Co-MoO3 Nanoparticles Supported on Carbon Nanotubes for Highly Efficient Hydrogen Production from Ammonia Borane
Abstract
1. Introduction
2. Experimental
2.1. Materials and Catalysts Characterization
2.2. Synthesis of Catalysts
2.3. Catalytic Measurements
3. Results and Discussion
3.1. Preparation and Characterization
3.2. Catalytic Hydrolysis of AB
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Jeuland, M.; Fetter, T.R.; Li, Y.; Pattanayak, S.K.; Usmani, F.; Bluffstone, R.A.; Chávez, C.; Girardeau, H.; Hassen, S.; Jagger, P.; et al. Is energy the golden thread? A systematic review of the impacts of modern and traditional energy use in low- and middle-income countries. Renew. Sust. Energy Rev. 2021, 135, 110406. [Google Scholar] [CrossRef]
- Liu, M.M.; Zhou, L.; Luo, X.J.; Wan, C.; Xu, L.X. Recent advances in noble metal catalysts for hydrogen production from ammonia borane. Catalysts 2020, 10, 788. [Google Scholar] [CrossRef]
- Sun, Q.M.; Wang, N.; Xu, Q.; Yu, J.H. Nanopore-supported metal nanocatalysts for efficient hydrogen generation from liquid-phase chemical hydrogen storage materials. Adv. Mater. 2020, 32, 2001818. [Google Scholar] [CrossRef] [PubMed]
- Shen, J.; Yang, L.; Hu, K.; Luo, W.; Cheng, G. Rh nanoparticles supported on graphene as efficient catalyst for hydrolytic dehydrogenation of amine boranes for chemical hydrogen storage. Int. J. Hydrogen Energy 2015, 40, 1062–1070. [Google Scholar] [CrossRef]
- Chen, W.; Li, D.; Wang, Z.; Qian, G.; Sui, Z.; Duan, X.; Zhou, X.; Yeboah, I.; Chen, D. Reaction mechanism and kinetics for hydrolytic dehydrogenation of ammonia borane on a Pt/CNT catalyst. AICHE J. 2017, 63, 60–65. [Google Scholar] [CrossRef]
- Fan, G.; Liu, Q.; Tang, D.; Li, X.; Bi, J.; Gao, D. Nanodiamond supported Ru nanoparticles as an effective catalyst for hydrogen evolution from hydrolysis of ammonia borane. Int. J. Hydrogen Energy 2016, 41, 1542–1549. [Google Scholar] [CrossRef]
- Zhang, J.R.; Jia, Y.Q.; Chu, F.; Lei, N.; Bi, J.P.; Qin, H.Y.; Liu, M.L.; Jia, Y.X.; Zhang, L.; Jiang, L.; et al. Carbothermal shock fabrication of CoO-Cu2O nanocomposites on N-doped porous carbon for enhanced hydrolysis of ammonia borane. Rare Metals 2025, 44, 5486–5497. [Google Scholar] [CrossRef]
- Wu, H.; Liu, L.; Liu, X.; Bian, L.; Chen, Y.; Fan, Y.; Liu, B. In situ construction of Co–Mo2C on N-doped carbon for efficient hydrogen evolution from ammonia borane hydrolysis. Int. J. Hydrogen Energy 2025, 100, 330–340. [Google Scholar] [CrossRef]
- Yuan, Y.; Chen, X.; Zhang, X.; Wang, Z.; Yu, R. A mof-derived CuCo(O)@ carbon-nitrogen framework as an efficient synergistic catalyst for the hydrolysis of ammonia borane. Inorg. Chem. Front. 2020, 7, 2043–2049. [Google Scholar] [CrossRef]
- Zhang, W.; Liu, J.; Wang, J.; Dong, Y.; Liu, J.; Li, X. Construction of heterostructured CuO–Co3O4 catalyst for hydrogen evolution from ammonia borane hydrolysis. J. Phys. Chem. Solids 2025, 208, 113037. [Google Scholar] [CrossRef]
- Wang, C.; Tuninetti, J.; Wang, Z.; Zhang, C.; Ciganda, R.; Salmon, L.; Moya, S.; Ruiz, J.; Astruc, D. Hydrolysis of ammonia-borane over Ni/ZIF-8 nanocatalyst: High efficiency, mechanism, and controlled hydrogen release. J. Am. Chem. Soc. 2017, 139, 11610–11615. [Google Scholar] [CrossRef]
