Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (326)

Search Parameters:
Keywords = Ni foam

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 2500 KB  
Article
Mesoporous Structure and N-Doped Carbon Coating Skeleton Boosting High-Performance Nickel Phosphide Nanosheet-Based Electrocatalysts for Highly Efficient Electrocatalytic Hydrogen Evolution
by Yixuan Tang, Xiaowei Niu, Zhengjun Guan, Chengxin Wang, Xinyu Ma, Haonan Wang and Hongyuan Pan
Crystals 2026, 16(2), 100; https://doi.org/10.3390/cryst16020100 - 30 Jan 2026
Abstract
Earth-abundant nickel phosphide electrocatalysts show great potential for the hydrogen evolution reaction (HER), yet their efficiency requires further enhancement for practical applications. Herein, a novel in situ strategy is developed to synthesize a high-performance electrocatalyst on nickel foam (NF), composed of N-doped carbon-coated [...] Read more.
Earth-abundant nickel phosphide electrocatalysts show great potential for the hydrogen evolution reaction (HER), yet their efficiency requires further enhancement for practical applications. Herein, a novel in situ strategy is developed to synthesize a high-performance electrocatalyst on nickel foam (NF), composed of N-doped carbon-coated Ni5P4–Ni3P heterostructures. This is achieved through the phosphidation and subsequent carbon coating of hydrothermally grown Ni(OH)2 nanosheets. The resulting catalyst exhibits excellent HER activity in acidic media, requiring a low overpotential of only 63 mV to achieve a current density of 10 mA cm−2. The superior performance stems from the synergistic effects of multiple factors: the porous nanosheet architecture and multi-phase interfaces provide abundant active sites, while the conductive N-doped carbon network significantly enhances charge-transfer kinetics and catalyst stability. This work presents an effective approach for designing efficient non-precious metal HER electrocatalysts. Full article
(This article belongs to the Special Issue Polymeric Materials for Sustainable Catalysis and Energy Applications)
Show Figures

Figure 1

17 pages, 3422 KB  
Article
Binder-Free Spinel Co2CuO4 Nanosheet Electrodes with Cu-Driven Kinetic Enhancement for Alkaline OER Applications
by Abu Talha Aqueel Ahmed, Momin M. Mujtaba, Abu Saad Ansari and Sangeun Cho
Materials 2026, 19(2), 301; https://doi.org/10.3390/ma19020301 - 12 Jan 2026
Viewed by 208
Abstract
Developing electrocatalysts that are efficient and durable for the oxygen evolution reaction (OER) is essential for improving the energy efficiency of alkaline water splitting. Spinel-type transition-metal oxides have emerged as promising non-noble alternatives; however, their catalytic performance is often limited by sluggish charge [...] Read more.
Developing electrocatalysts that are efficient and durable for the oxygen evolution reaction (OER) is essential for improving the energy efficiency of alkaline water splitting. Spinel-type transition-metal oxides have emerged as promising non-noble alternatives; however, their catalytic performance is often limited by sluggish charge transport and insufficient utilization of active sites. Herein, we present a systematic comparative study of electrodeposited Co3O4 (CO-300) and Cu-substituted Co2CuO4 (CCO-300) nanosheet films directly grown on Ni foam. Structural, morphological, and spectroscopic analyses reveal that Cu2+ integration into Co-oxide spinel lattice modifies the local electronic environment and produces a more open and interconnected nanosheet architecture, thereby enhancing conductivity and increasing the density of accessible redox-active sites. As a result, the optimized CCO-300 exhibits superior catalytic performance at higher current densities, along with a smaller Tafel slope (44 mV dec–1), a larger electrochemically active surface area (ECSA), and reduced charge-transfer resistance compared to CCO-300, indicating accelerated reaction kinetics and improved electron-ion transport. Furthermore, the multistep chronopotentiometry measurements and long-term stability tests over 100 h at current densities of 10 and 250 mA cm–2 highlight the excellent operational stability of the CCO-300 catalyst. Full article
(This article belongs to the Section Energy Materials)
Show Figures

