Defect-Engineered MnO2@Ni Foam Electrode for Zinc-Ion Batteries Toward Mobile Robotics Applications
Abstract
1. Introduction
2. Materials and Methods
2.1. Synthesis of MnO2@Ni
2.2. Assembly of Binder-Free MnO2@Ni-Based AZIBs
- Cathode: Binder-free MnO2@Ni electrode (circular, diameter: 16 mm)
- Anode: Zinc foil (diameter: 16 mm, mechanically polished before use)
- Electrolyte: Aqueous solution of 2 M ZnSO4 and 0.1 M MnSO4
- Separator: Whatman glass fiber membrane (diameter: 19 mm)
- Assembly procedure: Bottom cell case → MnO2@Ni cathode → 3 drops of electrolyte → separator → 3 additional drops of electrolyte → Zn anode → top cell case
3. Results and Discussion
3.1. Characterization of MnO2@Ni
3.1.1. Scanning Electron Microscopy (SEM) Analysis
3.1.2. Transmission Electron Microscopy (TEM) Analysis
3.1.3. Diffraction and Raman Spectroscopy Analysis
3.1.4. X-Ray Photoelectron Spectroscopy (XPS) Analysis
3.2. Electrode Evaluation of the MnO2@Ni
3.2.1. Cyclic Voltammetry (CV) Test
3.2.2. Galvanostatic Charge–Discharge (GCD) Test
3.2.3. Electrochemical Impedance Spectroscopy (EIS) Test
3.3. Comparative Performance Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Shokri, M.; Lyons, L.; Pequito, S.; Ferranti, L. Battery identification with cubic spline and moving horizon estimation for mobile robots. IEEE Trans. Control Syst. Technol. 2024, 32, 1944–1951. [Google Scholar] [CrossRef]
- Poskart, B.; Iskierka, G.; Krot, K.; Burduk, R.; Gwizdal, P.; Gola, A. Multi-parameter predictive model of mobile robot’s battery discharge for intelligent mission planning in multi-robot systems. Sensors 2022, 22, 9861. [Google Scholar] [CrossRef]
- Lin, S.; Zhang, T. Review on recent developments, challenges, and perspectives of Mn-based oxide cathode materials for aqueous zinc-ion batteries and the status of Mn resources in China. Energy Fuels 2023, 37, 4198–4221. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, A.; Sun, J. Promise and challenge of vanadium-based cathodes for aqueous zinc-ion batteries. J. Energy Chem. 2021, 54, 655–667. [Google Scholar] [CrossRef]
- Xue, T.; Fan, H. From aqueous Zn-ion battery to Zn-MnO2 flow battery: A brief story. J. Energy Chem. 2021, 54, 194–201. [Google Scholar] [CrossRef]
- Qiu, C.; Huang, H.; Yang, M.; Xue, L.; Zhu, X.; Zhao, Y.; Ni, M.; Chen, T.; Xia, H. Advancements in layered cathode materials for next-generation aqueous zinc-ion batteries: A comprehensive review. Energy Storage Mater. 2024, 72, 103736. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, Y.; Guo, P.; Lu, G.; Wu, L.; Li, X. Designing MnO2@amorphous carbon core-shell structure as a cathode to enhance rate performance and cycling stability of aqueous zinc-ion batteries. Int. J. Electrochem. Sci. 2024, 19, 100573. [Google Scholar] [CrossRef]
- Gou, L.; Mou, K.L.; Fan, X.Y.; Zhao, M.J.; Wang, Y.; Xue, D.; Li, D.L. Mn2O3/Al2O3 cathode material derived from a metal-organic framework with enhanced cycling performance for aqueous zinc-ion batteries. Dalton Trans. 2020, 49, 711–718. [Google Scholar] [CrossRef]
- Wang, C.; Zeng, Y.; Xiao, X.; Wu, S.; Lu, X. γ-MnO2 nanorods/graphene composite as efficient cathode for advanced rechargeable aqueous zinc-ion battery. J. Energy Chem. 2020, 43, 182–187. [Google Scholar] [CrossRef]
