Carbon Nanotube-Based Chemical Sensors: Sensing Mechanism, Functionalization and Applications
Abstract
1. Introduction
2. Sensing Mechanism
2.1. Electrical Sensors
2.2. Optical Sensors
2.3. Mechanical/Mass Sensors
2.4. Biological Sensors
3. Functionalization, Modification, and Hybridization Strategies
3.1. Covalent Functionalization
3.1.1. Oxidation Reaction
3.1.2. Esterification Reaction
3.1.3. Radical Reaction
3.1.4. Other Reactions
Cycloaddition/Substitution Reaction and Nucleophilic/Electrophilic Additions
Click Chemistry
3.2. Noncovalent Functionalization and Hybridization
3.2.1. Thermal Method
3.2.2. Ultrasound-Assisted Method
MOF
Metal/Metallic Oxide Nanoparticles
Cyclodextrins
Amino Acid
3.2.3. Physical Absorption
3.2.4. Other Methods
3.3. Combination of Covalent and Noncovalent Functionalization
4. Applications of CNTs in Chemical Sensing
4.1. Environmental Monitoring: Detecting Hazardous Molecules and Heavy Metals
4.2. Drug Monitoring: Chemical Agents and Natural Bioactive Components
4.3. Healthcare: Glucose, Neurotransmitters, Biomarker, and DNA/RNA Detection
4.3.1. Glucose
4.3.2. Neurotransmitters
4.3.3. Biomarker
4.3.4. Other Biomolecules
4.4. Food Quality Control
4.5. Gases Detection
4.6. Strain Sensing and Novel Sensors
5. SWOT Analysis and Emerging Trends
5.1. Strengths
5.2. Weaknesses
5.3. Opportunities
5.4. Threats
5.5. Emerging Trends
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
AD | Alzheimer’s disease |
Ag–ZnO | Silver–zinc oxide |
Ag-ZnONPs | Silver-doped zinc oxide nanoparticles |
AuNPs | Gold nanoparticles |
CBZ | Carbendazim |
CNS | Carbon nanosheets |
CPE | Carbon paste electrode |
COOH–MWCNTs | Carboxyl-functionalized multi-walled carbon nanotubes |
CTAB | Cetyltrimethylammonium bromide |
ChLa | Coriolus hirsuta laccase |
CDs | Cyclodextrins |
DWCNTs | Double-walled carbon nanotubes |
ELISA | Enzyme-linked immunosorbent assay |
E-nose | Electronic noses |
FET | Field-effect transistor |
GA | Gallic acid |
GCE | Glassy carbon electrode |
GO | Graphene oxide |
Lac | Laccase enzyme |
LSPR | Localized surface plasmon resonance |
MEMS | Microelectromechanical systems |
MOFs | Metal–organic frameworks |
MoS2 | Molybdenum disulfide |
MWCNTs | Multi-walled carbon nanotubes |
NEMS | Nanoelectromechanical systems |
NH2-CNTs | Amine-functionalized carbon nanotubes |
PCM | Paracetamol |
PCR | Polymerase chain reaction |
PDMS | Polydimethylsiloxane |
SPCE | Screen-printed carbon electrode |
SPE/SCPE | Screen-printed electrodes |
SWCNTs | Single-walled carbon nanotube |
s-SWCNT | Semiconducting single-walled carbon nanotube |
SWOT | Strengths-weaknesses-opportunities-threats |
TBHQ | Tert-butylhydroquinone |
VL | Vanillin |
VOC | Volatile organic compounds |
References
- Ullah, N.; Mansha, M.; Khan, I.; Qurashi, A. Nanomaterial-based optical chemical sensors for the detection of heavy metals in water: Recent advances and challenges. TrAC Trend. Anal. Chem. 2018, 100, 155–166. [Google Scholar] [CrossRef]
- Parvin, N.; Joo, S.W.; Jung, J.H.; Mandal, T.K. Unlocking the Future: Carbon Nanotubes as Pioneers in Sensing Technologies. Chemosensors 2025, 13, 225. [Google Scholar] [CrossRef]
- Yao, X.; Zhang, Y.; Jin, W.; Hu, Y.; Cui, Y. Carbon nanotube field-effect transistor-based chemical and biological sensors. Sensors 2021, 21, 995. [Google Scholar] [CrossRef]
- Radushkevich, L.V.; Lukyanovich, V.M. About the structure of carbon formed by thermal decomposition of carbon monoxide on iron substrate. J. Phys. Chem. 1952, 26, 88–95. [Google Scholar]
- Iijima, S. Helical microtubules of graphitic carbon. Nature 1991, 354, 56–58. [Google Scholar] [CrossRef]
- Rathinavel, S.; Priyadharshini, K.; Panda, D. A review on carbon nanotube: An overview of synthesis, properties, functionalization, characterization, and the application. Mater. Sci. Eng. B 2021, 268, 115095. [Google Scholar] [CrossRef]
- Hou, P.X.; Zhang, F.; Zhang, L.; Liu, C.; Cheng, H.M. Synthesis of carbon nanotubes by floating catalyst chemical vapor deposition and their applications. Adv. Funct. Mater. 2022, 32, 2108541. [Google Scholar] [CrossRef]
- Zahra, A.; Razzokov, J.; Kashif, M.; Khalilov, U.; Li, H.; Shahzad, A.; Ren, G.; Vakili-Nezhaad, G. Strained Mechanical and Fracture Analyses of Armchair-Chiral-Zigzag-Based Carbon Nanotubes Using Molecular Dynamics Simulations. ACS Omega 2024, 9, 48055–48069. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Oh, Y.; Shin, J.; Yang, M.; Shin, N.; Shekhar, S.; Hong, S. Nanoscale mapping of carrier mobilities in the ballistic transports of carbon nanotube networks. ACS Nano 2022, 16, 21626–21635. [Google Scholar] [CrossRef]
- Onyancha, R.B.; Aigbe, U.O.; Ukhurebor, K.E.; Muchiri, P.W. Facile synthesis and applications of carbon nanotubes in heavy-metal remediation and biomedical fields: A comprehensive review. J. Mol. Struct. 2021, 1238, 130462. [Google Scholar] [CrossRef]
- Saifuddin, N.; Raziah, A.Z.; Junizah, A.R. Carbon nanotubes: A review on structure and their interaction with proteins. J. Chem. 2013, 2013, 676815. [Google Scholar] [CrossRef]
- Chronopoulos, D.D.; Saini, H.; Tantis, I.; Zbořil, R.; Jayaramulu, K.; Otyepka, M. Carbon nanotube based metal–organic framework hybrids from fundamentals toward applications. Small 2022, 18, 2104628. [Google Scholar] [CrossRef]
- Luo, S.X.L.; Swager, T.M. Chemiresistive sensing with functionalized carbon nanotubes. Nat. Rev. Method Primers 2023, 3, 73. [Google Scholar] [CrossRef]
- Wang, R.; Sun, L.; Zhu, X.; Ge, W.; Li, H.; Li, Z.; Zhang, H.; Huang, Y.; Li, Z.; Zhang, Y.; et al. Carbon nanotube-based strain sensors: Structures, fabrication, and applications. Adv. Mater. Technol. 2023, 8, 2200855. [Google Scholar] [CrossRef]
- Ferrier, D.C.; Honeychurch, K.C. Carbon nanotube (CNT)-based biosensors. Biosensors 2021, 11, 486. [Google Scholar] [CrossRef]
- Wu, Y.; Zhao, X.; Shang, Y.; Chang, S.; Dai, L.; Cao, A. Application-driven carbon nanotube functional materials. ACS Nano 2021, 15, 7946–7974. [Google Scholar] [CrossRef]
- Murjani, B.O.; Kadu, P.S.; Bansod, M.; Vaidya, S.S.; Yadav, M.D. Carbon nanotubes in biomedical applications: Current status, promises, and challenges. Carbon Lett. 2022, 32, 1207–1226. [Google Scholar] [CrossRef] [PubMed]
- Javahershenas, R.; Soloshonok, V.A.; Klika, K.D.; Jervis, P.J. Carbon nanotubes as heterogeneous catalysts for the multicomponent reaction synthesis of heterocycles. Carbon Lett. 2025, 35, 75–105. [Google Scholar] [CrossRef]
- Hu, X.; Bao, X.; Zhang, M.; Fang, S.; Liu, K.; Wang, J.; Liu, R.; Kim, S.H.; Baughman, R.H.; Ding, J. Recent advances in carbon nanotube-based energy harvesting technologies. Adv. Mater. 2023, 35, 2303035. [Google Scholar] [CrossRef]
- Maheswaran, R.; Shanmugavel, B.P. A critical review of the role of carbon nanotubes in the progress of next-generation electronic applications. J. Electron. Mater. 2022, 51, 2786–2800. [Google Scholar] [CrossRef]
