Electromagnetic Interference in the Modern Era: Concerns, Trends, and Nanomaterial-Based Solutions
Abstract
1. Introduction
- Lower percolation thresholds due to the high aspect ratio or sheet-like geometry of nanofillers (e.g., CNTs, graphene), enabling conductive networks at lower volume fractions.
- Increased surface area, which enhances interfacial polarization, dielectric losses, and scattering of incident EM waves (thus attenuation via absorption) [17].
- Ability to engineer multi-functional architectures (foams, laminates, hybrids) that combine reflective and absorptive shielding, while maintaining lower weight and thinner profiles suitable for practical industrial usage [18].
2. EMI Source and Evolution
2.1. Sources of EMW
2.2. EMI Evolution in Time
3. EMI Effect and Concerns
3.1. EMI Effect on Medical Devices
- 1.
- Functional Disruption:
- EMI can impair the performance of critical devices such as pacemakers and defibrillators, potentially causing irregular operation or failure to deliver essential therapy.
- Diagnostic tools like electrocardiograms (ECGs) and electroencephalograms (EEGs) may produce distorted signals, compromising the accuracy of medical evaluations.
- 2.
- Safety Hazards:
- Interference with devices like ventilators or infusion pumps may lead to incorrect delivery of oxygen or medication, posing serious risks to patient health.
- Communication issues in wireless telemedicine tools can disrupt real-time monitoring and treatment.
- 3.
- Reduced Device Lifespan:
- Continuous EMI exposure can gradually degrade electronic components, diminishing the reliability and operational life of medical equipment.
3.2. EMI Effect on Electronic Devices
- EMI occurs when external EMWs disrupt the normal function of electronic systems. Sources include radio transmissions, cell phones, power lines, microwaves, and industrial equipment. Effects range from communication errors and signal distortion to the malfunctioning of sensitive devices and degraded wireless network performance. Mitigation involves shielding (e.g., Faraday cages), proper grounding, and signal filtering [53,54].
- Electromagnetic Pulses (EMPs) are high-intensity EM bursts from natural sources like lightning and solar flares or artificial events such as nuclear explosions. These pulses can overload circuits, cause data loss, and permanently damage devices. Protection methods include hardened circuits, surge protectors, and shielded enclosures [55].
- Chronic Exposure to Low-Intensity EMWs, such as those from nearby power lines, may slowly degrade electronic parts like resistors, capacitors, or semiconductors [60].
- Adding noise, which obscures the intended signal,
- Weakening signal strength (attenuation),
- Causing frequency shifts that disrupt synchronization.
- Shielding: Enclose sensitive parts in metal to block EMI.
- Filtering: Remove unwanted frequencies and reduce noise.
- Error Correction: Use algorithms to recover signal integrity.
- Grounding: Properly ground devices to lower interference.
- Spread Spectrum: Apply techniques like frequency hopping to avoid consistent EMI exposure.
3.3. EMI Effect on Humans
3.4. EMI Effects on the Environment
4. EMI Market and Forecast
- Proliferation of Electronic Devices
- Advancements in Wireless Technologies
- Miniaturization of Electronic Components
- Impact of Artificial Intelligence (AI)
5. Prevention Against EMI
5.1. Carbon-Based Nanomaterials in EMI Shielding
- Mechanical robustness: Exhibiting high strength, flexibility, and elasticity.
- Chemical stability: Resistant to corrosive environments, including water, acidic, and alkaline conditions, with the ability to be chemically functionalized for tailored performance.
- Physical advantages: Possess low density combined with excellent mechanical strength.
- Electrical conductivity: Features high charge carrier mobility and tunable electronic band gaps.
- Processing versatility: Easily fabricated and incorporated into a variety of matrices and device architectures.
- Environmental compatibility: Biocompatible and non-toxic, supporting applications in both industrial and biomedical fields.
- Sustainability: Amenable to cost-effective, scalable production and recyclable processing.
