Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (7,776)

Search Parameters:
Keywords = Nanotube

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 2643 KB  
Communication
Co-MoO3 Nanoparticles Supported on Carbon Nanotubes for Highly Efficient Hydrogen Production from Ammonia Borane
by Xingchi Ma, Xigang Du and Hongyu Liu
Materials 2025, 18(20), 4692; https://doi.org/10.3390/ma18204692 (registering DOI) - 13 Oct 2025
Abstract
Ammonia borane (AB) is recognized as a highly promising material for hydrogen storage owing to its exceptional safety and high hydrogen density, enabling controllable hydrogen release at room temperature through catalytic hydrolysis. The development of efficient catalysts to accelerate this process remains a [...] Read more.
Ammonia borane (AB) is recognized as a highly promising material for hydrogen storage owing to its exceptional safety and high hydrogen density, enabling controllable hydrogen release at room temperature through catalytic hydrolysis. The development of efficient catalysts to accelerate this process remains a critical research challenge. In this work, carbon nanotube (CNT)-supported Co-MoO3 nanoparticles were synthesized through reduction with sodium borohydride. The catalyst with a Co/MoO3 molar ratio of 1.0:0.1 (denoted as Co1Mo0.1/CNTs) showed optimal performance in AB hydrolysis, with a turnover frequency (TOF) of 19.15 molH2 molcat−1 min−1 and an activation energy (Ea) of 26.41 kJ mol−1. The superior performance of the Co1Mo0.1/CNTs catalyst can be ascribed to the efficient proton-transfer promotion by carboxylated carbon nanotubes and the synergistic catalytic effect between Co and Mo in the system. This study offers a viable pathway for constructing high-efficiency noble metal-free catalysts for hydrogen production from AB hydrolysis. Full article
(This article belongs to the Section Advanced Nanomaterials and Nanotechnology)
Show Figures

Figure 1

34 pages, 4282 KB  
Review
Electromagnetic Interference in the Modern Era: Concerns, Trends, and Nanomaterial-Based Solutions
by Jovana Prekodravac Filipovic, Mila Milenkovic, Dejan Kepic, Sladjana Dorontic, Muhammad Yasir, Blaz Nardin and Svetlana Jovanovic
Nanomaterials 2025, 15(20), 1558; https://doi.org/10.3390/nano15201558 - 13 Oct 2025
Abstract
Electromagnetic interference (EMI) represents a growing challenge in the modern era, as electronic systems and wireless technologies become increasingly integrated into daily life. This review provides a comprehensive overview of EMI, beginning with its historical evolution over centuries, from early power transmission systems [...] Read more.
Electromagnetic interference (EMI) represents a growing challenge in the modern era, as electronic systems and wireless technologies become increasingly integrated into daily life. This review provides a comprehensive overview of EMI, beginning with its historical evolution over centuries, from early power transmission systems and industrial machinery to today’s complex environment shaped by IoT, 5G, smart devices, and autonomous technologies. The diverse sources of EMI and their wide-ranging effects are examined, including disruptions in electrical and medical devices, ecological impacts on wildlife, and potential risks to human health. Beyond its technical and societal implications, the economic dimension of EMI is explored, highlighting the rapid expansion of the global shielding materials market and its forecasted growth driven by telecommunications, automotive, aerospace, and healthcare sectors. Preventative strategies against EMI are discussed, with particular emphasis on the role of advanced materials. Carbon-based nanomaterials—such as graphene, carbon nanotubes, and carbon foams—are presented as promising solutions owing to their exceptional conductivity, mechanical strength, tunable structure, and environmental sustainability. By uniting perspectives on EMI’s origins, consequences, market dynamics, and mitigation strategies, this work underscores the urgent need for scalable, high-performance, and eco-friendly shielding approaches. Special attention is given to recent advances in carbon-based nanomaterials, which are poised to play a transformative role in ensuring the safety, reliability, and sustainability of future electronic technologies. Full article
(This article belongs to the Section Nanoelectronics, Nanosensors and Devices)
Show Figures