Graphical abstract

21 pages, 5522 KB  
Article
Performance and Mechanism of Monolithic Co-Doped Nickel–Iron Foam Catalyst for Highly Efficient Activation of PMS in Degrading Chlortetracycline in Water
by Yiqiong Yang, Xuyang Gao, Juan Han, Mingkun Cao, Li Qing, Liren Yu and Xiaodong Zhang
Catalysts 2026, 16(1), 39; https://doi.org/10.3390/catal16010039 - 1 Jan 2026
Viewed by 306
Abstract
Metal–organic framework (MOF) materials were extensively studied in the removal of pollutants in wastewater. However, catalysts in the powder form usually suffered from the strong tendency to agglomerate and the intricate operation for recycling, which significantly limited their practical application. In comparison, monolithic [...] Read more.
Metal–organic framework (MOF) materials were extensively studied in the removal of pollutants in wastewater. However, catalysts in the powder form usually suffered from the strong tendency to agglomerate and the intricate operation for recycling, which significantly limited their practical application. In comparison, monolithic catalysts with their high macroscopic operability and recoverability as well as impressive specific surface area have attracted tremendous attention in recent years. To address these issues, a monolithic Fe-based catalyst was prepared via in situ synthesis, using nickel–iron foam (NFF) as the substrate with cobalt (Co) incorporation. XPS analysis showed that Co doping enhanced the synergistic interaction among Fe, Ni, and Co, accelerating the redox cycle among species, thus improving electron transfer and laying a kinetic foundation for efficient peroxymonosulfate (PMS) activation. Quenching experiments and EPR indicated singlet oxygen (1O2) as the main reactive species; Co doping shifted the degradation pathway from radicals to non-radicals. Under optimized conditions (PMS: 0.08 mmol/L; catalyst: 1 cm2; initial Chlortetracycline (CTC): 50 mg/L), 95.7% CTC degradation was achieved within 60 min, and efficiency only dropped to 90.5% after 5 cycles. This catalyst provided theoretical and technical support for the application of monolithic MOF-derived catalysts and highly efficient PMS activators. Full article
(This article belongs to the Special Issue Porous Catalytic Materials for Environmental Purification)
Show Figures

Graphical abstract

17 pages, 6867 KB  
Article
Electrodeposition of Copper–Nickel Foams: From Separate Phases to Solid Solution
by Eduard E. Levin, Victoria P. Chertkova and Natalia A. Arkharova
Crystals 2026, 16(1), 20; https://doi.org/10.3390/cryst16010020 - 27 Dec 2025
Viewed by 302
Abstract
Copper-based electrocatalytic materials with high surface area are essential for various processes, such as water splitting and the electroreduction of carbon dioxide and nitrates. Three-dimensional nanostructured electrodes offer distinct advantages in these applications due to their expansive surface area, which enhances charge transfer [...] Read more.
Copper-based electrocatalytic materials with high surface area are essential for various processes, such as water splitting and the electroreduction of carbon dioxide and nitrates. Three-dimensional nanostructured electrodes offer distinct advantages in these applications due to their expansive surface area, which enhances charge transfer and mass transport. For bimetallic systems, however, the phase state, whether a solid solution or a mechanical mixture of metals, is critically important for catalytic performance. This study explores the formation of Cu-Ni solid solutions via electrodeposition using the dynamic hydrogen bubble template method. Two types of electrolyte were employed: sulfate-based and citrate-based. Through characterization by X-ray diffraction, scanning electron microscopy, elemental mapping, and X-ray fluorescence spectroscopy, we demonstrate that metallic foams deposited from sulfate solutions are heterogeneous, with poor control over nickel content. In contrast, the use of citrate-based solutions allows the nickel content in the deposits to be effectively controlled by varying the solution composition, thereby enabling the formation of a solid solution. Full article
(This article belongs to the Section Crystalline Metals and Alloys)
Show Figures