- Ren, X.; Lv, H.; Yang, S.; Wang, Y.; Li, J.; Wei, R.; Xu, D.; Liu, B. Promoting effect of heterostructured NiO/Ni on Pt nanocatalysts toward catalytic hydrolysis of ammonia borane. J. Phys. Chem. Lett. 2019, 10, 7374–7382. [Google Scholar] [CrossRef]
- Xu, C.; Yang, L.; Liu, Z.; Tao, Y. RuCo@P core-shell nanoparticles filled with carbon nanotubes for highly effective catalytic hydrolysis of ammonia borane. Int. J. Energy Res. 2024, 12, 1–12. [Google Scholar] [CrossRef]
- Esteves, L.M.; Smarzaro, J.L.; Caytuero, A.; Oliveira, H.A.; Passos, F.B. Catalyst preparation methods to reduce contaminants in a high-yield purification process of multiwalled carbon nanotubes. Braz. J. Chem. Eng. 2019, 36, 1587–1600. [Google Scholar] [CrossRef]
- Zou, A.; Xu, X.; Zhou, L.; Lin, L.; Kang, Z. Preparation of graphene-supported Co-CeOx nanocomposites as a catalyst for the hydrolytic dehydrogenation of ammonia borane. JFCT 2021, 49, 1371–1378. [Google Scholar]
- Merve, A.; Eken, K.S.; Önder, M. The rational design of gCN/a-WOx/Pt heterostructured nanophotocatalysts for boosting the hydrogen generation from the hydrolysis of ammonia borane under visible light. Int. J. Hydrogen Energy 2023, 48, 22921–22933. [Google Scholar]
- Singh, P.; Samorì, C.; Toma, F.M.; Bussy, C.; Nunes, A.; Al-Jamal, K.T.; Ménard-Moyon, C.; Prato, M.; Kostarelos, K.; Bianco, A. Polyamine functionalized carbon nanotubes: Synthesis, characterization, cytotoxicity and siRNA binding. J. Mater. Chem. 2011, 21, 4850–4860. [Google Scholar] [CrossRef]
- Li, S.F.; Guo, Y.H.; Sun, W.W. Platinum nanoparticle functionalized CNTs as nanoscaffolds and catalysts to enhance the dehydrogenation of ammonia-borane. J. Phys. Chem. C 2010, 114, 21885–21890. [Google Scholar] [CrossRef]
- Wang, Y.; Zou, K.; Zhang, D.; Li, G.; Meng, W.; Wang, D.; Cao, Z.; Zhang, K.; Wu, S. Co–Mo–B nanoparticles supported on carbon cloth as effective catalysts for the hydrolysis of ammonia borane. Int. J. Hydrogen Energy 2020, 45, 14418–14427. [Google Scholar] [CrossRef]
- Biesinger, M.C.; Payne, B.P.; Grosvenor, A.P.; Lau, L.W.M.; Gerson, A.R.; Smart, R.S.C. Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni. Appl. Surf. Sci. 2011, 257, 2717–2730. [Google Scholar] [CrossRef]
- Petitto, S.C.; Marsh, E.M.; Carson, G.A.; Langell, M.A. Cobalt oxide surface chemistry: The interaction of CoO(100), Co3O4 (110) and Co3O4 (111) with oxygen and water. J. Mol. Catal. A-Chem. 2007, 281, 49–58. [Google Scholar]
- Liang, R.; Cao, H.; Qian, D. MoO3 nanowires as electrochemical pseudocapacitor materials. Chem. Commun. 2011, 47, 10305–10307. [Google Scholar] [CrossRef]
- Nasser, A.G.A.E.; Metwally, M.G.; Shoukry, A.A.; Nashar, R.M.E. Application of recycled battery graphite decorated with poly hippuric acid/multiwalled carbon nanotubes as an ecofriendly sensor for serotonin. Sci. Rep. 2024, 14, 29304. [Google Scholar]
- Tomar, D.; Chaudhary, S.; Jena, K.C. Self-assembly of l-phenylalanine amino acid: Electrostatic induced hindrance of fibril formation. RSC Adv. 2019, 9, 12596–12605. [Google Scholar]
- Bychko, I.; Strizhak, P. Carbon nanotubes catalytic activity in the ethylene hydrogenation. Fuller. Nanotub. Carbon Nanostruct. 2018, 26, 804–809. [Google Scholar]