5.2. Advanced Carbon-Based EMI Shielding Materials
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
Acronyms | Full name |
AC | alternating current |
AEDs | automated external defibrillators |
AgNW | and silver nanowire |
AI | Artificial Intelligence |
AICDs | automatic implantable cardioverter defibrillators |
AIMD | active implanted devices |
BBB | blood-brain barrier |
CA | Cornu Ammonis |
CAGR | compound annual growth rate |
CF | carbon foam |
CM | common mode |
CNS | central nervous system |
CNT | carbon–carbon nanotube |
CPCs | conductive polymer composites |
CR | circadian rhythm |
CVD | chemical vapor deposition |
DFT | density functional theory |
DM | differential mode |
DTX | discontinuous transmission |
EAS | electronic article surveillance |
EC | electrical conductivity |
ECG | electrocardiogram |
EEGs | electroencephalograms |
EHDA | electrohydrodynamic atomization |
ELF | Extremely Low Frequency |
ELF-EMFs | extremely low frequency electromagnetic fields |
EM | electromagnetic |
EMI | Electromagnetic interference |
EMPs | electromagnetic pulses |
EMW | electromagnetic wave |
ESD | Electrostatic Discharge |
EUT | equipment under test |
FGS | functionalized graphene sheets |
GO | graphene oxide |
GSM | global system for mobile communications |
HI | hydrogen iodide |
HRV | heart rate variability |
ICA | independent component analysis |
ICDs | implantable cardioverter-defibrillators |
IoT | Internet of Things |
LISN | line impedance stabilization network |
MRI | Magnetic Resonance Imaging |
MW | Microwave |
MWCNTs | multi-walled carbon nanotubes |
PEEK | Polyether Ether Ketone |
PEMF | pulsed electromagnetic field |
PM | pacemaker |
PP | Polyphenylene |
PPA | polyethene polyamine-modified polyacrylonitrile |
PPS | Polyphenylene Sulfide |
PU | polyurethane |
PUG | polyurethane/graphene |
PWM | Pulse Width Modulation |
RF | radio frequency |
RF-EMF | Radiofrequency Electromagnetic Fields |
RFID | radio-frequency identification |
rGO | reduced graphene oxide |
ROS | reactive oxidative species |
SCHEER | Scientific Committee on Health, Environmental and Emerging Risks |
SE | shielding effectiveness |
SEM | Scanning Electron Microscopy |
SET | shows the EMI SE with Total |
TDMA | time division multiple access |
TEM | transverse electromagnetic |
TPU | thermoplastic polyurethane |
VLF-EMF | very low frequency-electromagnetic field |
WHO | World Health Organization |
References
- Hareesh, M.S.; Joseph, P.; George, S. Electromagnetic interference shielding: A comprehensive review of materials, mechanisms, and applications. Nanoscale Adv. 2025, 7, 4510–4534. [Google Scholar] [CrossRef]
- Martins, L.C.; Silva, C.S.; Fernandes, L.C.; Sampaio, Á.M.; Pontes, A.J. Evaluating the Electromagnetic Shielding of Continuous Carbon Fiber Parts Produced by Additive Manufacturing. Preprints 2023, 2023100758. [Google Scholar] [CrossRef]
- Crovetti, P.S. Electromagnetic Interference and Compatibility; MDPI: Basel, Switzerland, 2021. [Google Scholar] [CrossRef]
- Kundu, A.; Vangaru, S.; Bhattacharyya, S.; Mallick, A.I.; Gupta, B. Electromagnetic Irradiation Evokes Physiological and Molecular Alterations in Rice. Bioelectromagnetics 2021, 42, 173–185. [Google Scholar] [CrossRef] [PubMed]
- Yaqoob, U.; Jan, N.; Raman, P.V.; Siddique, K.H.M.; John, R. Crosstalk between brassinosteroid signaling, ROS signaling and phenylpropanoid pathway during abiotic stress in plants: Does it exist? Plant Stress 2022, 4, 100075. [Google Scholar] [CrossRef]
- Cordelli, E.; Ardoino, L.; Benassi, B.; Consales, C.; Eleuteri, P.; Marino, C.; Sciortino, M.; Villani, P.; Brinkworth, M.H.; Chen, G.; et al. Effects of Radiofrequency Electromagnetic Field (RF-EMF) exposure on pregnancy and birth outcomes: A systematic review of experimental studies on non-human mammals. Environ. Int. 2023, 180, 108178. [Google Scholar] [CrossRef]
- Albanna, M. Effects of Electromagnetic Field (EMF) on Implantable Medical Devices. Int. J. Gen. Sci. Eng. Res. 2019, 4, 47–57. [Google Scholar]
- EMI Shielding Market: Global Expansion & Trend Analysis. Available online: https://introspectivemarketresearch.com/reports/emi-shielding-market/?utm_source=chatgpt.com (accessed on 29 August 2025).