Figure 1

23 pages, 7325 KB  
Article
3D Multilayered DDM-Modified Nickel Foam Electrode for Advanced Alkaline Water Electrolysis
by Elitsa Petkucheva, Galin Borisov, Jordan Iliev, Elefteria Lefterova and Evelina Slavcheva
Molecules 2026, 31(1), 69; https://doi.org/10.3390/molecules31010069 - 24 Dec 2025
Viewed by 546
Abstract
Advanced alkaline water electrolysis (AWE) in “zero-gap” configuration is a promising approach for low-temperature hydrogen production, but its efficiency strongly depends on the design and surface chemistry of nickel-based electrodes. Here, we present a simple dip-and-drying method (DDM) to modify commercial nickel foam [...] Read more.
Advanced alkaline water electrolysis (AWE) in “zero-gap” configuration is a promising approach for low-temperature hydrogen production, but its efficiency strongly depends on the design and surface chemistry of nickel-based electrodes. Here, we present a simple dip-and-drying method (DDM) to modify commercial nickel foam with a Ni–FeOOH/PTFE microporous catalytic layer and evaluate its electrochemical performance in 1 M KOH and in a laboratory zero-gap cell with a Zirfon® Perl 500 UTP diaphragm, through circulating 25 wt.% KOH. The FeSO4-assisted DDM treatment generates mixed Ni–Fe oxyhydroxide surface species, while PTFE imparts control hydrophobicity, enhancing both catalytic activity and gas-release behavior. Annealing the electrode (DDM-NF-CAT-A) results in a cell voltage of 2.45 V at 1 A·cm−2 and 80 °C, demonstrating moderate performance comparable to other Ni-based electrodes prepared via low-complexity methods, though below that of optimized state-of-the-art zero-gap systems. Short-term durability tests (80 h at 0.5 A·cm−2) indicate stable operation, but long-term industrial performance was not assessed. These findings illustrate the potential of the DDM approach as a simple, low-cost route to structured nickel foam electrodes and provide a foundation for further optimization of catalyst loading, microstructure, and long-term stability for practical AWE applications. Full article
(This article belongs to the Special Issue 30th Anniversary of Molecules—Recent Advances in Electrochemistry)
Show Figures

Figure 1

12 pages, 10963 KB  
Article
Ni-Co Nanoparticles@Ni3S2/Co9S8 Heterostructure Nanowire Arrays for Efficient Bifunctional Overall Water Splitting
by Lei Zhang, Wenwen Chi, Ao Qin, Fojian Liu, Yanhui Wang, Huimei Wang, Ziyi Zhong, Xinyi Xie, Wenmei He, Meiyan Jin, Yanhua Li, Fengru Zhang and Hui Liang
J. Compos. Sci. 2025, 9(12), 657; https://doi.org/10.3390/jcs9120657 - 1 Dec 2025
Viewed by 398
Abstract
This work develops a novel Ni-Co nanoparticles coupled with Ni3S2 and Co9S8 phases on nickel foam (denoted as Ni-Co NPS@Ni3S2/Co9S8/NF) hybrid structure material as a bifunctional water electrolysis catalyst. [...] Read more.
This work develops a novel Ni-Co nanoparticles coupled with Ni3S2 and Co9S8 phases on nickel foam (denoted as Ni-Co NPS@Ni3S2/Co9S8/NF) hybrid structure material as a bifunctional water electrolysis catalyst. The self-assembly Ni-Co alloy phases enhance electrical conductivity, while the synergistic interactions among the three components (Ni-Co, Ni3S2 and Co9S8) optimize the lattice parameters and electronic environment for boosting both the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). The catalyst achieves low overpotentials of 106 mV for HER and 185 mV for OER at 10 mA·cm−2 in 1M KOH, along with a very low charge-transfer resistance. Density functional theory (DFT) calculations reveal that the multi-component interaction narrows the band gap and optimizes the hydrogen adsorption free energy (ΔGH*) as well as the adsorption free energies of OER intermediates (ΔGOH*). This work identifies the hybrid structure as the key to the enhanced activity and offers a promising strategy for designing efficient nickel–cobalt-based electrocatalysts. Full article
(This article belongs to the Section Composites Applications)
Show Figures