Figure 1

21 pages, 3777 KB  
Article
Optical and Thermal Studies, Isothermal Crystallization Kinetics and Mechanical Properties of Poly(lactic acid) Nanocomposites Based on Hybrid Lignin/MWCNT Nanomaterial
by Andreas Pitsavas, Rafail O. Ioannidis, Sofia Makri, Stefania Koutsourea, Alexios Grigoropoulos, Ioanna Deligkiozi, Alexandros Zoikis-Karathanasis, Eleftheria Xanthopoulou and Dimitrios N. Bikiaris
J. Compos. Sci. 2025, 9(10), 560; https://doi.org/10.3390/jcs9100560 (registering DOI) - 13 Oct 2025
Abstract
A depth study of optical, isothermal crystallization and mechanical properties was conducted on a series of poly(lactic acid) (PLA) nanocomposites based on lignin/multi-walled carbon nanotubes (MWCNTs) hybrid nanomaterial. The preparation was performed via solution casting followed by melt mixing. For comparison reasons, a [...] Read more.
A depth study of optical, isothermal crystallization and mechanical properties was conducted on a series of poly(lactic acid) (PLA) nanocomposites based on lignin/multi-walled carbon nanotubes (MWCNTs) hybrid nanomaterial. The preparation was performed via solution casting followed by melt mixing. For comparison reasons, a group of PLA/lignin polymeric materials were prepared. Infrared spectroscopy (FTIR) did not reveal any significant impact on the main peaks of the nanocomposites by the incorporation of the additives. The optical properties were strongly affected by the content of the additive, as long as the thermal transitions parameters as evaluated from the differential scanning calorimetry (DSC) show important differences between cold and melt crystallization. X-ray diffraction (XRD) showed the semicrystalline behavior of the materials, while during isothermal crystallization experiments, the hybrid conductive nanomaterial acted as nucleation agent by promoting crystallization. Under evaluation of the mechanical properties, Young’s modulus tensile parameter increased significantly while the content of the hybrid nanomaterial increased, and the bending experiments of the materials with low content of the additives did not break. Thus, these substrates could be promising candidates for engineering applications, such as printed electronics. Full article
(This article belongs to the Section Nanocomposites)
Show Figures

Figure 1

28 pages, 1876 KB  
Review
Functionalized Carbon-Based Materials for Uranium Extraction: A Review
by Maqbool Hussain, Liang Zhao, Xusheng Zhang, Chen Yang, Yi Cui, Zhisheng Yu and Jianzhong Zheng
Separations 2025, 12(10), 283; https://doi.org/10.3390/separations12100283 (registering DOI) - 13 Oct 2025
Abstract
The development of effective materials for uranium extraction from seawater is vital for advancing sustainable energy solutions. However, the efficient recovery of uranium from seawater presents significant challenges due to its extremely low concentration, the presence of competing ions, and the complex marine [...] Read more.
The development of effective materials for uranium extraction from seawater is vital for advancing sustainable energy solutions. However, the efficient recovery of uranium from seawater presents significant challenges due to its extremely low concentration, the presence of competing ions, and the complex marine environment. To address these issues, various materials such as inorganic and organic sorbents, chelating resins, nanostructured sorbents, and composite materials have been explored. More recently, the functionalization of carbon-based materials for enhanced adsorption properties has attracted much interest because of their high specific surface area, excellent chemical and thermal stability, and tunable porosity. These materials include activated carbon, graphene oxide, biochar, carbon cloths, carbon nanotubes, and carbon aerogels. The enhancement of carbonaceous materials is typically achieved through surface functionalization with chelating groups and the synthesis of composite materials that integrate other high-performance sorbents. This review aims to summarize the work of these functionalized carbon materials, focusing on their adsorption capacity, selectivity, and durability for uranium adsorption. This is followed by a discussion on the binding mechanisms of uranium with major chelating functional groups grafted on carbonaceous sorbents. Finally, an outlook for future research is suggested. We hope that this review will be helpful to researchers engaged in related studies. Full article
Show Figures