- Zhou, L.; Meng, J.; Li, P.; Tao, Z.; Mai, L.; Chen, J. Ultrasmall cobalt nanoparticles supported on nitrogen-doped porous carbon nanowires for hydrogen evolution from ammonia borane. Mater. Horizons 2017, 4, 268–273. [Google Scholar] [CrossRef]
- Wang, H.; Zhao, Y.; Cheng, F.; Tao, Z.; Chen, J. Cobalt nanoparticles embedded in porous N-doped carbon as long-life catalysts for hydrolysis of ammonia borane. Catal. Sci. Technol. 2016, 6, 3443–3448. [Google Scholar] [CrossRef]
- Zhang, X.L.; Zhang, D.X.; Chang, G.G.; Ma, X.C.; Wu, J.; Wang, Y.; Yu, H.Z.; Tian, G.; Chen, J.; Yang, X.Y. Bimetallic (Zn/Co) mofs-derived highly dispersed metallic Co/HPC for completely hydrolytic dehydrogenation of ammonia–borane. Ind. Eng. Chem. Res. 2019, 58, 7209–7216. [Google Scholar]
- Chen, M.; Xiong, R.; Cui, X.; Wang, Q.; Liu, X. SiO2-encompassed Co@N-doped porous carbon assemblies as recyclable catalysts for efficient hydrolysis of ammonia borane. Langmuir 2019, 35, 671–677. [Google Scholar] [PubMed]
- Li, L.; Hu, H.; Zhang, L.; Qiu, J.; Feng, Y.; Liao, J. Cu3P-Co2P nanoplatelet catalyst towards ammonia borane hydrolysis for hydrogen evolution. Catal. Lett. 2022, 153, 3333–3341. [Google Scholar] [CrossRef]
- Augustyniak, A.W.; Trzeciak, A.M. Hydrogen production and transfer hydrogenation of phenylacetylene with ammonia borane in water catalyzed by the [Pd(2-pymo)2]n framework. Inorganica Chim. Acta 2022, 538, 120977. [Google Scholar] [CrossRef]
- Melek, T. Magnetically isolable Pd(0) nanoparticles supported on surface functionalized Fe3O4 for hydrogen generation via ammonia borane hydrolysis. ChemistrySelect 2023, 8, e202302035. [Google Scholar] [CrossRef]
- Liu, Q.; Ran, W.; Bao, W.; Li, Y. A review on catalytic hydrolysis of ammonia borane for hydrogen production. Energies 2025, 18, 1105. [Google Scholar] [CrossRef]
Catalyst | T/K | nmetal/n(AB) | TOF/molH2 molcat−1min−1 | Ea/kJ·mol−1 | Ref. |
---|---|---|---|---|---|
Co/NPCNW | 298 | 0.075 | 7.29 | 25.4 | [26] |
Co@ N-C-700 | 298 | 0.057 | 5.6 | 31 | [27] |
Co/HPC | 298 | 0.11 | 2.94 | 32.8 | [28] |
Co@C-N@SiO2-800 | 298 | / | 8.4 | 36.1 | [29] |
Cu3P-Co2P | 298 | 0.1 | 4.03 | 33.6 | [30] |
[Pd(2-pymo)2]n | 298 | 0.01 | 1.71 | / | [31] |
Fe3O4/SiO2−NH2/HB@Pd | 298 | / | 2.13 | 34 | [32] |
Co1Mo0.1/CNTs | 298 | 0.1 | 19.15 | 26.41 | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, X.; Du, X.; Liu, H. Co-MoO3 Nanoparticles Supported on Carbon Nanotubes for Highly Efficient Hydrogen Production from Ammonia Borane. Materials 2025, 18, 4692. https://doi.org/10.3390/ma18204692
Ma X, Du X, Liu H. Co-MoO3 Nanoparticles Supported on Carbon Nanotubes for Highly Efficient Hydrogen Production from Ammonia Borane. Materials. 2025; 18(20):4692. https://doi.org/10.3390/ma18204692
Chicago/Turabian StyleMa, Xingchi, Xigang Du, and Hongyu Liu. 2025. "Co-MoO3 Nanoparticles Supported on Carbon Nanotubes for Highly Efficient Hydrogen Production from Ammonia Borane" Materials 18, no. 20: 4692. https://doi.org/10.3390/ma18204692
APA StyleMa, X., Du, X., & Liu, H. (2025). Co-MoO3 Nanoparticles Supported on Carbon Nanotubes for Highly Efficient Hydrogen Production from Ammonia Borane. Materials, 18(20), 4692. https://doi.org/10.3390/ma18204692