Figure 1

15 pages, 2324 KB  
Article
Unlocking the Cu-Co Interplay: Electrodeposited Spinel Co2CuO4 as a High-Performance Hydrogen Evolution Catalyst
by Sankar Sekar, M. Mujtaba Momin, Abu Saad Ansari, Sangeun Cho, Youngmin Lee, Sejoon Lee and Abu Talha Aqueel Ahmed
Int. J. Mol. Sci. 2025, 26(22), 11226; https://doi.org/10.3390/ijms262211226 - 20 Nov 2025
Cited by 1 | Viewed by 699
Abstract
Developing cost-effective and durable electrocatalysts with high hydrogen evolution efficiency remains a critical challenge for sustainable energy conversion. Herein, spinel-type Co2CuO4 and Co3O4 nanosheet electrodes were fabricated directly on Ni foam via a simple electrodeposition route and [...] Read more.
Developing cost-effective and durable electrocatalysts with high hydrogen evolution efficiency remains a critical challenge for sustainable energy conversion. Herein, spinel-type Co2CuO4 and Co3O4 nanosheet electrodes were fabricated directly on Ni foam via a simple electrodeposition route and evaluated for the alkaline hydrogen evolution reaction (HER) in 1.0 M KOH. Structural and surface analyses confirmed the formation of phase-pure, porous, and highly interconnected nanosheet architectures, where the substitution of Cu2+ into the Co3O4 lattice induced charge-redistribution and optimized the electronic configuration. The Co2CuO4 catalyst exhibited superior activity, requiring an overpotential of 127 mV to achieve 10 mA cm−2 with a corresponding Tafel slope of 61 mV dec−1, outperforming the Co3O4 catalyst (176 mV and 95 mV dec−1). This enhancement arises from improved intrinsic kinetics, higher turnover frequency, and reduced charge-transfer resistance, reflecting an increased density of active sites and enhanced interfacial conductivity. Furthermore, the Co2CuO4 catalyst maintained excellent stability for 100 h at both 10 and 500 mA cm−2, attributed to its strong adhesion and open nanosheet framework, which facilitates efficient gas release and electrolyte diffusion. These findings establish Co2CuO4 as a promising and durable HER electrocatalyst for alkaline water electrolysis. Full article
Show Figures

Figure 1

11 pages, 4227 KB  
Article
Electrochemical Urea Oxidation on Porous Ni and Ni–M (M = Ir, Pt) Electrodes Obtained via Molten-Salt Treatment Technique
by Dawid Kutyła, Michihisa Fukumoto, Hiroki Takahashi, Ryuu Takahashi, Katarzyna Skibińska and Piotr Żabiński
Materials 2025, 18(22), 5069; https://doi.org/10.3390/ma18225069 - 7 Nov 2025
Viewed by 704
Abstract
Porous Ni, Ni–Ir, and Ni–Pt electrodes were prepared on Ni substrates by molten-salt Al co-deposition followed by dealloying. SEM/EDS and XRD confirmed a Raney-type porous network with Ir or Pt present across the layer. A urea oxidation reaction (UOR) was tested in 1 [...] Read more.
Porous Ni, Ni–Ir, and Ni–Pt electrodes were prepared on Ni substrates by molten-salt Al co-deposition followed by dealloying. SEM/EDS and XRD confirmed a Raney-type porous network with Ir or Pt present across the layer. A urea oxidation reaction (UOR) was tested in 1 M NaOH + 0.33 M urea by cyclic voltammetry and chronoamperometry at +0.40 V vs. SCE (60 min). Smooth Ni showed near-zero current. Porous Ni resulted in ~11 mA cm−2 initially and ~9 mA cm−2 after 60 min. Porous Ni–Ir started at ~7 mA cm−2 and fell to ~2 mA cm−2 within 5 min, indicating fast deactivation, likely due to Ir-oxide formation that suppresses the Ni2+/Ni3+ redox couple. Porous Ni–Pt remained at ~11 mA cm−2 over 60 min, consistent with a stable Ni–Pt effect in which Pt aids urea adsorption/activation while Ni provides the redox path for oxidation. Overall, Pt improves UOR performance, whereas Ir lowers it under these conditions. Full article
(This article belongs to the Special Issue Advances in Electrodeposition of Thin Films and Alloys)
Show Figures