- Rahamathulla, M.; Bhosale, R.R.; Osmani, R.A.; Mahima, K.C.; Johnson, A.P.; Hani, U.; Ghazwani, M.; Begum, M.Y.; Alshehri, S.; Ghoneim, M.M. Carbon nanotubes: Current perspectives on diverse applications in targeted drug delivery and therapies. Materials 2021, 14, 6707. [Google Scholar] [CrossRef]
- Aslam, M.M.-A.; Kuo, H.-W.; Den, W.; Usman, M.; Sultan, M.; Ashraf, H. Functionalized carbon nanotubes (CNTs) for water and wastewater treatment: Preparation to application. Sustainability 2021, 13, 5717. [Google Scholar] [CrossRef]
- Salah, L.S.; Ouslimani, N.; Bousba, D.; Huynen, I.; Danlée, Y. Carbon nanotubes (CNTs) from synthesis to functionalized (CNTs) using conventional and new chemical approaches. J. Nanomater. 2021, 2021, 4972770. [Google Scholar] [CrossRef]
- Chatterjee, S.; Castro, M.; Feller, J.F. Tailoring selectivity of sprayed carbon nanotube sensors (CNT) towards volatile organic compounds (VOC) with surfactants. Sens. Actuators B Chem. 2015, 220, 840–849. [Google Scholar] [CrossRef]
- Chen, J.; Liu, B.; Gao, X.; Xu, D. A review of the interfacial characteristics of polymer nanocomposites containing carbon nanotubes. RSC Adv. 2018, 8, 28048–28085. [Google Scholar] [CrossRef] [PubMed]
- Kyriakidou, K.; Brasinika, D.; Trompeta, A.; Bergamaschi, E.; Karoussis, I.; Charitidis, C. In vitro cytotoxicity assessment of pristine and carboxyl-functionalized MWCNTs. Food Chem. Toxicol. 2020, 141, 111374. [Google Scholar] [CrossRef]
- Kharlamova, M.V.; Paukov, M.; Burdanova, M.G. Nanotube functionalization: Investigation, methods and demonstrated applications. Materials 2022, 15, 5386. [Google Scholar] [CrossRef]
- Liu, D.; Shi, L.; Dai, Q.; Lin, X.; Mehmood, R.; Gu, Z.; Dai, L. Functionalization of carbon nanotubes for multifunctional applications. Trends Chem. 2024, 6, 186–210. [Google Scholar] [CrossRef]
- Abreu, B.; Pires, A.S.; Guimarães, A.; Fernandes, R.M.F.; Oliveira, I.S.; Marques, E.F. Polymer/surfactant mixtures as dispersants and non-covalent functionalization agents of multiwalled carbon nanotubes: Synergism, morphological characterization and molecular picture. J. Mol. Liq. 2022, 347, 118338. [Google Scholar] [CrossRef]
- Gai, S.; Wang, B.; Wang, X.; Zhang, R.; Miao, S.; Wu, Y. Ultrafast NH3 gas sensor based on phthalocyanine-optimized non-covalent hybrid of carbon nanotubes with pyrrole. Sens. Actuators B Chem. 2022, 357, 131352. [Google Scholar] [CrossRef]
- Mostafa, M.H.; Ali, E.S.; Darwish, M.S.A. Recent developments of conductive polymers/carbon nanotubes nanocomposites for sensor applications. Polym.-Plast. Technol. Mater. 2022, 61, 1456–1480. [Google Scholar] [CrossRef]
- Fritea, L.; Banica, F.; Costea, T.O.; Moldovan, L.; Dobjanschi, L.; Muresan, M.; Cavalu, S. Metal nanoparticles and carbon-based nanomaterials for improved performances of electrochemical (Bio) sensors with biomedical applications. Materials 2021, 14, 6319. [Google Scholar] [CrossRef]
- Aykaç, A.; Gergeroglu, H.; Beşli, B.; Akkaş, E.; Yavaş, A.; Güler, S.; Güneş, F.; Erol, M. An overview on recent progress of metal oxide/graphene/CNTs-based nanobiosensors. Nanoscale Res. Lett. 2021, 16, 65. [Google Scholar] [CrossRef]
- Fazio, E.; Spadaro, S.; Corsaro, C.; Neri, G.; Leonardi, S.G.; Neri, F.; Lavanya, N.; Sekar, C.; Donato, N.; Neri, G. Metal-oxide based nanomaterials: Synthesis, characterization and their applications in electrical and electrochemical sensors. Sensors 2021, 21, 2494. [Google Scholar] [CrossRef] [PubMed]
- Kelich, P.; Jeong, S.; Navarro, N.; Adams, J.; Sun, X.; Zhao, H.; Landry, M.P.; Vuković, L. Discovery of DNA–carbon nanotube sensors for serotonin with machine learning and near-infrared fluorescence spectroscopy. ACS Nano 2021, 16, 736–745. [Google Scholar] [CrossRef]
- Nasiri, F.; Rounaghi, G.H.; Ashraf, N.; Deiminiat, B. A new electrochemical sensing platform for quantitative determination of diclofenac based on gold nanoparticles decorated multiwalled carbon nanotubes/graphene oxide nanocomposite film. Int. J. Environ. Anal. Chem. 2021, 101, 153–166. [Google Scholar] [CrossRef]
- Xu, Y.; Xie, X.; Huang, H.; Wang, Y.; Yu, J.; Hu, Z. Encapsulated core–sheath carbon nanotube–graphene/polyurethane composite fiber for highly stable, stretchable, and sensitive strain sensor. J. Mater. Sci. 2021, 56, 2296–2310. [Google Scholar] [CrossRef]
- Han, S.; Ding, Y.; Teng, F.; Yao, A.; Leng, Q. Determination of chloropropanol with an imprinted electrochemical sensor based on multi-walled carbon nanotubes/metal-organic framework composites. RSC Adv. 2021, 11, 18468–18475. [Google Scholar] [CrossRef] [PubMed]
- Pour, B.H.; Haghnazari, N.; Keshavarzi, F.; Ahmadi, E.; Zarif, B.R. High sensitive electrochemical sensor for imatinib based on metal-organic frameworks and multiwall carbon nanotubes nanocomposite. Microchem. J. 2021, 165, 106147. [Google Scholar] [CrossRef]
- Sinha, N.; Ma, J.; Yeow, J.T.W. Carbon nanotube-based sensors. J. Nanosci. Nano Technol. 2006, 6, 573–590. [Google Scholar] [CrossRef]
- Saino, H.V.; Remya, N.; Baiju, G.N.; Hanajiri, T.; Maekawa, T.; Yoshida, Y.; Sakthi Kumar, D. Sensors based on carbon nanotubes and their applications: A review. Curr. Nanosci. 2010, 6, 331–346. [Google Scholar] [CrossRef]
- Tian, T.; Yin, H.; Zhang, L.; Zhu, M.; Ma, D.; Shao, F.; Hu, N.; Yang, Z.; Zhang, Y.; Su, Y. Gas sensing performance and charge-transfer mechanism of semiconducting single-walled carbon nanotubes. Appl. Surf. Sci. 2023, 609, 155357. [Google Scholar] [CrossRef]
- Escobar-Teran, F.; Perrot, H.; Sel, O. Ion dynamics at the single wall carbon nanotube based composite electrode/electrolyte interface: Influence of the cation size and electrolyte pH. J. Phys. Chem. C 2019, 123, 4262–4273. [Google Scholar] [CrossRef]
- Feller, J.F.; Gatt, N.; Kumar, B.; Castro, M. Selectivity of chemoresistive sensors made of chemically functionalized carbon nanotube random networks for volatile organic compounds (VOC). Chemosensors 2014, 2, 26–40. [Google Scholar] [CrossRef]
- Dai, C.; Liu, Y.; Wei, D. Two-dimensional field-effect transistor sensors: The road toward commercialization. Chem. Rev. 2022, 122, 10319–10392. [Google Scholar] [CrossRef] [PubMed]
- Jing, X.; Illarionov, Y.; Yalon, E.; Zhou, P.; Grasser, T.; Shi, Y.; Lanza, M. Engineering field effect transistors with 2D semiconducting channels: Status and prospects. Adv. Funct. Mater. 2020, 30, 1901971. [Google Scholar] [CrossRef]
- Hughes, K.J.; Iyer, K.A.; Bird, R.E.; Ivanov, J.; Banerjee, S.; Georges, G.; Zhou, Q.A. Review of carbon nanotube research and development: Materials and emerging applications. ACS Appl. Nano Mater. 2024, 7, 18695–18713. [Google Scholar] [CrossRef]
- Sacco, L.; Forel, S.; Florea, I.; Cojocaru, C.-S. Ultra-sensitive NO2 gas sensors based on single-wall carbon nanotube field effect transistors: Monitoring from ppm to ppb level. Carbon 2020, 157, 631–639. [Google Scholar] [CrossRef]
- Forel, S.; Sacco, L.; Castan, A.; Florea, I.; Cojocaru, C.S. Simple and rapid gas sensing using a single-walled carbon nanotube field-effect transistor-based logic inverter. Nanoscale Adv. 2021, 3, 1582–1587. [Google Scholar] [CrossRef]