Graphical abstract

15 pages, 4316 KB  
Article
Diameter-Dependent Carbon Nanotube Hydrogel Formed with Tannic Acid and Its Application in Thermoelectric Power Generation
by Nobuyasu Okubo and Takahide Oya
Nanomaterials 2025, 15(20), 1556; https://doi.org/10.3390/nano15201556 - 13 Oct 2025
Abstract
In this study, we discovered a new diameter-dependent carbon nanotube (CNT) hydrogel composed exclusively of CNTs and tannic acid (TA). Accordingly, we first examined the relationship between the concentrations of CNTs and TA, as well as the CNT diameter, and whether gelation occurred. [...] Read more.
In this study, we discovered a new diameter-dependent carbon nanotube (CNT) hydrogel composed exclusively of CNTs and tannic acid (TA). Accordingly, we first examined the relationship between the concentrations of CNTs and TA, as well as the CNT diameter, and whether gelation occurred. As a result, we found that when the TA concentration was fixed at 0.15 wt%, the threshold CNT concentration required for gelation was 0.05 wt%, which was lower than the values reported for previously known CNT hydrogels. We also determined that a TA to CNT weight ratio of 2–3 is critical for gelation. Furthermore, we found that subjecting the CNT dispersion to hydrothermal treatment at 160 °C, followed by freezing and ambient drying, produced a CNT aerogel that retained its 3D structure. Then, we evaluated the thermoelectric properties (electrical conductivity and Seebeck coefficient) of the resulting CNT hydrogel and aerogel under a temperature gradient for application. Both materials exhibited stable and reproducible electromotive force, and the measured Seebeck coefficients were comparable to those of conventional CNT-based thermoelectric materials. These findings demonstrate that 3D thermoelectric materials can be readily fabricated from CNT dispersions via simple processes and highlight the potential of these materials for future applications in energy-harvesting devices. Full article
(This article belongs to the Section Nanoelectronics, Nanosensors and Devices)
Show Figures

Figure 1

35 pages, 2135 KB  
Review
Hybrid Molecular–Electronic Computing Systems and Their Perspectives in Real-Time Medical Diagnosis and Treatment
by David J. Herzog and Nitsa J. Herzog
Electronics 2025, 14(20), 3996; https://doi.org/10.3390/electronics14203996 (registering DOI) - 12 Oct 2025
Abstract
Advantages in CMOS MOSFET-based electronics served as a basis for modern ubiquitous computerization. At the same time, theoretical and practical developments in material science, analytical chemistry and molecular biology have presented the possibility of applying Boolean logic and information theory findings on a [...] Read more.
Advantages in CMOS MOSFET-based electronics served as a basis for modern ubiquitous computerization. At the same time, theoretical and practical developments in material science, analytical chemistry and molecular biology have presented the possibility of applying Boolean logic and information theory findings on a molecular basis. Molecular computing, both organic and inorganic, has the advantages of high computational density, scalability, energy efficiency and parallel computing. Carbon-based and carbohydrate molecular machines are potentially biocompatible and well-suited for biomedical tasks. Molecular computing-enabled sensors, medication-delivery molecular machines, and diagnostic and therapeutic nanobots are at the cutting edge of medical research. Highly focused diagnostics, precision medicine, and personalized treatment can be achieved with molecular computing tools and machinery. At the same time, traditional electronics and AI advancements create a highly effective computerized environment for analyzing big data, assist in diagnostics with sophisticated pattern recognition and step in as a medical routine aid. The combination of the advantages of MOSFET-based electronics and molecular computing creates an opportunity for next-generation healthcare. Full article
Show Figures

Figure 1

14 pages, 2514 KB  
Article
Ultrasensitive Electrochemical Immunoassays of IgG and CA125 Based on Glucose Oxidase-Catalyzed Signal Amplification with Gold Staining
by Long Chao, Zhisong Wu, Shiqiang Qi, Aigui Xu, Zhao Huang and Dexuan Yan
Biosensors 2025, 15(10), 689; https://doi.org/10.3390/bios15100689 (registering DOI) - 11 Oct 2025
Abstract
Herein, we propose an ultrasensitive electrochemical immunosensor based on glucose oxidase labeling and enzyme-catalyzed Au staining. In brief, the primary antibody (Ab1), bovine serum albumin, an antigen and then a bionanocomposite that contains a second antibody (Ab2), poly(3-anilineboronic acid) [...] Read more.
Herein, we propose an ultrasensitive electrochemical immunosensor based on glucose oxidase labeling and enzyme-catalyzed Au staining. In brief, the primary antibody (Ab1), bovine serum albumin, an antigen and then a bionanocomposite that contains a second antibody (Ab2), poly(3-anilineboronic acid) (PABA), Au nanoparticles (AuNPs) and glucose oxidase (GOx) are modified on a glassy carbon electrode coated with multiwalled carbon nanotubes, yielding a corresponding sandwich-type immunoelectrode. In the presence of glucose, a chemical reduction of NaAuCl4 by enzymatically generated H2O2 can precipitate a lot of gold on the Ab2-PABA-AuNPs-GOx immobilized immunoelectrode. In situ anodic stripping voltammetry (ASV) detection of gold in 8 μL 1.0 M aqueous HBr-Br2 is conducted for the antigen assay, and the ASV detection process takes approximately 6 min. This method is employed for the assay of human immunoglobulin G (IgG) and human carbohydrate antigen 125 (CA125), which demonstrates exceptional sensitivity, high selectivity and fewer required reagents/samples. The achieved limits of detection (S/N = 3) by the method are 0.25 fg mL−1 for IgG (approximately equivalent to containing 1 IgG molecule in the 1 microlitre of the analytical solution) and 0.1 nU mL−1 for CA125, which outperforms many previously reported results. Full article
(This article belongs to the Special Issue Materials and Techniques for Bioanalysis and Biosensing—2nd Edition)
Show Figures