Figure 1

15 pages, 5127 KB  
Article
Electronic Structure Regulation Enhances the Urea Oxidation Reaction Performance of the NiCo-MOF Catalyst
by Lang Yao, Yanzhi Yang, Sirong Li and Xuechun Xiao
Nanoenergy Adv. 2025, 5(4), 17; https://doi.org/10.3390/nanoenergyadv5040017 - 6 Nov 2025
Viewed by 821
Abstract
In this paper, spherical-shaped catalytic materials with needle-like stacking structures were synthesized in situ on the foam nickel substrate using the hydrothermal method, resulting in the NiM (M = Co, Mn, W, Zn)-MOF series. Furthermore, the catalyst with the best performance was obtained [...] Read more.
In this paper, spherical-shaped catalytic materials with needle-like stacking structures were synthesized in situ on the foam nickel substrate using the hydrothermal method, resulting in the NiM (M = Co, Mn, W, Zn)-MOF series. Furthermore, the catalyst with the best performance was obtained by adjusting the ratio of metal elements. Electrochemical tests show that NiCo-MOF (Ni: Co = 1:2) has the best electrocatalytic performance. During the UOR process, NiCo-MOF exhibits the optimal performance in 1 M KOH and 0.5 M urea solution, with a potential of only 1.33 V at a current density of 10 mA/cm2. The improvement in the activity of NiCo-MOF can be attributed to the synergistic effect between the Ni and Co bimetals, which leads to an increase in the electron transfer rate, the exposure of active sites, and an improvement in conductivity. Moreover, metal–organic framework materials are widely used as electrocatalysts due to their compositional diversity, rich pore structures, and high specific surface areas. Meanwhile, NiCo-MOF was used as a UOR and HER catalyst to assist the overall water decomposition with urea, and it showed relatively excellent performance. Only a voltage of 1.56 V was required to drive the current density of 10 mA/cm2 of the UOR || HER system. Therefore, the synthesized NiCo-MOF catalyst plays an important role in improving the efficiency of hydrogen production from water electrolysis and has promising sustainable application prospects. Full article
(This article belongs to the Special Issue Hybrid Energy Storage Systems Based on Nanostructured Materials)
Show Figures

Figure 1

11 pages, 2339 KB  
Article
Durable Pt-Decorated NiFe-LDH for High-Current-Density Electrocatalytic Water Splitting Under Alkaline Conditions
by Luan Liu, Hongru Liu, Baorui Jia, Xuanhui Qu and Mingli Qin
Nanomaterials 2025, 15(21), 1683; https://doi.org/10.3390/nano15211683 - 6 Nov 2025
Viewed by 962
Abstract
The development of durable and efficient catalysts capable of driving both hydrogen and oxygen evolution reactions is essential for advancing sustainable hydrogen production through overall water electrolysis. In this study, we developed a corrosion-mediated approach, where Ni ions originate from the self-corrosion of [...] Read more.
The development of durable and efficient catalysts capable of driving both hydrogen and oxygen evolution reactions is essential for advancing sustainable hydrogen production through overall water electrolysis. In this study, we developed a corrosion-mediated approach, where Ni ions originate from the self-corrosion of the nickel foam (NF) substrate, to construct Pt-modified NiFe layered double hydroxide (Pt-NiFeOxHy@NiFe-LDH) under ambient conditions. The obtained catalyst exhibits a hierarchical architecture with abundant defect sites, which favor the uniform distribution of Pt clusters and optimized electronic configuration. The Pt-NiFeOxHy@NiFe-LDH catalyst, constructed through the interaction between Pt sites and defective NiFe layered double hydroxide (NiFe-LDH), demonstrates remarkable hydrogen evolution reaction (HER) activity, delivering an overpotential as low as 29 mV at a current density of 10 mA·cm−2 and exhibiting a small tafel slope of 34.23 mV·dec−1 in 1 M KOH, together with excellent oxygen evolution reaction (OER) performance, requiring only 252 mV to reach 100 mA·cm−2. Moreover, the catalyst demonstrates outstanding activity and durability in alkaline seawater, maintaining stable operation over long-term tests. The Pt-NiFeOxHy@NiFe-LDH electrode, when integrated into a two-electrode system, demonstrates operating voltages as low as 1.42 and 1.51 V for current densities of 10 and 100 mA·cm−2, respectively, and retains outstanding stability under concentrated alkaline conditions (6 M KOH, 70 °C). Overall, this work establishes a scalable and economically viable pathway toward high-efficiency bifunctional electrocatalysts and deepens the understanding of Pt-LDH interfacial synergy in promoting water-splitting catalysis. Full article
(This article belongs to the Section Energy and Catalysis)
Show Figures