- Schroeder, V.; Savagatrup, S.; He, M.; Lin, S.; Swager, T.M. Carbon nanotube chemical sensors. Chem. Rev. 2018, 119, 599–663. [Google Scholar] [CrossRef]
- Ackermann, J.; Metternich, J.T.; Herbertz, S.; Kruss, S. Biosensing with fluorescent carbon nanotubes. Angew. Chem. Int. Edit. 2022, 61, e202112372. [Google Scholar] [CrossRef]
- Wang, Y.; Cui, Z.; Zhang, X.; Zhu, Y.; Chen, S.; Hu, H. Excitation of surface plasmon resonance on multiwalled carbon nanotube metasurfaces for pesticide sensors. ACS Appl. Mater. Interfaces 2020, 12, 52082–52088. [Google Scholar] [CrossRef] [PubMed]
- Fang, W.; Zhang, Z.; Miao, N.; Yang, R.; Xiao, Z.; Cao, Y.; Xin, W. Highly uniform fabrication of gold nanoparticles on carbon nanotube sheets for sensors based on surface-enhanced Raman spectroscopy with improved reproducibility. ACS Appl. Nano Mater. 2023, 6, 9949–9957. [Google Scholar] [CrossRef]
- Hierold, C.; Jungen, A.; Stampfer, C.; Helbling, T. Nano electromechanical sensors based on carbon nanotubes. Sens. Actuators A Phys. 2007, 136, 51–61. [Google Scholar] [CrossRef]
- Stampfer, C.; Jungen, A.; Linderman, R.; Obergfell, D.; Roth, S.; Hierold, C. Nano-electromechanical displacement sensing based on single-walled carbon nanotubes. Nano Lett. 2006, 6, 1449–1453. [Google Scholar] [CrossRef]
- Wang, Y.; Qin, W.; Hu, X.; Liu, Z.; Ren, Z.; Cao, H.; An, B.; Zhou, X.; Shafiq, M.; Yin, S.; et al. Hierarchically buckled Ti3C2Tx MXene/carbon nanotubes strain sensor with improved linearity, sensitivity, and strain range for soft robotics and epidermal monitoring. Sens. Actuators B Chem. 2022, 368, 132228. [Google Scholar] [CrossRef]
- He, Y.; Wu, D.; Zhou, M.; Zheng, Y.; Wang, T.; Lu, C.; Liu, H.; Liu, C. Wearable strain sensors based on a porous polydimethylsiloxane hybrid with carbon nanotubes and graphene. ACS Appl. Mater. Interfaces 2021, 13, 15572–15583. [Google Scholar] [CrossRef]
- Norizan, M.N.; Moklis, M.H.; Demon, S.Z.N.; Halim, N.A.; Samsuri, A.; Mohamad, I.S.; Knight, V.F.; Abdullah, N. Carbon nanotubes: Functionalisation and their application in chemical sensors. RSC Adv. 2020, 10, 43704–43732. [Google Scholar] [CrossRef]
- Karousis, N.; Tagmatarchis, N.; Tasis, D. Current progress on the chemical modification of carbon nanotubes. Chem. Rev. 2010, 110, 5366–5397. [Google Scholar] [CrossRef]
- Maiti, U.N.; Lee, W.J.; Lee, J.M.; Oh, Y.; Kim, J.Y.; Kim, J.E.; Shim, J.; Han, T.H.; Kim, S.O. 25th anniversary article: Chemically modified/doped carbon nanotubes & graphene for optimized nanostructures & nanodevices. Adv. Mater. 2014, 26, 40–67. [Google Scholar] [CrossRef]
- Mallakpour, S.; Soltanian, S. Surface functionalization of carbon nanotubes: Fabrication and applications. RSC Adv. 2016, 6, 109916–109935. [Google Scholar] [CrossRef]
- Balasubramanian, K.; Burghard, M. Chemically functionalized carbon nanotubes. Small 2005, 1, 180–192. [Google Scholar] [CrossRef]
- Hirsch, A. Functionalization of single-walled carbon nanotubes. Angew. Chem. Int. Edit. 2002, 41, 1853–1859. [Google Scholar] [CrossRef]
- Araujo, D.A.G.; Camargo, J.R.; Pradela-Filho, L.A.; Lima, A.P.; Muñoz, R.A.A.; Takeuchi, R.M.; Janegitz, B.C.C.; Santos, A.L.D. A lab-made screen-printed electrode as a platform to study the effect of the size and functionalization of carbon nanotubes on the voltammetric determination of caffeic acid. Microchem. J. 2020, 158, 105297. [Google Scholar] [CrossRef]
- Assari, P.; Rafati, A.A.; Feizollahi, A.; Joghani, R.A. Fabrication of a sensitive label free electrochemical immunosensor for detection of prostate specific antigen using functionalized multi-walled carbon nanotubes/polyaniline/AuNPs. Mater. Sci. Eng. C 2020, 115, 111066. [Google Scholar] [CrossRef]
- Anshori, I.; Nuraviana Rizalputri, L.; Rona Althof, R.; Sean Surjadi, S.; Harimurti, S.; Gumilar, G. Functionalized multi-walled carbon nanotube/silver nanoparticle (f-MWCNT/AgNP) nanocomposites as non-enzymatic electrochemical biosensors for dopamine detection. Nanocomposites 2021, 7, 97–108. [Google Scholar] [CrossRef]
- Lu, Z.; Zhao, W.; Wu, L.; He, J.; Dai, W.; Zhou, C.; Du, H.; Ye, J. Tunable electrochemical of electrosynthesized layer-by-layer multilayer films based on multi-walled carbon nanotubes and metal-organic framework as high-performance electrochemical sensor for simultaneous determination cadmium and lead. Sens. Actuators B Chem. 2021, 326, 128957. [Google Scholar] [CrossRef]
- Yola, M.L.; Atar, N. Novel voltammetric tumor necrosis factor-alpha (TNF-α) immunosensor based on gold nanoparticles involved in thiol-functionalized multi-walled carbon nanotubes and bimetallic Ni/Cu-MOFs. Anal. Bioanal. Chem. 2021, 413, 2481–2492. [Google Scholar] [CrossRef]
- Alam, A.U.; Qin, Y.; Catalano, M.; Wang, L.; Kim, M.J.; Howlader, M.M.R.; Hu, N.; Deen, M.J. Tailoring MWCNTs and β-cyclodextrin for sensitive detection of acetaminophen and estrogen. ACS Appl. Mater. Interfaces 2018, 10, 21411–21427. [Google Scholar] [CrossRef] [PubMed]
- Alam, A.U.; Deen, M.J. Bisphenol A electrochemical sensor using graphene oxide and β-cyclodextrin-functionalized multi-walled carbon nanotubes. Anal. Chem. 2020, 92, 5532–5539. [Google Scholar] [CrossRef]
- Misia, G.; Evangelisti, C.; Merino, J.P.; Pitzalis, E.; Abelairas, A.M.; Mosquera, J.; Criado, A.; Prato, M.; Silvestri, A. Design and optimization of an electrochemical sensor based on carbon nanotubes for the reliable voltammetric detection of serotonin in complex biological fluids. Carbon 2024, 229, 119550. [Google Scholar] [CrossRef]
- Stathouraki, M.M.; Pantazidis, C.; Mygiakis, E.; Avgeropoulos, A.; Sakellariou, G. Functionalization of single-walled carbon nanotubes with end-capped polystyrene via a single-step Diels–Alder cycloaddition. Polymers 2021, 13, 1169. [Google Scholar] [CrossRef] [PubMed]
- Wunderlich, D.; Hauke, F.; Hirsch, A. Preferred functionalization of metallic and small-diameter single-walled carbon nanotubes by nucleophilic addition of organolithium and-magnesium compounds followed by reoxidation. Chem. Eur. J. 2008, 14, 1607–1614. [Google Scholar] [CrossRef]
- Xu, Y.; Wang, X.; Tian, R.; Li, S.; Wan, L.; Li, M.; You, H.; Li, Q.; Wang, S. Microwave-induced electrophilic addition of single-walled carbon nanotubes with alkylhalides. Appl. Surf. Sci. 2008, 254, 2431–2435. [Google Scholar] [CrossRef]
- Palacin, T.; Khanh, H.L.; Jousselme, B.; Jegou, B.; Filoramo, A.; Ehli, C.; Guldi, D.M.; Campidelli, S. Efficient functionalization of carbon nanotubes with porphyrin dendrons via click chemistry. J. Am. Chem. Soc. 2009, 131, 15394–15402. [Google Scholar] [CrossRef]
- Devaraj, N.K.; Finn, M.G. Introduction: Click chemistry. Chem. Rev. 2021, 121, 6697–6698. [Google Scholar] [CrossRef] [PubMed]
- Clave, G.; Campidelli, S. Efficient covalent functionalisation of carbon nanotubes: The use of “click chemistry”. Chem. Sci. 2011, 2, 1887–1896. [Google Scholar] [CrossRef]
- Mohd Nurazzi, N.; Asyraf, M.R.M.; Khalina, A.; Abdullah, N.; Sabaruddin, F.A.; Kamarudin, S.H.; Ahmad, S.; Mahat, A.M.; Lee, C.L.; Aisyah, H.A.; et al. Fabrication, functionalization, and application of carbon nanotube-reinforced polymer composite: An overview. Polymers 2021, 13, 1047. [Google Scholar] [CrossRef]
