Hydrochemical Mixing Model in Zhaxikang Mining Area, Tibet, China. Water. 2025; 17(15):2201. https://doi.org/10.3390/w17152201
Chicago/Turabian StyleGu, Hongyu, Yujie Liu, Huizhong Liu, Xinyu Cen, Jinxian Zhong, Dewei Wang, and Lei Yi. 2025. "Assessment of the Source and Dynamics of Water Inrush Based on Hydrochemical Mixing Model in Zhaxikang Mining Area, Tibet, China" Water 17, no. 15: 2201. https://doi.org/10.3390/w17152201
APA StyleGu, H., Liu, Y., Liu, H., Cen, X., Zhong, J., Wang, D., & Yi, L. (2025). Assessment of the Source and Dynamics of Water Inrush Based on Hydrochemical Mixing Model in Zhaxikang Mining Area, Tibet, China. Water, 17(15), 2201. https://doi.org/10.3390/w17152201