Graphical abstract

17 pages, 2265 KB  
Article
Self-Supported Polyhedral-like Co3S4 Nanostructures Enabling Efficient High Current Hydrogen Evolution Reaction
by Abu Talha Aqueel Ahmed, Sangeun Cho, Abu Saad Ansari, Yongcheol Jo and Atanu Jana
Materials 2025, 18(21), 5025; https://doi.org/10.3390/ma18215025 - 4 Nov 2025
Viewed by 574
Abstract
The advancement of overall water-splitting technologies relies on the development of earth-abundant electrocatalysts that efficiently produce H2 as a chemical fuel while offering high catalytic efficiency, structural robustness, and low-cost synthesis. Therefore, we aim to develop a cost-effective and durable non-noble electrocatalyst [...] Read more.
The advancement of overall water-splitting technologies relies on the development of earth-abundant electrocatalysts that efficiently produce H2 as a chemical fuel while offering high catalytic efficiency, structural robustness, and low-cost synthesis. Therefore, we aim to develop a cost-effective and durable non-noble electrocatalyst for overall water splitting. A straightforward hydrothermal approach was employed to fabricate freestanding polyhedral Co3O4 on a microporous Ni foam scaffold, followed by anion-exchange transformation in the presence of Na2S solution to yield its conductive sulfide analog. The engineered Co3S4 electrode delivers remarkable HER activity in 1.0 M KOH, requiring a low overpotential (<100 mV) to drive 10 mA cm−2, far outperforming its pristine oxide counterpart and even closely benchmarking with a commercial Pt/C catalyst. This exceptional performance is governed by the synergistic effects of enhanced electrical conductivity, abundant catalytic sites, and accelerated charge-transfer kinetics introduced through sulfur substitution. Furthermore, the optimized Co3S4 electrodes enable a bifunctional overall water-splitting device that achieves a cell voltage of >1.76 V at 100 mA cm−2 and maintains prolonged operational stability for over 100 hrs. of continuous operation. Post-stability analyses confirm insignificant phase preservation during testing, ensuring sustained activity throughout the electrolysis process. This study highlights the potential of anion-exchanged Co3S4 as a cost-effective and durable catalyst for high-performance HER and full-cell water-splitting applications. Full article
Show Figures