- Zhao, H.; Ran, Q.; Li, Y.; Li, B.; Liu, B.; Ma, H.; Zhang, M.; Komarneni, S. Highly sensitive detection of gallic acid based on 3D interconnected porous carbon nanotubes/carbon nanosheets modified glassy carbon electrode. J. Mater. Res. Technol. 2020, 9, 9422–9433. [Google Scholar] [CrossRef]
- Liu, R.; Li, B.; Li, F.; Dubovyk, V.; Chang, Y.; Li, D.; Ding, K.; Ran, Q.; Wang, G.; Zhao, H. A novel electrochemical sensor based on β-cyclodextrin functionalized carbon nanosheets@ carbon nanotubes for sensitive detection of bactericide carbendazim in apple juice. Food Chem. 2022, 384, 132573. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Zhao, F.; Zeng, B. Electrochemical determination of eugenol using a three-dimensional molecularly imprinted poly (p-aminothiophenol-co-p-aminobenzoic acids) film modified electrode. Electrochim. Acta 2016, 210, 293–300. [Google Scholar] [CrossRef]
- Yang, L.; Zhang, B.; Xu, B.; Zhao, F.; Zeng, B. Ionic liquid functionalized 3D graphene-carbon nanotubes–AuPd nanoparticles–molecularly imprinted copolymer based paracetamol electrochemical sensor: Preparation, characterization and application. Talanta 2021, 224, 121845. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Singh, R.; Wang, Z.; Li, G.; Xie, Y.; Jha, R.; Marques, C.; Zhangm, B.; Kumar, S. Humanoid shaped optical fiber plasmon biosensor functionalized with graphene oxide/multi-walled carbon nanotubes for histamine detection. Opt. Express 2023, 31, 11788–11803. [Google Scholar] [CrossRef]
- Fall, B.; Sall, D.D.; Hémadi, M.; Fall, M.; Randriamahazaka, H.; Thomas, S. Highly efficient non-enzymatic electrochemical glucose sensor based on carbon nanotubes functionalized by molybdenum disulfide and decorated with nickel nanoparticles (GCE/CNT/MoS2/NiNPs). Sens. Actuators 2023, 5, 100136. [Google Scholar] [CrossRef]
- Wang, X.; Xu, Y.; Li, Y.; Li, Y.; Li, Z.; Zhang, W.; Zou, X.; Shi, J.; Huang, X.; Liu, C.; et al. Rapid detection of cadmium ions in meat by a multi-walled carbon nanotubes enhanced metal-organic framework modified electrochemical sensor. Food Chem. 2021, 357, 129762. [Google Scholar] [CrossRef]
- Zhang, H.; Zou, X.; Chen, W.; Sun, Q.; Gao, E. A Cu-functionalized MOF and multi-walled carbon nanotube composite modified electrode for the simultaneous determination of hydroquinone and catechol. Anal. Methods 2022, 14, 3961–3969. [Google Scholar] [CrossRef]
- Han, J.; Li, F.; Zhao, M.; Guo, M.; Liu, Y.; Guo, X.; Ran, Q.; Wang, Z.; Zhao, H. Ultrasensitive electrochemical sensing platform based on Zr-based MOF embellished single-wall carbon nanotube networks for trace analysis of methyl parathion. Microchem. J. 2024, 200, 110323. [Google Scholar] [CrossRef]
- Kunene, K.; Sabela, M.; Kanchi, S.; Bisetty, K. High performance electrochemical biosensor for bisphenol A using screen printed electrodes modified with multiwalled carbon nanotubes functionalized with silver-doped zinc oxide. Waste Biomass Valorization 2020, 11, 1085–1096. [Google Scholar] [CrossRef]
- Yao, Y.; Zhang, L.; Xu, J.; Wang, X.; Duan, X.; Wen, Y. Rapid and sensitive stripping voltammetric analysis of methyl parathion in vegetable samples at carboxylic acid-functionalized SWCNTs–β-cyclodextrin modified electrode. J. Electroanal. Chem. 2014, 713, 1–8. [Google Scholar] [CrossRef]
- Balram, D.; Lian, K.Y.; Sebastian, N.; Rasana, N. Ultrasensitive detection of cytotoxic food preservative tert-butylhydroquinone using 3D cupric oxide nanoflowers embedded functionalized carbon nanotubes. J. Hazard. Mater. 2021, 406, 124792. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Awasthi, A.; Sharma, M.D.; Singh, K.; Singh, D. Functionalized multiwall carbon nanotube-molybdenum disulphide nanocomposite based electrochemical ultrasensitive detection of neurotransmitter epinephrine. Mater. Chem. Phys. 2022, 290, 126656. [Google Scholar] [CrossRef]
- Wu, B.; Yeasmin, S.; Liu, Y.; Cheng, L. Sensitive and selective electrochemical sensor for serotonin detection based on ferrocene-gold nanoparticles decorated multiwall carbon nanotubes. Sens. Actuators B Chem. 2022, 354, 131216. [Google Scholar] [CrossRef]
- Venkataraman, A.; Amadi, E.V.; Chen, Y.; Papadopoulos, C. Carbon nanotube assembly and integration for applications. Nanoscale Res. Lett. 2019, 14, 220. [Google Scholar] [CrossRef]
- Papageorgiou, D.G.; Li, Z.; Liu, M.; Kinloch, I.A.; Young, R.J. Mechanisms of mechanical reinforcement by graphene and carbon nanotubes in polymer nanocomposites. Nanoscale 2020, 12, 2228–2267. [Google Scholar] [CrossRef] [PubMed]
- Kobashi, K.; Villmow, T.; Andres, T.; Pötschke, P. Liquid sensing of melt-processed poly (lactic acid)/multi-walled carbon nanotube composite films. Sens. Actuators B Chem. 2008, 134, 787–795. [Google Scholar] [CrossRef]
- Chio, L.; Pinals, R.L.; Murali, A.; Goh, N.S.; Landry, M.P. Covalent surface modification effects on single-walled carbon nanotubes for targeted sensing and optical imaging. Adv. Funct. Mater. 2020, 30, 1910556. [Google Scholar] [CrossRef]
- Cho, G.; Azzouzi, S.; Zucchi, G.; Lebental, B. Electrical and electrochemical sensors based on carbon nanotubes for the monitoring of chemicals in water—A review. Sensors 2021, 22, 218. [Google Scholar] [CrossRef] [PubMed]
- Ali, M.Y.; Alam, A.U.; Howlader, M.M.R. Fabrication of highly sensitive Bisphenol A electrochemical sensor amplified with chemically modified multiwall carbon nanotubes and β-cyclodextrin. Sens. Actuators B Chem. 2020, 320, 128319. [Google Scholar] [CrossRef]
- Othman, A.M.; Wollenberger, U. Amperometric biosensor based on coupling aminated laccase to functionalized carbon nanotubes for phenolics detection. Int. J. Biol. Macromol. 2020, 153, 855–864. [Google Scholar] [CrossRef]
- Pushpanjali, P.A.; Manjunatha, J.G.; Hareesha, N. An overview of recent developments of carbon-based sensors for the analysis of drug molecules. J. Electrochem. Sci. Eng. 2021, 11, 161–177. [Google Scholar] [CrossRef]
- Kokab, T.; Shah, A.; Khan, M.A.; Arshad, M.; Nisar, J.; Ashiq, M.N.; Zia, M.A. Simultaneous femtomolar detection of paracetamol, diclofenac, and orphenadrine using a carbon nanotube/zinc oxide nanoparticle-based electrochemical sensor. ACS Appl. Nano Mater. 2021, 4, 4699–4712. [Google Scholar] [CrossRef]
- Tang, J.; Peng, L.; Ali, A.; Zhao, S.; Zeng, Z.; Yuan, K.; Yao, S. Electrochemical detection of rutin in black tartary buckwheat tea and related health-care pills with new ionic liquid-based supramolecular hydrogels. Food Control 2024, 155, 110045. [Google Scholar] [CrossRef]
- Hu, Y.; Zhang, L.; Zhao, P.; Wang, C.; Fei, J.; Xie, Y. Ultrasensitive luteolin electrochemical sensor based on zeolitic imidazolate frameworks-derived cobalt trioxide@ nitrogen doped carbon nanotube/amino-functionalized graphene quantum dots composites modified glass carbon electrode. Sens. Actuators B Chem. 2022, 351, 130938. [Google Scholar] [CrossRef]