Figure 1

20 pages, 2857 KB  
Article
Vibration Analysis of Multilayer Stepped Cross-Sectional Carbon Nanotubes
by Yunus Onur Yildiz, Murat Sen, Osman Yigid, Mesut Huseyinoglu and Sertac Emre Kara
Nanomaterials 2025, 15(20), 1550; https://doi.org/10.3390/nano15201550 - 11 Oct 2025
Viewed by 26
Abstract
This study comprehensively investigates the dynamic vibration behavior of multilayer carbon nanotubes with stepped cross-sectional geometries under various boundary conditions, which is crucial for their advanced engineering applications. The methodology integrates classical molecular dynamics simulations to determine the bending stiffness of single-walled and [...] Read more.
This study comprehensively investigates the dynamic vibration behavior of multilayer carbon nanotubes with stepped cross-sectional geometries under various boundary conditions, which is crucial for their advanced engineering applications. The methodology integrates classical molecular dynamics simulations to determine the bending stiffness of single-walled and multi-walled atomistic structures, which are subsequently utilized in the Euler–Bernoulli beam theory based on nonlocal elasticity for vibration analysis. The research focuses on elucidating the influence of the μ/L ratio (a key length parameter) and different support conditions on the natural frequencies and mode shapes of these nanostructures. Key findings reveal that the cross-sectional geometry significantly impacts the vibrational characteristics. A consistent trend observed across all examined boundary conditions is a decrease in natural frequencies as the μ/L ratio increases, indicating that increased free length or reduced fixed length leads to lower stiffness and, consequently, reduced natural frequencies. The study presents Frequency Response Functions (FRFs) and the first four mode shapes, which visually confirm these dynamic characteristics. Graphical representations further reinforce the sensitivity of natural frequencies to both the μ/L ratio and support conditions. The systematic analysis presented in this work provides vital data for predicting resonance phenomena, optimizing structural stability, and enabling precise control over the vibrational response of these advanced nanomaterials in diverse engineering applications. Full article
(This article belongs to the Section 2D and Carbon Nanomaterials)
Show Figures

Figure 1

14 pages, 3474 KB  
Article
Silk Fibroin Protective Coating for Washable and Reusable Textile Electronics
by Anna Baranowska-Korczyc, Dorota Kowalczyk and Małgorzata Cieślak
Int. J. Mol. Sci. 2025, 26(20), 9848; https://doi.org/10.3390/ijms26209848 - 10 Oct 2025
Viewed by 147
Abstract
In this study, a new way of protecting textile wearable electronics is proposed. A natural product, silk fibroin, known for its high biocompatibility, biodegradability, and low cytotoxicity, was selected to cover the functionalized fabric to improve its stability and enable washability. Silk fabric [...] Read more.
In this study, a new way of protecting textile wearable electronics is proposed. A natural product, silk fibroin, known for its high biocompatibility, biodegradability, and low cytotoxicity, was selected to cover the functionalized fabric to improve its stability and enable washability. Silk fabric was selected as a non-toxic material, suitable for further application on skin and for wearable devices. Silk fabric was functionalized with various amounts of high-pressure carbon monoxide single-walled carbon nanotubes (HiPCO SWNTs). HiPCO SWNTs made the fabric electroconductive, but they are easily washed out of the fabric. The fabric functionalized with HiPCO SWNTs was covered with silk fibroin (SF) protein, which was subsequently crystallized by ethanol vapor to make it insoluble in water. The functionalization and silk fibroin coverage processes were studied using electrical resistance measurements, infrared and Raman spectroscopies, thermogravimetric technique, and surface wettability analysis. The coverage of the fabric with crystallized silk fibroin enables the washing process. The resistance of the functionalized fabric with silk fibroin did not increase significantly. The presented silk fibroin coating can facilitate the construction of future wearable electronics, protect the electroconductive nanomaterials on the fabric surface, and make textile structures reusable. Full article
(This article belongs to the Collection 30th Anniversary of IJMS: Updates and Advances in Biochemistry)
Show Figures