Graphical abstract

20 pages, 11777 KB  
Article
Naproxen Degradation Using NiO Synthesized via Ultrasonic Spray Pyrolysis on Ni–Fe Foam by Ozone
by George Luis Morejón Aguila, Julia Liliana Rodríguez Santillán, Tatyana Poznyak, Yair Cruz Narváez, Héctor F. Mendoza León, Luis Lartundo Rojas, Claudia Jazmín Ramos Torres and José J. Castro Arellano
Catalysts 2025, 15(10), 993; https://doi.org/10.3390/catal15100993 - 17 Oct 2025
Cited by 1 | Viewed by 800
Abstract
Naproxen (NPX), a nonsteroidal anti-inflammatory drug, is considered an emerging contaminant due to its persistence and potential environmental risks. In this study, NPX degradation was investigated through ozonation using nickel–iron foam (NiFeF) and NiO-modified NiFeF (NiO/NiFeF). The effect of the foam size was [...] Read more.
Naproxen (NPX), a nonsteroidal anti-inflammatory drug, is considered an emerging contaminant due to its persistence and potential environmental risks. In this study, NPX degradation was investigated through ozonation using nickel–iron foam (NiFeF) and NiO-modified NiFeF (NiO/NiFeF). The effect of the foam size was investigated using three configurations: S1 (1 cm × 2.5 cm), S2 (2 cm × 2.5 cm), and S3 (2 cm × 5 cm). Complete NPX removal was achieved in all systems, with degradation times of 4 min for ozonation alone, 2 min for NiFeF-S1, and 1 min for NiO/NiFeF-S2 and NiO/NiFeF-S3. The NiO/NiFeF catalyst was synthesized via ultrasonic spray pyrolysis, resulting in a porous structure with abundant active sites. Compared with conventional ozonation, NiO/NiFeF-S1 improved the total organic carbon (TOC) removal rate by 6.2-fold and maintained 87.5% of its activity after five reuse cycles, demonstrating excellent stability. High-resolution mass spectrometry revealed that catalytic ozonation generated fewer by-products (22 vs. 27 for ozonation alone) and promoted more selective pathways, including demethylation, ring-opening oxidation, and partial mineralization to CO2 and H2O. This enhanced performance is attributed to the synergy between NiO and NiFeF, which facilitates reactive oxygen species generation and electron transfer. These results demonstrate the potential of NiO/NiFeF as an efficient and stable catalyst for pharmaceutical removal from water. Full article
Show Figures

Graphical abstract

20 pages, 5120 KB  
Article
Fast Fourier Transform-Based Activation and Monitoring of Micro-Supercapacitors: Enabling Energy-Autonomous Actuators
by Negar Heidari, Parviz Norouzi, Alireza Badiei and Ebrahim Ghafar-Zadeh
Actuators 2025, 14(9), 453; https://doi.org/10.3390/act14090453 - 16 Sep 2025
Viewed by 695
Abstract
This work provides the first demonstration of FFTCCV as a dual-purpose method, serving both as a real-time diagnostic tool and as a phase- and morphology-engineering strategy. By adjusting the scan rate, FFTCCV directs the crystallographic evolution of Ni (OH)2 on Ni foam—stabilizing [...] Read more.
This work provides the first demonstration of FFTCCV as a dual-purpose method, serving both as a real-time diagnostic tool and as a phase- and morphology-engineering strategy. By adjusting the scan rate, FFTCCV directs the crystallographic evolution of Ni (OH)2 on Ni foam—stabilizing α-nanoflakes at 0.7 V·s−1 and β-platelets at 0.007 V·s−1—while simultaneously enabling electrode-resolved ΔQ tracking and predictive state-of-health (SoH) monitoring. This approach enabled the precise regulation of electrode morphology and phase composition, yielding high areal capacitance (546.5 mF·cm−2 at 5 mA·cm−2) with ~75% retention after 3000 cycles. These improvements advance the development of high-performance micro-supercapacitors, facilitating their integration into wearable and miniaturized devices where compact and durable energy storage is required. Beyond performance enhancement, FFTCCV also enabled continuous monitoring of capacitance during extended operation (up to 40,000 s). By recording both anodic and cathodic responses, the method provided time-resolved insights into device stability and revealed characteristic signatures of electrode degradation, phase transitions, and morphological changes. Such detection allows recognition of early failure pathways that are not accessible through conventional testing. This monitoring capability functions as an embedded health sensor, offering a pathway for predictive diagnosis of supercapacitor failure. Such functionality is particularly important for energy-driven actuators and smart materials, where uninterrupted operation and preventive maintenance are critical. FFTCCV therefore provides a scalable strategy for developing energy-autonomous microsystems with improved performance and real-time state-of-health monitoring. Full article
(This article belongs to the Section Miniaturized and Micro Actuators)
Show Figures