- Yuwen, T.; Shu, D.; Zou, H.; Yang, X.; Zhang, S.; Liu, Q.; Wang, X.; Wang, G.; Zhang, Y.; Zang, G. Carbon nanotubes: A powerful bridge for conductivity and flexibility in electrochemical glucose sensors. J. Nanobiotechnol. 2023, 21, 320. [Google Scholar] [CrossRef]
- Peng, L.; Luo, Y.; Xiong, H.; Yao, S.; Zhu, M.; Song, H. A novel amperometric glucose biosensor based on Fe3O4–chitosan–β-cyclodextrin/MWCNTs nanobiocomposite. Electroanalysis 2021, 33, 723–732. [Google Scholar] [CrossRef]
- Karimi-Maleh, H.; Cellat, K.; Arıkan, K.; Savk, A.; Karimi, F.; Sen, F. Palladium–Nickel nanoparticles decorated on Functionalized-MWCNT for high precision non-enzymatic glucose sensing. Mater. Chem. Phys. 2020, 250, 123042. [Google Scholar] [CrossRef]
- Li, G.; Xu, Q.; Singh, R.; Zhang, W.; Marques, C.; Xie, Y. Graphene oxide/multiwalled carbon nanotubes assisted serial quadruple tapered structure-based LSPR sensor for glucose detection. IEEE Sens. J. 2022, 22, 16904–16911. [Google Scholar] [CrossRef]
- Song, H.; Liu, Y.; Fang, Y.; Zhang, D. Carbon-based electrochemical sensors for in vivo and in vitro neurotransmitter detection. Crit. Rev. Anal. Chem. 2023, 53, 955–974. [Google Scholar] [CrossRef]
- Shakil, S.; Yuan, D.; Li, M. Electrochemical Sensors for Acetylcholine Detection. J. Electrochem. Soc. 2024, 171, 067512. [Google Scholar] [CrossRef]
- Bagherpour, S.; Pérez-García, L. Recent advances on nanomaterial-based glutathione sensors. J. Mater. Chem. B 2024, 12, 8285–8309. [Google Scholar] [CrossRef]
- Elugoke, S.E.; Adekunle, A.S.; Fayemi, O.E.; Mamba, B.B.; Nkambule, T.T.I.; Sherif, E.M.; Ebenso, E.E. Progress in electrochemical detection of neurotransmitters using carbon nanotubes/nanocomposite based materials: A chronological review. Nano Select 2020, 1, 561–611. [Google Scholar] [CrossRef]
- Jia, D.; Dai, J.; Yuan, H.; Lei, L.; Xiao, D. Selective detection of dopamine in the presence of uric acid using a gold nanoparticles-poly (luminol) hybrid film and multi-walled carbon nanotubes with incorporated β-cyclodextrin modified glassy carbon electrode. Talanta 2011, 85, 2344–2351. [Google Scholar] [CrossRef]
- Babaei, A.; Taheri, A.R. Nafion/Ni (OH)2 nanoparticles-carbon nanotube composite modified glassy carbon electrode as a sensor for simultaneous determination of dopamine and serotonin in the presence of ascorbic acid. Sens. Actuators B Chem. 2013, 176, 543–551. [Google Scholar] [CrossRef]
- Fayemi, O.E.; Adekunle, A.S.; Ebenso, E.E. Metal oxide nanoparticles/multi-walled carbon nanotube nanocomposite modified electrode for the detection of dopamine: Comparative electrochemical study. J. Biosens. Bioelectron 2015, 6, 190. [Google Scholar] [CrossRef]
- Wang, Z.; Guo, H.; Gui, R.; Jin, H.; Xia, J.; Zhang, F. Simultaneous and selective measurement of dopamine and uric acid using glassy carbon electrodes modified with a complex of gold nanoparticles and multiwall carbon nanotubes. Sens. Actuators B Chem. 2018, 255, 2069–2077. [Google Scholar] [CrossRef]
- Yang, Y.; Li, M.; Zhu, Z. A novel electrochemical sensor based on carbon nanotubes array for selective detection of dopamine or uric acid. Talanta 2019, 201, 295–300. [Google Scholar] [CrossRef]
- Zhang, L.; Tang, J.; Li, J.; Li, Y.; Yang, P.; Zhao, P.; Fei, J.; Xie, Y. A novel dopamine electrochemical sensor based on 3D flake nickel oxide/cobalt oxide@ porous carbon nanosheets/carbon nanotubes/electrochemical reduced of graphene oxide composites modified glassy carbon electrode. Colloid Surf. A 2023, 666, 131284. [Google Scholar] [CrossRef]
- Nißler, R.; Kurth, L.; Li, H.; Spreinat, A.; Kuhlemann, I.; Flavel, B.S.; Kruss, S. Sensing with chirality-pure near-infrared fluorescent carbon nanotubes. Anal. Chem. 2021, 93, 6446–6455. [Google Scholar] [CrossRef]
- Dăscălescu, D.; Apetrei, C. Nanomaterials based electrochemical sensors for serotonin detection: A review. Chemosensors 2021, 9, 14. [Google Scholar] [CrossRef]
- Ahmad, I.; Sead, F.F.; Kanjariya, P.; Kumar, A.; Rajivm, A.; Shankhyan, A.; Jaidka, S.; Kumar, H.; Aminov, Z. Nanomaterial sensors for enhanced detection of serotonin. Clin. Chim. Acta 2025, 569, 120160. [Google Scholar] [CrossRef] [PubMed]
- Becerra-Hernández, A.; Galindo-de-la-Rosa, J.; Martínez-Pimentel, Y.; Ledesma-García, J.; Álvarez-Contreras, L.; Guerra-Balcázar, M.; Aguilar-Elguezabal, A.; Chávez-Ramírez, A.U.; Vallejo-Becerra, V. Novel biomaterial based on monoamine oxidase-A and multi-walled carbon nanotubes for serotonin detection. Biochem. Eng. J. 2019, 149, 107240. [Google Scholar] [CrossRef]
- Nayak, S.P.; Prathyusha, V.; Kumar, J.K.K. Eco-friendly surface modification of oxidized carbon nanotubes with curcumin for simultaneous electrochemical detection of dopamine and serotonin. Mater. Chem. Phys. 2022, 287, 126293. [Google Scholar] [CrossRef]
- Shekher, K.; Sampath, K.; Vandini, S.; Satyanarayana, M.; Vengatajalabathy Gobi, K. Gold nanoparticle assimilated polymer layer on carbon nanotube matrices for sensitive detection of serotonin in presence of dopamine in-vitro. Inorg. Chim. Acta 2023, 549, 121399. [Google Scholar] [CrossRef]
- Yao, Y.; Shen, R.; Xu, J.; Feng, Z. Progress in electrochemical sensing of epinephrine using carbon nanomaterials: A review. Int. J. Electrochem. Sci. 2024, 19, 100750. [Google Scholar] [CrossRef]
- Charithra, M.M.; Manjunatha, J.G. Electrochemical sensing of adrenaline using surface modified carbon nanotube paste electrode. Mater. Chem. Phys. 2021, 262, 124293. [Google Scholar] [CrossRef]
- Rajarathinam, T.; Thirumalai, D.; Kwon, M.; Lee, S.; Jayaraman, S.; Paik, H.; Lee, J.; Chang, S. Screen-printed carbon electrode modified with de-bundled single-walled carbon nanotubes for voltammetric determination of norepinephrine in ex vivo rat tissue. Bioelectrochemistry 2022, 146, 108155. [Google Scholar] [CrossRef]
- Manjunatha, K.G.; Swamy, B.E.K.; Jayaprakash, G.K.; Madhuchandra, H.D.; Vishnumurthy, K.A. Electro-sensitive detection of adrenaline and paracetamol at SrF/MWCNT modified carbon paste electrode. Inorg. Chem. Commun. 2023, 158, 111504. [Google Scholar] [CrossRef]
- Liu, L.; Hao, L.; Shen, W.; Yang, X.; Zhang, Y. Synthesis of ternary heterostructured rice-stick-like Ag/polyoxometalates/nitrogen-doped carbon nanotube hybrids for the sensitive detection of adrenaline. Talanta 2025, 294, 128222. [Google Scholar] [CrossRef] [PubMed]
- Charithra, M.M.; Manjunatha, J.G.; Al-Kahtani, A.A.; Tighezza, A.M.; Ataollahi, N. Electroanalysis of epinephrine using polymerized carbon nanotube composite sensor. Top. Catal. 2025, 68, 1349–1359. [Google Scholar] [CrossRef]
- Zeng, C.; Li, Y.; Zhu, M.; Du, Z.; Liang, H.; Chen, Q.; Ye, H.; Li, R.; Liu, W. Simultaneous detection of norepinephrine and 5-hydroxytryptophan using poly-alizarin/multi-walled carbon nanotubes-graphene modified carbon fiber microelectrode array sensor. Talanta 2024, 270, 125565. [Google Scholar] [CrossRef]