Figure 1

15 pages, 2758 KB  
Article
First-Principles Calculation of the Desolvation Effect of Functionalized Carbon Nanotubes
by Fudong Liu, Sinan Li, Wanjun Zhu, Miaomiao Zhao and Bing Liu
Coatings 2025, 15(10), 1190; https://doi.org/10.3390/coatings15101190 - 10 Oct 2025
Viewed by 114
Abstract
This study used density functional theory (DFT)-based first-principles calculations to investigate the desolvation effect of single-walled carbon nanotubes (SWCNTs) modified with hydroxyl (-OH), carbonyl (-C=O), and carboxyl (-COOH) groups. SWCNTs have great potential as supercapacitor electrode materials due to their unique structural and [...] Read more.
This study used density functional theory (DFT)-based first-principles calculations to investigate the desolvation effect of single-walled carbon nanotubes (SWCNTs) modified with hydroxyl (-OH), carbonyl (-C=O), and carboxyl (-COOH) groups. SWCNTs have great potential as supercapacitor electrode materials due to their unique structural and electronic properties, but their practical application is limited by poor solvation-induced dispersibility and low ion transport efficiency. To solve this, this study constructed functionalized SWCNT models, simulated their interaction with lithium ion (Li+) complexes in acetonitrile (AN) solvent, and analyzed Li+ desolvation behavior, relative capacitance, and post-desolvation density of states (DOSs). The key research results are as follows: [Li(AN)]+ complete desolvation sizes differed: 5.91 Å (pristine SWCNTs), 6.26 Å (hydroxylated SWCNTs, HCNT), 6.11 Å (carbonylated SWCNTs, CNCNT; carboxylated SWCNTs, CXCNT). HCNT showed the largest relative capacitance enhancement (max 1.4× pristine), while CNCNT and CXCNT both had a max 1.3× improvement. Post-desolvation DOS analysis revealed distinct electronic property changes: HCNT-Li+ enhanced metallicity and conductivity; CNCNT-Li+ increased metallicity but reduced conductivity; and CXCNT-Li+ decreased metallicity with nearly unchanged conductivity. This study provides an atomic-scale theoretical basis for optimizing the properties of SWCNT solutions, supporting their application in high-performance supercapacitors, particularly in enhancing device energy density and cycle stability. Full article
Show Figures

Figure 1

23 pages, 3529 KB  
Article
Synthesis, Characterization, and Evaluation of Folic Acid Release Ability of Acrylamide–Acrylic Acid Hydrogels and Acrylamide–Acrylic Acid/Functionalized Carbon Nanotube Nanocomposite Hydrogels
by Karina Sandoval-García, Jorge A. Cortés-Ortega, Edgar B. Figueroa-Ochoa, Víctor H. Antolín-Cerón and Sergio M. Nuño-Donlucas
Int. J. Mol. Sci. 2025, 26(20), 9847; https://doi.org/10.3390/ijms26209847 - 10 Oct 2025
Viewed by 85
Abstract
Hydrogels of acrylamide (AM)–acrylic acid (AA) and nanocomposite hydrogels of AM–AA and carbon nanotubes (CNTs) functionalized with acyl chloride groups (CNTsOxCl) were synthesized and characterized, and their ability to release folic acid was analyzed. Both hydrogel types were synthesized via redox [...] Read more.
Hydrogels of acrylamide (AM)–acrylic acid (AA) and nanocomposite hydrogels of AM–AA and carbon nanotubes (CNTs) functionalized with acyl chloride groups (CNTsOxCl) were synthesized and characterized, and their ability to release folic acid was analyzed. Both hydrogel types were synthesized via redox polymerization. CNTs were prepared via chemical vapor deposition. The prepared samples were analyzed via transmission electron microscopy, Raman spectroscopy, X-ray photoelectron spectroscopy, differential scanning calorimetry, and field-emission scanning electron microscopy. Their swelling ability and their mechanical properties (compression tests) were determined at room temperature ~298.15 K, whereas their ability to release folic acid was studied using UV–VIS spectroscopy. The equilibrium swelling of the AM–AA hydrogels was greater than that of the AM–AA/CNTsOxCl nanocomposite hydrogels prepared at the same monomeric relation (wt%), whereas the Young moduli of these nanocomposite hydrogels were higher than that of AM–AA hydrogels. For the AM–AA/CNTsOxCl nanocomposite hydrogels, polymer chains containing AM and AA units were grafted to CNTsOxCl. The glass–transition temperatures of AM–AA nanocomposite hydrogels were higher than that of AM–AA hydrogels. Folic acid release from the AM–AA hydrogels and AM–AA/CNTsOxCl nanocomposite hydrogels was successfully adjusted using the Weibull model. Full article
(This article belongs to the Special Issue Molecular Research and Applications of Nanomaterials)
Show Figures