Figure 1

16 pages, 2240 KB  
Article
Defect-Engineered MnO2@Ni Foam Electrode for Zinc-Ion Batteries Toward Mobile Robotics Applications
by Shilin Li, Dong Xie, Taoyun Zhou, Qiaomei Zhao, Muzhou Liu and Xinyu Li
Nanomaterials 2025, 15(17), 1312; https://doi.org/10.3390/nano15171312 - 26 Aug 2025
Viewed by 1214
Abstract
Aqueous zinc-ion batteries (AZIBs) have gained significant attention as promising candidates for next-generation energy storage systems, especially in mobile robotics, due to their inherent safety, environmental friendliness, and low cost. However, the practical application of AZIBs is often hindered by slow Zn2+ [...] Read more.
Aqueous zinc-ion batteries (AZIBs) have gained significant attention as promising candidates for next-generation energy storage systems, especially in mobile robotics, due to their inherent safety, environmental friendliness, and low cost. However, the practical application of AZIBs is often hindered by slow Zn2+ diffusion and the poor structural stability of the cathode materials under high-rate or long-term operation. To address these challenges, a defect-engineered, binder-free MnO2 electrode, with a MnO2 loading of 1.35 mg·cm−2, is synthesized via in situ hydrothermal growth of ultrathin MnO2 nanosheets directly on a 3D conductive nickel foam scaffold, followed by reductive annealing to introduce abundant oxygen vacancies. These oxygen-rich defect sites significantly enhance Zn2+ adsorption, improve charge transfer kinetics, and contribute to enhanced pseudocapacitive behavior, further improving overall electrochemical performance. The intimate contact between the MnO2 and Ni substrate ensures efficient electron transport and robust structural integrity during repeated cycling. With this synergistic architecture, the MnO2@Ni electrode achieves a high specific capacity of 122.9 mAh·g−1 at 1 A·g−1, demonstrating excellent cycling durability with 94.24% capacity retention after 800 cycles and nearly 99% coulombic efficiency. This study offers a scalable strategy for designing high-performance, structurally stable Zn-ion battery cathodes with improved rate capability, making it a promising candidate for energy-intensive mobile robotic and flexible electronic systems. Full article
(This article belongs to the Special Issue Novel Electrode Materials for Solid-State Batteries)
Show Figures

Figure 1

12 pages, 2983 KB  
Article
Rare-Earth-Element-Doped NiCo Layered Double Hydroxides for High-Efficiency Oxygen Evolution
by Zhihan Li, Wenjing Yi, Qingqing Pang, Meng Zhang and Zhongyi Liu
Catalysts 2025, 15(8), 763; https://doi.org/10.3390/catal15080763 - 9 Aug 2025
Cited by 1 | Viewed by 1816
Abstract
The development of low-cost and high-efficiency oxygen evolution reaction (OER) catalysts is essential to enhance the practicality of electrochemical water splitting for green hydrogen production. Layered double hydroxides (LDHs), especially those based on nickel and cobalt, have attracted attention due to their tunable [...] Read more.
The development of low-cost and high-efficiency oxygen evolution reaction (OER) catalysts is essential to enhance the practicality of electrochemical water splitting for green hydrogen production. Layered double hydroxides (LDHs), especially those based on nickel and cobalt, have attracted attention due to their tunable composition, abundant redox-active sites, and earth-abundant constituents. However, their application is hindered by their limited conductivity and sluggish reaction kinetics. In this study, rare-earth-element-doped NiCo LDHs were synthesized directly on nickel foam through a one-step hydrothermal approach to improve the OER activity by modulating the electronic structure and optimizing the surface morphology. Among the representative catalysts, the incorporation of Sm significantly influenced the microstructure and electronic configuration of the catalyst, as confirmed by X-ray diffraction (XRD), scanning electron microscopy (SEM), and X-ray photoelectron spectroscopy (XPS). Electrochemical tests showed that the optimized Sm-NiCo LDH achieved a low overpotential of 172 mV at 10 mA cm−2 and a small Tafel slope of 84 mV dec−1 in 1 M KOH, indicating an expanded electrochemically active surface and improved charge transport. Long-term stability tests further showed its durability. These findings suggest that Sm doping enhances the OER performance by increasing active site exposure and promoting efficient charge transfer, offering a promising strategy for designing rare-earth-modified, non-precious-metal-based OER catalysts. Full article
Show Figures

Graphical abstract

Back to TopTop