- Phasuksom, K.; Thongwattana, N.; Ariyasajjamongkol, N.; Sirivat, A. Non-enzymatic sensor based on doped polyindole/multi-walled carbon nanotube for detecting neurotransmitter acetylcholine. J. Electroanal. Chem. 2024, 964, 118337. [Google Scholar] [CrossRef]
- Poolakkandy, R.R.; Ramalakshmi, N.A.; Padmalayam, K.A.; Krishnamurthy, R.G.; Menamparambath, M.M. Braided copper cobaltite/MWCNT composites enable acetylcholine detection at sub-nanomolar levels in vitro. Sens. Diagn. 2023, 2, 726–735. [Google Scholar] [CrossRef]
- Feng, L.; Zhang, L.; Chu, S.; Zhang, S.; Chen, X.; Gong, Y.; Du, Z.; Mao, G.; Wang, H. One-pot fabrication of nanozyme with 2D/1D heterostructure by in-situ growing MoS2 nanosheets onto single-walled carbon nanotubes with enhanced catalysis for colorimetric detection of glutathione. Anal. Chim. Acta 2022, 1221, 340083. [Google Scholar] [CrossRef]
- Liu, Y.; Yan, X.; Li, L.; Xing, Y.; Zhao, P.; Liu, M.; Zhu, Y.; Liu, N.; Zhang, Z. Nanoreactor based on Cu nanoparticles confined in B, N co-doped porous carbon nanotubes for glutathione biosensing. Microchim. Acta 2023, 190, 325. [Google Scholar] [CrossRef]
- Kaimal, R.; Senthilkumar, P.; Aljafari, B.; Anandan, S. A nanosecond pulsed laser-ablated MWCNT-Au heterostructure: An innovative ultra-sensitive electrochemical sensing prototype for the identification of glutathione. Analyst 2022, 147, 3894–3907. [Google Scholar] [CrossRef]
- Ali, M.Y.; Knight, D.; Howlader, M.M.R. Nonenzymatic electrochemical glutamate sensor using copper oxide nanomaterials and multiwall carbon nanotubes. Biosensors 2023, 13, 237. [Google Scholar] [CrossRef]
- Poolakkandy, R.R.; AR, N.; Padmalayam, K.A. Nickel hydroxide nanoflake/carbon nanotube composites for the electrochemical detection of glutamic acid using In vitro stroke model. ACS Appl. Nano Mater. 2023, 6, 1347–1359. [Google Scholar] [CrossRef]
- Wang, L.; Xie, S.; Wang, Z. Functionalized helical fibre bundles of carbon nanotubes as electrochemical sensors for long-term in vivo monitoring of multiple disease biomarkers. Nat. Biomed. Eng. 2020, 4, 159–171. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Xiao, M.; He, J.; Zhang, Y.; Liang, Y.; Liu, H.; Zhang, Z. Aptamer-functionalized carbon nanotube field-effect transistor biosensors for Alzheimer’s disease serum biomarker detection. ACS Sens. 2022, 7, 2075–2083. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Wang, J.; Lü, H.; Hui, N. Electrochemical sensor based on Prussian blue/multi-walled carbon nanotubes functionalized polypyrrole nanowire arrays for hydrogen peroxide and microRNA detection. Microchim. Acta 2021, 188, 25. [Google Scholar] [CrossRef]
- Farzin, L.; Sadjadi, S.; Shamsipur, M.; Sheibani, S. Electrochemical genosensor based on carbon nanotube/amine-ionic liquid functionalized reduced graphene oxide nanoplatform for detection of human papillomavirus (HPV16)-related head and neck cancer. J. Pharmaceut. Biomed. Anal. 2020, 179, 112989. [Google Scholar] [CrossRef]
- Pinals, R.L.; Ledesma, F.; Yang, D.; Navarro, N.; Jeong, S.; Pak, J.E.; Chuang, Y.; Cheng, Y.; Sun, H.; Landry, M.P. Rapid SARS-CoV-2 spike protein detection by carbon nanotube-based near-infrared nanosensors. Nano Lett. 2021, 21, 2272–2280. [Google Scholar] [CrossRef] [PubMed]
- Peng, L.; Zhou, G.; Jiang, W.; Chen, Y.; Wu, T.; Yuan, K.; Ali, A.; Yao, S. A new Ionic Liquid-Modified Silver/Multi-Walled Carbon Nanotubes Biosensor for Detection of Glucose in Honey Samples. Food Bioprocess Technol. 2025, 18, 2962–2984. [Google Scholar] [CrossRef]
- Kumar, T.H.V.; Pillai, S.K.R.; Chan-Park, M.B.; Sundramoorthy, A.K. Highly selective detection of an organophosphorus pesticide, methyl parathion, using Ag–ZnO–SWCNT based field-effect transistors. J. Mater. Chem. C 2020, 8, 8864–8875. [Google Scholar] [CrossRef]
- Fu, X.C.; Zhang, J.; Tao, Y.Y.; Wu, J.; Xie, C.G.; Kong, L.T. Three-dimensional mono-6-thio-β-cyclodextrin covalently functionalized gold nanoparticle/single-wall carbon nanotube hybrids for highly sensitive and selective electrochemical determination of methyl parathion. Electrochim. Acta 2015, 153, 12–18. [Google Scholar] [CrossRef]
- Chen, L.; Chaisiwamongkhol, K.; Chen, Y.; Compton, R.G. Rapid electrochemical detection of vanillin in natural vanilla. Electroanalysis 2019, 31, 1067–1074. [Google Scholar] [CrossRef]
- Hareesha, N.; Manjunatha, J.G.; Amrutha, B.M.; Sreeharsha, N.; Basheeruddin Asdaq, S.M.; Anwer, M.K. A fast and selective electrochemical detection of vanillin in food samples on the surface of poly (glutamic acid) functionalized multiwalled carbon nanotubes and graphite composite paste sensor. Colloids Surf. A 2021, 626, 127042. [Google Scholar] [CrossRef]
- Guo, S.Y.; Hou, P.X.; Zhang, F.; Liu, C.; Cheng, H.M. Gas sensors based on single-wall carbon nanotubes. Molecules 2022, 27, 5381. [Google Scholar] [CrossRef] [PubMed]
- Choi, S.W.; Kim, B.M.; Oh, S.H.; Byun, Y.T. Selective detection of chlorine at room temperature utilizing single-walled carbon nanotubes functionalized with platinum nanoparticles synthesized via ultraviolet irradiation. Sens. Actuators B Chem. 2017, 249, 414–422. [Google Scholar] [CrossRef]
- Tian, X.; Wang, Q.; Chen, X.; Yang, W.; Wu, Z.; Xu, X.; Jiang, M.; Zhou, Z. Enhanced performance of core-shell structured polyaniline at helical carbon nanotube hybrids for ammonia gas sensor. Appl. Phys. Lett. 2014, 105, 203109. [Google Scholar] [CrossRef]
- Tung, T.T.; Pham-Huu, C.; Janowska, I.; Kim, T.; Castro, M.; Feller, J.F. Hybrid films of graphene and carbon nanotubes for high performance chemical and temperature sensing applications. Small 2015, 11, 3485–3493. [Google Scholar] [CrossRef] [PubMed]
- Choi, S.W.; Kim, J.; Lee, J.H.; Byun, Y.T. Remarkable improvement of CO-sensing performances in single-walled carbon nanotubes due to modification of the conducting channel by functionalization of Au nanoparticles. Sens. Actuators B Chem. 2016, 232, 625–632. [Google Scholar] [CrossRef]
- Bensifia, M.; Bouanis, F.; Léonard, C. Theoretical study of the non-covalent functionalization of carbon nanotubes for NO and CO detection. Comput. Condens. Matter 2025, 42, e00998. [Google Scholar] [CrossRef]
- Choi, S.W.; Kim, J.; Byun, Y.T. Highly sensitive and selective NO2 detection by Pt nanoparticles-decorated single-walled carbon nanotubes and the underlying sensing mechanism. Sens. Actuators B Chem. 2017, 238, 1032–1042. [Google Scholar] [CrossRef]
- Evans, G.P.; Buckley, D.J.; Skipper, N.T.; Parkin, I.P. Single-walled carbon nanotube composite inks for printed gas sensors: Enhanced detection of NO2, NH3, EtOH and acetone. RSC Adv. 2014, 4, 51395–51403. [Google Scholar] [CrossRef]
- Chang, C.P.; Yuan, C.L. The fabrication of a MWNTs–polymer composite chemoresistive sensor array to discriminate between chemical toxic agents. J. Mater. Sci. 2009, 44, 5485–5493. [Google Scholar] [CrossRef]
- Han, M.; Kim, J.K.; Lee, J.; An, H.K.; Yun, J.P.; Kang, S.-W.; Jung, D. Room-temperature hydrogen-gas sensor based on carbon nanotube yarn. J. Nanosci. Nanotechnol. 2020, 20, 4011–4014. [Google Scholar] [CrossRef] [PubMed]