- EMI Shielding Market Size—Analysis. Available online: https://www.coherentmi.com/industry-reports/emi-shielding-market?utm_source=chatgpt.com (accessed on 29 August 2025).
- Yazdi, S.J.M.; Lisitski, A.; Pack, S.; Hiziroglu, H.R.; Baqersad, J. Analysis of Shielding Effectiveness against Electromagnetic Interference (EMI) for Metal-Coated Polymeric Materials. Polymers 2023, 15, 1911. [Google Scholar] [CrossRef]
- Omana, L.; Chandran, A.; John, R.E.; Wilson, R.; George, K.C.; Unnikrishnan, N.V.; Varghese, S.S.; George, G.; Simon, S.M.; Paul, I. Recent Advances in Polymer Nanocomposites for Electromagnetic Interference Shielding: A Review. ACS Omega 2022, 7, 25921–25947. [Google Scholar] [CrossRef] [PubMed]
- Jovanović, S.; Huskić, M.; Kepić, D.; Yasir, M.; Haddadi, K. A review on graphene and graphene composites for application in electromagnetic shielding. Graphene 2D Mater. 2023, 8, 59–80. [Google Scholar] [CrossRef]
- Stefanović, A.; Kepić, D.; Momčilović, M.; Mead, J.L.; Huskić, M.; Haddadi, K.; Sebbache, M.; Marković, B.T.; Jovanović, S. Determination of Photothermal and EMI Shielding Efficiency of Graphene–Silver Nanoparticle Composites Prepared under Low-Dose Gamma Irradiation. Nanomaterials 2024, 14, 912. [Google Scholar] [CrossRef]
- Yu, Y.; Liu, X.; Lu, D.; Liu, T.; Li, Y.; Wu, Z. Recent progress in graphene based materials for high-performance electromagnetic shielding. Carbon 2025, 236, 120093. [Google Scholar] [CrossRef]
- Li, Y.; Shen, B.; Yi, D.; Zhang, L.; Zhai, W.; Wei, X.; Zheng, W. The influence of gradient and sandwich configurations on the electromagnetic interference shielding performance of multilayered thermoplastic polyurethane/graphene composite foams. Compos. Sci. Technol. 2017, 138, 209–216. [Google Scholar] [CrossRef]
- Yang, J.-H.; Yang, G.-Z.; Yu, D.-G.; Wang, X.; Zhao, B.; Zhang, L.-L.; Du, P.; Zhang, X.-K. Carbon foams from polyacrylonitrile-borneol films prepared using coaxial electrohydrodynamic atomization. Carbon 2013, 53, 231–236. [Google Scholar] [CrossRef]
- Cheng, J.; Li, C.; Xiong, Y.; Zhang, H.; Raza, H.; Ullah, S.; Wu, J.; Zheng, G.; Cao, Q.; Zhang, D.; et al. Recent Advances in Design Strategies and Multifunctionality of Flexible Electromagnetic Interference Shielding Materials. Nanomicro Lett. 2022, 14, 80. [Google Scholar] [CrossRef] [PubMed]
- Panahi-Sarmad, M.; Noroozi, M.; Xiao, X.; Park, C.B. Recent Advances in Graphene-Based Polymer Nanocomposites and Foams for Electromagnetic Interference Shielding Applications. Ind. Eng. Chem. Res. 2022, 61, 1545–1568. [Google Scholar] [CrossRef]
- Transforming Low-Value Wood Waste into Sustainable, High-Value, High-Performance Electromagnetic Interference Shielding Materials. Available online: https://cordis.europa.eu/project/id/101209167 (accessed on 29 August 2025).
- Graphene-Info, Graphene EMI Shielding: Introduction and Market News. Available online: https://www.graphene-info.com/emi-shielding (accessed on 6 August 2025).