Graphical abstract

36 pages, 3836 KB  
Review
Carbon Nanotube-Based Chemical Sensors: Sensing Mechanism, Functionalization and Applications
by Jie Tang, Ruirui Li, Subhan Mahmood, Jiying Li and Shun Yao
Chemosensors 2025, 13(10), 367; https://doi.org/10.3390/chemosensors13100367 - 10 Oct 2025
Viewed by 258
Abstract
Carbon nanotubes (CNTs) have opened new routes in the field of chemical sensing due to their unparalleled electrical conductivity, high surface area, and versatile functionalization capabilities. This review systematically examined the latest advancements in CNT-based chemical sensors, with a focus on their sensing [...] Read more.
Carbon nanotubes (CNTs) have opened new routes in the field of chemical sensing due to their unparalleled electrical conductivity, high surface area, and versatile functionalization capabilities. This review systematically examined the latest advancements in CNT-based chemical sensors, with a focus on their sensing mechanism, functionalization strategies, and applications. A spotlight was cast on the wide-ranging applications of CNT-based chemical sensors, spanning environmental analysis, drug detection, healthcare, food quality control, gases detection, strain sensing, etc. Finally, through a comprehensive SWOT analysis, the strengths, weaknesses, opportunities, and existing threats, along with emerging trends of CNTs in the sensing field, were elucidated. This review systematically summarized the applications of CNTs across six major fields, highlighting more than 60 CNT-based sensing materials. We aim to provide a forward-looking perspective on how CNTs will continue to shape the future of chemical sensing. Full article
(This article belongs to the Special Issue Application of Carbon Nanotubes in Sensing)
Show Figures

Graphical abstract

13 pages, 1932 KB  
Article
Universal Platform Based on Carbon Nanotubes Functionalised with Carboxylic Acid Groups for Multi-Analyte Enzymatic Biosensing
by Edmundas Lukoševičius, Julija Kravčenko, Grėta Mikėnaitė, Augustas Markevičius and Gintautas Bagdžiūnas
Biosensors 2025, 15(10), 686; https://doi.org/10.3390/bios15100686 - 10 Oct 2025
Viewed by 153
Abstract
This work presents the development of carbon nanotubes functionalised with carboxylic acid groups (CNT-COOH) as an oxygen-sensitive electrochemical platform for parallel multi-analyte enzymatic biosensing. The platform was constructed by depositing carboxylic-acid-functionalised single-walled carbon nanotubes covalently onto nanostructured gold electrodes modified with a self-assembled [...] Read more.
This work presents the development of carbon nanotubes functionalised with carboxylic acid groups (CNT-COOH) as an oxygen-sensitive electrochemical platform for parallel multi-analyte enzymatic biosensing. The platform was constructed by depositing carboxylic-acid-functionalised single-walled carbon nanotubes covalently onto nanostructured gold electrodes modified with a self-assembled monolayer of 4-aminothiophenol. Atomic force microscopy characterization revealed that the nanotubes attached via their ends to the surface and had a predominantly horizontal orientation. Glucose oxidase, lactate oxidase, glutamate oxidase, and tyrosinase were immobilised onto the electrodes to create selective biosensor for lactate, glucose, glutamate, and dopamine, respectively. A key finding is that incorporating catalase significantly extends the linear detection range for analytes by mitigating the accumulation of hydrogen peroxide. The resulting multifunctional biosensor demonstrated its capability for the simultaneous and independent measurement of glucose, lactate as the key bioanalytes under uniform conditions in blood plasma samples, highlighting its potential for applications in health and food technologies. Full article
Show Figures