- Imeni, S.; Rouhani, M.; Aliabad, J.M. NiN4S-doped single walled carbon nanotube as an ultrafast H2 gas sensor: A DFT simulation. Inorg. Chem. Commun. 2023, 148, 110334. [Google Scholar] [CrossRef]
- Kim, J.K.; Han, M.; Kim, Y.; An, H.K.; Lee, S.; Kong, S.H.; Jung, D. Pd-decorated multi-walled carbon nanotube sensor for hydrogen detection. J. Nanosci. Nanotechnol. 2021, 21, 3707–3710. [Google Scholar] [CrossRef]
- Han, M.; Kim, J.K.; Lee, J.; An, H.K.; Yun, J.P.; Kang, S.-W.; Jung, D. H2 gas sensor based on Pd-loaded carbon nanotube film. J. Nanosci. Nanotechnol. 2020, 20, 4470–4473. [Google Scholar] [CrossRef]
- Son, W.; Lee, D.W.; Kim, Y.K.; Chun, S.; Lee, J.M.; Choi, J.H.; Shim, W.S.; Suh, D.; Lim, S.K.; Choi, C. PdO-nanoparticle-embedded carbon nanotube yarns for wearable hydrogen gas sensing platforms with fast and sensitive responses. ACS Sens. 2023, 8, 94–102. [Google Scholar] [CrossRef] [PubMed]
- Girma, H.G.; Park, K.H.; Ji, D.; Kim, Y.; Lee, H.M.; Jeon, S.; Jung, S.H.; Kim, J.Y.; Noh, Y.Y.; Lim, B. Room-temperature hydrogen sensor with high sensitivity and selectivity using chemically immobilized monolayer single-walled carbon nanotubes. Adv. Funct. Mater. 2023, 33, 2213381. [Google Scholar] [CrossRef]
- Alamri, M.; Liu, B.; Berrie, C.L.; Walsh, M.; Wu, J.Z. Probing the role of CNTs in Pt nanoparticle/CNT/graphene nanohybrids H2 sensors. Nano Express 2022, 3, 035004. [Google Scholar] [CrossRef]
- Liu, C.; Hu, J.; Wu, G.; Cao, J.; Zhang, Z.; Zhang, Y. Carbon nanotube-based field-effect transistor-type sensor with a sensing gate for ppb-level formaldehyde detection. ACS Appl. Mater. Interfaces 2021, 13, 56309–56319. [Google Scholar] [CrossRef]
- Sun, Y.; Zhang, Y. Wafer-scale floating-gate field effect transistor sensor built on carbon nanotubes film for ppb-level NO2 detection. Chem. Eng. J. 2023, 473, 145480. [Google Scholar] [CrossRef]
- Velumani, M.; Prasanth, A.; Narasimman, S.; Chandrasekhar, A.; Sampson, A.; Meher, S.R.; Rajalingam, S.; Rufus, E.; Alex, Z.C. Nanomaterial-based sensors for exhaled breath analysis: A review. Coatings 2022, 12, 1989. [Google Scholar] [CrossRef]
- Jeong, D.W.; Kim, K.H.; Kim, B.S.; Byun, Y.T. Characteristics of highly sensitive and selective nitric oxide gas sensors using defect-functionalized single-walled carbon nanotubes at room temperature. Appl. Surf. Sci. 2021, 550, 149250. [Google Scholar] [CrossRef]
- Nag, S.; Castro, M.; Choudhary, V.; Feller, J.-F. Boosting selectivity and sensitivity to biomarkers of quantum resistive vapour sensors used for volatolomics with nanoarchitectured carbon nanotubes or graphene platelets connected by fullerene junctions. Chemosensors 2021, 9, 66. [Google Scholar] [CrossRef]
- Gelperin, A.; Johnson, A. Nanotube-based sensor arrays for clinical breath analysis. J. Breath Res. 2008, 2, 037015. [Google Scholar] [CrossRef]
- Hu, W.; Wan, L.; Jian, Y.; Ren, C.; Jin, K.; Su, X.; Bai, X.; Haick, H.; Yao, M.; Wu, W. Electronic noses: From advanced materials to sensors aided with data processing. Adv. Mater. Technol. 2019, 4, 1800488. [Google Scholar] [CrossRef]
- Freddi, S.; Sangaletti, L. Trends in the development of electronic noses based on carbon nanotubes chemiresistors for breathomics. Nanomaterials 2022, 12, 2992. [Google Scholar] [CrossRef]
- Dai, H.; Thostenson, E.T.; Schumacher, T. Processing and characterization of a novel distributed strain sensor using carbon nanotube-based nonwoven composites. Sensors 2015, 15, 17728–17747. [Google Scholar] [CrossRef]
- Bautista-Quijano, J.R.; Pötschke, P.; Brünig, H.; Heinrich, G. Strain sensing, electrical and mechanical properties of polycarbonate/multiwall carbon nanotube monofilament fibers fabricated by melt spinning. Polymer 2016, 82, 181–189. [Google Scholar] [CrossRef]
- Cheng, Y.; Wang, R.; Sun, J.; Gao, L. A stretchable and highly sensitive graphene–based fiber for sensing tensile strain, bending, and torsion. Adv. Mater. 2015, 27, 7365–7371. [Google Scholar] [CrossRef]
- Guo, X.; Hong, W.; Zhao, Y.; Zhu, T.; Li, H.; Zheng, G.; Wang, J.; Tang, G.; Cao, J.; Wang, Y.; et al. Bioinspired sandwich-structured pressure sensors based on graphene oxide/hydroxyl functionalized carbon nanotubes/bovine serum albumin nanocomposites for wearable textile electronics. Compos. Part A-Appl. S. 2022, 163, 107240. [Google Scholar] [CrossRef]
- Wang, L.; Lv, D.; Wang, F. Electrode-shared differential configuration for pressure sensor made of carbon nanotube-filled silicone rubber composites. IEEE Trans. Instrum. Meas. 2018, 67, 1417–1424. [Google Scholar] [CrossRef]
- Su, Y.; Zhang, W.; Chen, S.; Yao, D.; Zhang, X.; Chen, H. Piezoresistive electronic-skin sensors produced with self-channeling laser microstructured silicon molds. IEEE Trans. Electron Devices 2021, 68, 786–792. [Google Scholar] [CrossRef]
- Li, W.; Jin, X.; Han, X.; Wang, W.; Lin, T.; Zhu, Z. Synergy of porous structure and microstructure in piezoresistive material for high-performance and flexible pressure sensors. ACS Appl. Mater. Interfaces 2021, 13, 19211–19220. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, J.; Chen, X.; Ren, L.; Wang, M. Integrated Biomarker Separation and Detection with Carbon Nanotubes: Advances and Prospects. Small Methods 2025, 9, e00117. [Google Scholar] [CrossRef]
- Palumbo, A.; Li, Z.; Yang, E.H. Trends on carbon nanotube-based flexible and wearable sensors via electrochemical and mechanical stimuli: A review. IEEE Sens. J. 2022, 22, 20102–20125. [Google Scholar] [CrossRef]
- Rdest, M.; Janas, D. Carbon nanotube wearable sensors for health diagnostics. Sensors 2021, 21, 5847. [Google Scholar] [CrossRef]
- Shoukat, R.; Khan, M.I. Carbon nanotubes: A review on properties, synthesis methods and applications in micro and nanotechnology. Microsyst. Technol. 2021, 27, 4183–4192. [Google Scholar] [CrossRef]
- Gacem, A.; Modi, S.; Yadav, V.K.; Islam, S.; Patel, A.; Dawane, V.; Jameel, M.; Inwati, G.K.; Piplode, S.; Solanki, V.S.; et al. Recent advances in methods for synthesis of carbon nanotubes and carbon nanocomposite and their emerging applications: A descriptive review. J. Nanomater. 2022, 2022, 7238602. [Google Scholar] [CrossRef]
- Gao, C.; Guo, M.; Liu, Y.; Zhang, D.; Gao, F.; Sun, L.; Li, J.; Chen, X.; Wang, Y. Surface modification methods and mechanisms in carbon nanotubes dispersion. Carbon 2023, 212, 118133. [Google Scholar] [CrossRef]
- Kobayashi, N.; Izumi, H.; Morimoto, Y. Review of toxicity studies of carbon nanotubes. J. Occup. Health 2017, 59, 394–407. [Google Scholar] [CrossRef]
- Sousa, S.P.; Peixoto, T.; Santos, R.M.; Lopes, A.; Paiva, M.d.C.; Marques, A.T. Health and safety concerns related to CNT and graphene products, and related composites. J. Compos. Sci. 2020, 4, 106. [Google Scholar] [CrossRef]
- Aliyana, A.K.; Naveen Kumar, S.K.; Marimuthu, P.; Baburaj, A.; Adetunji, M.; Frederick, T.; Sekhar, P.; Fernandez, R.E. Machine learning-assisted ammonium detection using zinc oxide/multi-walled carbon nanotube composite based impedance sensors. Sci. Rep. 2021, 11, 24321. [Google Scholar] [CrossRef]