- Fenta, F.; Olbasa, B.; Tsai, M.; Weret, M.; Zegeye, T.; Huang, C.; Huang, W.; Zeleke, T.; Sahalie, N.; Pao, C. Electrochemical transformation reaction of Cu–MnO in aqueous rechargeable zinc-ion batteries for high performance and long cycle life. J. Mater. Chem. A 2020, 8, 17595–17607. [Google Scholar] [CrossRef]
- Minakshi, M.; Singh, P.; Issa, T.B. Lithium insertion into manganese dioxide electrode in MnO2/Zn aqueous battery. J. Power Sources 2006, 153, 165–169. [Google Scholar] [CrossRef]
- Minakshi, M.; Ionescu, M. Anodic behavior of zinc in Zn-MnO2 battery using ERDA technique. Int. J. Hydrogen Energy 2010, 35, 7618–7622. [Google Scholar] [CrossRef]
- Ding, J.T.; Yang, J.; Ji, S.; Huo, S.H.; Wang, H. Core-shell structured Fe3O4 @ MnO2 nanospheres to achieve high cycling stability as electrode for supercapacitors. Ionics 2018, 25, 665–673. [Google Scholar] [CrossRef]
- Xu, Q.; Li, X.; Wu, L.; Zhang, Z.; Chen, Y.; Liu, L.; Cheng, Y. Enlarged interlayer spacing of marigold-shaped 1T-MoS2 with sulfur vacancies via oxygen-assisted phosphorus embedding for rechargeable zinc-ion batteries. Nanomaterials 2023, 13, 1185. [Google Scholar] [CrossRef]
- Guo, X.; Sun, H.; Li, C. Defect-engineered Mn3O4/CNTs composites enhancing reaction kinetics for zinc-ions storage performance. J. Energy Chem. 2022, 68, 538–547. [Google Scholar] [CrossRef]
- Alfaruqi, M.; Gim, J.; Kim, S.; Song, J.; Jo, J.; Kim, S.; Mathew, V.; Kim, J. Enhanced reversible divalent zinc storage in a structurally stable α-MnO2 nanorod electrode. J. Power Sources 2015, 288, 320–327. [Google Scholar] [CrossRef]
- Berkheimer, Z.A.; Tahir, A.; Nordin, G.P.; Paixão, T.R.L.C.; Woolley, A.T.; Nascimento, G.H.M.; Araujo, W.R.; Pradela-Filho, L.A. Extruded filament electrodes for lactate biosensing in continuous-injection paper-based microfluidic devices. Biosens. Bioelectron. 2025, 278, 117390. [Google Scholar] [CrossRef]
- Gong, X.; Chen, J.; Lee, P. Zinc-Ion Hybrid supercapacitors: Progress and future perspective. Batter. Supercaps 2021, 4, 1529–1546. [Google Scholar] [CrossRef]
- Desai, A.; Morris, R.; Armstrong, A. Advances in organic anode materials for Na-/K-ion rechargeable batteries. Chem. Sustain. Energy Mater. 2020, 13, 4866–4884. [Google Scholar] [CrossRef]
- Manickam, M.; Singh, P.; Issa, T.B.; Thurgate, S.; De Marco, R. Lithium insertion into manganese dioxide electrode in MnO2/Zn aqueous battery: Part I. A Preliminary Study. J. Power Sources 2004, 130, 254–259. [Google Scholar] [CrossRef]
- Minakshi, M.; Singh, P.; Issa, T.B.; Thurgate, S.; De Marco, R. Lithium insertion into manganese dioxide electrode in MnO2/Zn aqueous battery: Part II. Comparison of the behavior of EMD and battery grade MnO2 in Zn|MnO2|aqueous LiOH electrolyte. J. Power Sources 2004, 138, 319–322. [Google Scholar] [CrossRef]
- Yadav, P.; Kumari, N.; Rai, A. A review on solutions to overcome the structural transformation of manganese dioxide-based cathodes for aqueous rechargeable zinc ion batteries. J. Power Sources 2023, 555, 232385. [Google Scholar] [CrossRef]
- Zhou, X.; Ji, C.; Wan, L.; Zhang, X.; Wang, H.; Xie, L.; Gao, J. Enhanced electrochemical performance of aqueous Zinc-ion batteries using MnSO4 electrolyte additive and α-MnO2 Cathode. Energies 2025, 18, 1420. [Google Scholar] [CrossRef]