Figure 1

26 pages, 1510 KB  
Review
Nanoparticles and Nanocarriers for Managing Plant Viral Diseases
by Ubilfrido Vasquez-Gutierrez, Gustavo Alberto Frias-Treviño, Luis Alberto Aguirre-Uribe, Sonia Noemí Ramírez-Barrón, Jesús Mendez-Lozano, Agustín Hernández-Juárez and Hernán García-Ruíz
Plants 2025, 14(20), 3118; https://doi.org/10.3390/plants14203118 - 10 Oct 2025
Viewed by 338
Abstract
The nourishment of the human population depends on a handful of staple crops, such as maize, rice, wheat, soybeans, potatoes, tomatoes, and cassava. However, all crop plants are affected by at least one virus causing diseases that reduce yield, and in some parts [...] Read more.
The nourishment of the human population depends on a handful of staple crops, such as maize, rice, wheat, soybeans, potatoes, tomatoes, and cassava. However, all crop plants are affected by at least one virus causing diseases that reduce yield, and in some parts of the world, this leads to food insecurity. Conventional management practices need to be improved to incorporate recent scientific and technological developments such as antiviral gene silencing, the use of double-stranded RNA (dsRNA) to activate an antiviral response, and nanobiotechnology. dsRNA with antiviral activity disrupt viral replication, limit infection, and its use represents a promising option for virus management. However, currently, the biggest limitation for viral diseases management is that dsRNA is unstable in the environment. This review is focused on the potential of nanoparticles and nanocarriers to deliver dsRNA, enhance stability, and activate antiviral gene silencing. Effective carriers include metal-based nanoparticles, including silver, zinc oxide, and copper oxide. The stability of dsRNA and the efficiency of gene-silencing activation are enhanced by nanocarriers, including layered double hydroxides, chitosan, and carbon nanotubes, which protect and transport dsRNA to plant cells. The integration of nanocarriers and gene silencing represents a sustainable, precise, and scalable option for the management of viral diseases in crops. It is essential to continue interdisciplinary research to optimize delivery systems and ensure biosafety in large-scale agricultural applications. Full article
Show Figures

Figure 1

20 pages, 3240 KB  
Article
Optimizing Gadolinium Promoted SBA-16 Supported Ni-Catalysts for Syngas Production via Dry Reforming of Methane
by Ebtisam Ali Alghamdi, Ghzzai Almutairi, Wasim Ullah Khan, Salwa B. Alreshaidan, Omalsad H. Odhah, Ahmed A. Bhran, Rashid Mehmood, Mohammed O. Bayazed, Ahmed A. Ibrahim and Ahmed S. Al-Fatesh
Catalysts 2025, 15(10), 966; https://doi.org/10.3390/catal15100966 - 9 Oct 2025
Viewed by 170
Abstract
The reforming of methane using carbon dioxide, also known as dry reforming (DRM), is an environmentally benign method that utilizes greenhouse gases (methane and carbon dioxide) to produce a mixture of carbon monoxide and hydrogen. This study evaluated the catalytic performance of nickel-based [...] Read more.
The reforming of methane using carbon dioxide, also known as dry reforming (DRM), is an environmentally benign method that utilizes greenhouse gases (methane and carbon dioxide) to produce a mixture of carbon monoxide and hydrogen. This study evaluated the catalytic performance of nickel-based catalysts supported over SBA-16 (5Ni/SBA-16) promoted with 0.5 to 3 wt% of gadolinium (Gd). The characterization results of the catalysts, including textural properties, crystallite size, reducibility, morphology, acidity/basicity, and carbon deposition, facilitated the understanding of the insights of catalytic activity and stability performance of these catalysts. The incorporation of a suitable amount (1 wt%) of Gd promoter had a significant impact on the activity, resulting in the highest CH4 and CO2 conversions 69 and 78%, respectively. The higher specific surface area, higher reducibility, better dispersion, and smaller active metal particle size were the major factors contributing to the relatively better performance of 5Ni+1Gd/SBA-16. Morphological analysis using a transmission electron microscope showed the formation of carbon nanotubes over unpromoted 5Ni/SBA-16, in contrast to no significant carbon formation over 5Ni+1Gd/SBA-16. The process optimization results indicated that the experimental results were in agreement with the theoretically optimized findings. Full article
(This article belongs to the Special Issue Recent Advances in Nanostructured Catalysts for Hydrogen Production)
Show Figures

Figure 1

Back to TopTop