- Algamili, A.S.; Khir, M.H.M.; Dennis, J.O.; Ahmed, A.Y.; Alabsi, S.S.; Ba Hashwan, S.S.; Junaid, M.M. A review of actuation and sensing mechanisms in MEMS-based sensor devices. Nanoscale Res. Lett. 2021, 16, 16. [Google Scholar] [CrossRef]
- Lee, K.; Park, J.; Jung, S.I.; Hajra, S.; Kim, H.J. Direct integration of carbon nanotubes on a suspended Pt microheater for hydrogen gas sensing. J. Mater. Sci. Mater. Electron. 2021, 32, 19626–19634. [Google Scholar] [CrossRef]
- Tang, S.; Chen, W.; Jin, L.; Zhang, H.; Li, Y.; Zhou, Q.; Zen, W. SWCNTs-based MEMS gas sensor array and its pattern recognition based on deep belief networks of gases detection in oil-immersed transformers. Sens. Actuators B Chem. 2020, 312, 127998. [Google Scholar] [CrossRef]
- Kim, M.; Goerzen, D.; Jena, P.V.; Zeng, E.; Pasquali, M.; Meidl, R.A.; Heller, D.A. Human and environmental safety of carbon nanotubes across their life cycle. Nat. Rev. Mater. 2024, 9, 63–81. [Google Scholar] [CrossRef]
- Li, Y.; Wang, S.; Lv, Z.; Wang, Z.; Zhao, Y.; Xie, Y.; Xu, Y.; Qian, L.; Yang, Y.; Zhao, Z.; et al. Transforming the synthesis of carbon nanotubes with machine learning models and automation. Matter 2025, 8, 101913. [Google Scholar] [CrossRef]
Sensor Type | Working Principle | Typical Applications | Advantages | Limitations |
---|---|---|---|---|
Resistive | Adsorption of analytes alters CNT electrical resistance/conductivity | Gas sensing, small biomolecules (e.g., glucose) | Simple structure, easy fabrication, high sensitivity | Poor selectivity, susceptible to environmental interference |
FET | CNTs serve as the channel in FETs; analyte binding modulates carrier density and drain current | Biomarker detection, viruses, gas molecules | Ultra-high sensitivity, real-time detection | Complex device fabrication, stability issues in harsh environments |
Electrochemical | CNT-modified electrodes enhance electron transfer and surface area; analyte redox reactions produce measurable signals | Glucose, neurotransmitters, heavy metals, drugs | High sensitivity, good selectivity, well-suited for liquid environments | Requires electrode modification, potential biofouling |
Impedimetric | Analyte binding alters interfacial charge transfer resistance or capacitance | Immunosensors, DNA hybridization sensors, label-free biosensing | Label-free detection, highly specific, suitable for biomolecular recognition | Signal interpretation can be complex, requires precise surface engineering |
Area | Objects | Materials/Sensors | Methods | Ref |
---|---|---|---|---|
Environmental monitoring | Bisphenol A | MWCNTs-βCD/SPCE | ED | [98] |
GO-MWCNT-βCD/SPE | ED | [70] | ||
Lac/Ag–ZnO/MWCNTs/C-SPE | ED | [88] | ||
Phenol | ChLa/COOH–MWCNT/SPCE | ED | [99] | |
Hydroquinone and catechol | UiO-bpydc-Cu/MWCNTs/GCE | ED | [86] | |
Cd2+ and Pb2+ | MWCNTs–COOH/UiO-66-NH2/MWCNTs–COOH/GCE | ED | [67] | |
Drug monitoring | Diclofenac | f-MWCNTs/GO/AuNPs | ED | [36] |
Imatinib | CuMOFs-MWCNTs/GCE | ED | [39] | |
Acetaminophen and estrogen | MWCNT-βCD | ED | [69] | |
Paracetamol | AuPd/GN-CNTs-IL | ED | [82] | |
Acetaminophen, diclofenac, and ofloxacin | fCNTs/ZnO/fCNTs/GCE | ED | [101] | |
Rutin | [Cnmim][AA]/MWCNTs/CS/GCE | ED | [102] | |
Luteolin | Co3O4@N-CNTs/NH2-GQDs/GCE | ED | [103] | |
Gallic acid | 3D IPCNT/CNS/GCE | ED | [79] | |
Caffeic acid | MWCNT/SPEs | ED | [64] | |
Healthcare | Glucose | GCE/CNT/MoS2/NiNPs | ED | [84] |
Glucose | Fe3O4-CS-CD/MWCNTs | ED | [105] | |
Glucose | Pd–Ni@f-MWCNTs/GCE | ED | [106] | |
Glucose | AuNP/GO/MWCNTs/GOx | OD | [107] | |
Dopamine | MWCNT/AgNPs | ED | [66] | |
Dopamine | NiO/CoO@PCNs/CNTs/erGO/GCE | ED | [117] | |
Dopamine | Semiconducting SWCNTs | OD | [118] | |
Serotonin | MWCNT/MAO-A | ED | [121] | |
Serotonin | FeC-AuNPs-MWCNT | ED | [92] | |
Serotonin | CM-oCNT/GCE | ED | [122] | |
Serotonin | nAu/pAMT/f-CNT/GCE | ED | [123] | |
Serotonin | AuNPs/MWCNTs | ED | [71] | |
Epinephrine | POXMCNTPE | ED | [125] | |
Epinephrine | MoS2/MWCNTs/GCE | ED | [91] | |
Epinephrine | D-SWCNT/SPCE | ED | [126] | |
Adrenaline | SrF/MWCNT/MCPE | ED | [127] | |
Adrenaline | Ag/POM/N-CNTs | ED | [128] | |
Adrenaline | PAGMCNTMCPE | ED | [129] | |
Norepinephrine | p-AZ/MWCN-GR/CFMEA | ED | [130] | |
Acetylcholine | dPIn-MWCNT | ED | [131] | |
Acetylcholine | Braided copper cobaltite/MWCNT | ED | [132] | |
Glutathione | SWCNTs@MoS2 | CA | [133] | |
Glutathione | Cu@BCNNTs | ED | [134] | |
Glutathione | LAMWCNT-Au | ED | [135] | |
Glutamate | CuO-MWCNT/SPCE | ED | [136] | |
Glutamate | NH/MWCNT | ED | [137] | |
Prostate specific antigen | GCE/COOH-MWCNTs/PANI/AuNPs | ED | [65] | |
H2O2 | Helical fiber bundles MWCNTs | ED | [138] | |
TNF-α | AuNPs/S-MWCNTs | ED | [68] | |
β-amyloid | Semiconducting CNTs | ED | [139] | |
microRNA | PPY/MWCNTs/PB | ED | [140] | |
HPV16 DNA | NH2-IL-rGO/GCE | ED | [141] | |
SARS-CoV-2 spike protein | ACE2-SWCNT | OD | [142] | |
Food quality control | Glucose | IL/Ag/MWCNTs/GOx/GCE | ED | [143] |
Histamine | AuNPs/GO/MWCNT | OD | [83] | |
Carbendazim | β-CD/CNS@CNT/GCE | ED | [80] | |
Methyl parathion | Ag–ZnO–SWCNT | OD | [144] | |
Methyl parathion | SH-β-CD/AuNPs/SWCNTs/GCE | ED | [145] | |
Methyl parathion | ƒ-SWCNT-β-CD/GCE | ED | [89] | |
Methyl parathion | SCN@UIO-66 | ED | [87] | |
Vanillin | CNT-SPEs | ED | [146] | |
Vanillin | Poly (GA)/(MWCNTs-GT) CPS | ED | [147] | |
tert-butylhydroquinone | 3D CuO NFs/NH2-CNTs | ED | [90] | |
Cd2+ | UiO-66-NH2@MWCNTs/GCE | ED | [85] | |
3-chloro-1,2-propanediol | cMWCNT/MOF-199/GCE | ED | [38] | |
Gases detection | H2 | acid treated CNT yarns | ED | [157] |
H2 | NiN4S-doped SWCNTs | ED | [158] | |
H2 | HGSP | ED | [161] | |
H2 | Pd NPs-modified sc-SWNT | ED | [162] | |
H2 | Pt-NPs/CNTs/Gr | [163] | ||
NH3 | MCNT@PPy/TfmpoPcCo | ED | [30] | |
Formaldehyde | s-CNTs/catalytic metal | ED | [164] | |
NO2 | Y2O3/Pd/WS2/CNTs | ED | [165] | |
NO | en-APTAS/SWNTs | ED | [167] | |
seven biomarkers | C60/MWCNTs/rGO | ED | [168] | |
Strain sensing | Strain | GO/CNTs/BSA | MS | [175] |
CNT-filled silicone rubber | MS | [176] | ||
MWCNT/PDMS | MS | [178] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, J.; Li, R.; Mahmood, S.; Li, J.; Yao, S. Carbon Nanotube-Based Chemical Sensors: Sensing Mechanism, Functionalization and Applications. Chemosensors 2025, 13, 367. https://doi.org/10.3390/chemosensors13100367
Tang J, Li R, Mahmood S, Li J, Yao S. Carbon Nanotube-Based Chemical Sensors: Sensing Mechanism, Functionalization and Applications. Chemosensors. 2025; 13(10):367. https://doi.org/10.3390/chemosensors13100367
Chicago/Turabian StyleTang, Jie, Ruirui Li, Subhan Mahmood, Jiying Li, and Shun Yao. 2025. "Carbon Nanotube-Based Chemical Sensors: Sensing Mechanism, Functionalization and Applications" Chemosensors 13, no. 10: 367. https://doi.org/10.3390/chemosensors13100367
APA StyleTang, J., Li, R., Mahmood, S., Li, J., & Yao, S. (2025). Carbon Nanotube-Based Chemical Sensors: Sensing Mechanism, Functionalization and Applications. Chemosensors, 13(10), 367. https://doi.org/10.3390/chemosensors13100367