- Mo, F.; Chen, Z.; Liang, G.; Wang, D.; Zhao, Y.; Li, H.; Dong, B.; Zhi, C. Zwitterionic sulfobetaine hydrogel electrolyte building separated positive/negative ion migration channels for aqueous Zn-MnO2 batteries with superior rate capabilities. Adv. Energy Mater. 2020, 10, 615–619. [Google Scholar] [CrossRef]
- Guo, P.; Li, X.; Tang, T.; Cheng, Y.; Wang, Y.; Yang, Y.; Liu, L.; Li, Y.; Li, M.; Xiao, J.; et al. Modularized cathode with neural network topology for high rate and fault-tolerant lithium–sulfur batteries. Adv. Mater. 2025, 37, 2504908. [Google Scholar] [CrossRef]
- Chakraborty, A.; Ghosh, A.; Paul, A.; Murmu, N.; Samanta, P.; Kuila, T. Tuning MnO2: A nernstian-type electrode material as a substitute for bare zinc foil for triggering the performance of ZHS. ACS Appl. Energy Mater. 2024, 7, 10428–10440. [Google Scholar] [CrossRef]
- Yang, C.; Wu, Q.; Cao, Y.; Gao, Y.; Li, X.; Zhang, X.; Tian, Z.; Liu, R. α-MnO2/super-P with conductive carbon network for rechargeable aqueous Zinc ion batteries. Mater. Lett. 2021, 302, 130419. [Google Scholar] [CrossRef]
- Wang, J.; Liu, H.; You, Z.; Li, Z.; Kang, F.; Wei, B. A highly flexible and lightweight MnO2/Graphene membrane for superior zinc-ion batteries. Adv. Funct. Mater. 2020, 31, 2007397. [Google Scholar] [CrossRef]
- Mao, J.; Wu, F.; Shi, W.; Liu, W.; Xu, X.; Cai, G.; Li, Y.; Cao, X. Preparation of polyaniline-coated composite aerogel of MnO2 and reduced graphene oxide for high-performance zinc-ion battery. Chin. J. Polym. Sci. 2019, 38, 514–521. [Google Scholar] [CrossRef]
Sample | Rs(Ω) | Rct(Ω) | CPE-T | CPE-P | Wo-R(Ω) | Wo-T(s) | Wo-P |
---|---|---|---|---|---|---|---|
MnO2@Ni | 5.0 | 63.0 | 3.10 × 10−4 | 0.790 | 78.0 | 66.0 | 0.460 |
MnO2 | 5.7 | 110.0 | 2.40 × 10−4 | 0.765 | 125.0 | 85.0 | 0.460 |
Materials | Mass Loading (mg/cm−2) | Current Density (A/g) | Specific Capacity (mAh/g) | Cycling Stability | Ref. |
---|---|---|---|---|---|
MnO2@C core–shell (carbon coating) | ~1–2 | 0.1 | 210 | 102 mAh·g−1 after 600 cycles at 0.8 A·g−1 | [7] |
γ-MnO2/Graphene composite | ~1 | 0.5 | 301 | 95.8 mAh·g−1 at 10 A·g−1, excellent rate | [9] |
Cu–MnO2·nH2O (from Cu–MnO transformation) | ~1–2 | 0.1 | 320 | >70% after 1000 cycles | [10] |
Mn3O4/CNTs (defect engineered) | 1–2 | 0.1 | 420.6 | 84.1% after 2800 cycles at 2.0 A·g−1 | [15] |
γ-MnO2(EMD type) | <1 | 0.5 | ~100–180 | Rapid decay, poor retention | [20] |
MnO2@Ni | 1.35 | 0.1 | 246 | 94.24% after 800 cycles at 1.0 A·g−1; CE ≈ 99% | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, S.; Xie, D.; Zhou, T.; Zhao, Q.; Liu, M.; Li, X. Defect-Engineered MnO2@Ni Foam Electrode for Zinc-Ion Batteries Toward Mobile Robotics Applications. Nanomaterials 2025, 15, 1312. https://doi.org/10.3390/nano15171312
Li S, Xie D, Zhou T, Zhao Q, Liu M, Li X. Defect-Engineered MnO2@Ni Foam Electrode for Zinc-Ion Batteries Toward Mobile Robotics Applications. Nanomaterials. 2025; 15(17):1312. https://doi.org/10.3390/nano15171312
Chicago/Turabian StyleLi, Shilin, Dong Xie, Taoyun Zhou, Qiaomei Zhao, Muzhou Liu, and Xinyu Li. 2025. "Defect-Engineered MnO2@Ni Foam Electrode for Zinc-Ion Batteries Toward Mobile Robotics Applications" Nanomaterials 15, no. 17: 1312. https://doi.org/10.3390/nano15171312
APA StyleLi, S., Xie, D., Zhou, T., Zhao, Q., Liu, M., & Li, X. (2025). Defect-Engineered MnO2@Ni Foam Electrode for Zinc-Ion Batteries Toward Mobile Robotics Applications. Nanomaterials, 15(17), 1312. https://doi.org/10.3390/nano15171312