- Orasugh, J.T.; Ray, S.S. Functional and Structural Facts of Effective Electromagnetic Interference Shielding Materials: A Review. ACS Omega 2023, 8, 8134–8158. [Google Scholar] [CrossRef] [PubMed]
- Orasugh, J.T.; Pal, C.; Ali, M.S.; Chattopadhyay, D. Electromagnetic interference shielding property of polymer-graphene composites. In Polymer Nanocomposites Containing Graphene; Woodhead Publishing: Cambridge, UK, 2022; pp. 211–243. [Google Scholar] [CrossRef]
- Hayakawa, M.; Ando, Y.; Hattori, K. Natural Electromagnetic Phenomena and Electromagnetic Theory: A Review. IEEJ Trans. Fundam. Mater. 2004, 124, 72–79. [Google Scholar] [CrossRef]
- Jaroszewski, M.; Thomas, S.; Rane, A.V. Advanced Materials for Electromagnetic Shielding; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2018. [Google Scholar] [CrossRef]
- Baroň, I.; Koktavý, P.; Trčka, T.; Rowberry, M.; Stemberk, J.; Balek, J.; Plan, L.; Melichar, R.; Diendorfer, G.; Macků, R.; et al. Differentiating between artificial and natural sources of electromagnetic radiation at a seismogenic fault. Eng. Geol. 2022, 311, 106912. [Google Scholar] [CrossRef]
- Salinas, E. Some aspects of electromagnetic interference, electromagnetic compatibility and geomagnetic induced currents. J. Phys. Conf. Ser. 2018, 1143, 012030. [Google Scholar] [CrossRef]
- Islam, M.; Jin, S. An Overview Research on Wireless Communication Network. Adv. Wirel. Commun. Netw. 2019, 5, 19. [Google Scholar] [CrossRef]
- Banafaa, M.K.; Pepeoğlu, Ö.; Shayea, I.; Alhammadi, A.; Shamsan, Z.A.; Razaz, M.A.; Alsagabi, M.; Al-Sowayan, S. A Comprehensive Survey on 5G-and-Beyond Networks with UAVs: Applications, Emerging Technologies, Regulatory Aspects, Research Trends and Challenges. IEEE Access 2024, 12, 7786–7826. [Google Scholar] [CrossRef]
- Nižetić, S.; Šolić, P.; González-de-Artaza, D.L.-D.-I.; Patrono, L. Internet of Things (IoT): Opportunities, issues and challenges towards a smart and sustainable future. J. Clean. Prod. 2020, 274, 122877. [Google Scholar] [CrossRef]
- Mechanism of Causing Electromagnetic Noise. Available online: https://www.murata.com/products/emc/emifil/library/knowhow/basic/chapter02-p1 (accessed on 29 August 2025).
- Jacques, S.; Christe, B. Healthcare technology basics. In Introduction to Clinical Engineering; Academic Press: San Diego, CA, USA, 2020; pp. 21–50. [Google Scholar] [CrossRef]
- Wang, Y.-H.; Li, C.-C. Highly effective EMI shielding composites for 5G Ka-band frequencies. Appl. Mater. Today 2024, 36, 102041. [Google Scholar] [CrossRef]
- Zheng, K.; Xu, R.; Mei, J.; Yang, H.; Lei, L.; Wang, X. Ambient IoT Toward 6G: Standardization, Potentials, and Challenges. IEEE Access 2024, 12, 146668–146677. [Google Scholar] [CrossRef]
- Omrany, H.; Al-Obaidi, K.M.; Hossain, M.; Alduais, N.A.M.; Al-Duais, H.S.; Ghaffarianhoseini, A. IoT-enabled smart cities: A hybrid systematic analysis of key research areas, challenges, and recommendations for future direction. Discov. Cities 2024, 1, 2. [Google Scholar] [CrossRef]
- Fernie, J.; Reynolds, S.J. The Effects of Electromagnetic Fields from Power Lines on Avian Reproductive Biology and Physiology: A Review. J. Toxicol. Environ. Health Part B 2005, 8, 127–140. [Google Scholar] [CrossRef]
- Behrens, T.; Terschüren, C.; Kaune, W.T.; Hoffmann, W. Quantification of lifetime accumulated ELF-EMF exposure from household appliances in the context of a retrospective epidemiological case–control study. J. Expo. Sci. Environ. Epidemiol. 2004, 14, 144–153. [Google Scholar] [CrossRef] [PubMed]
- Bellis, M. 20th Century Invention Timeline 1900 to 1949. Available online: https://www.thoughtco.com/20th-century-timeline-1992486 (accessed on 14 July 2025).
- Saas, T.S. The Digital Renaissance: The Evolution of Technology in the 21st Century. Available online: https://techsavvysaas.com/evolution-of-technology-in-the-21st-century/ (accessed on 14 July 2025).
- Baranchuk, A.; Kang, J.; Shaw, C.; Campbell, D.; Ribas, S.; Hopman, W.M.; Alanazi, H.; Redfearn, D.P.; Simpson, C.S. Electromagnetic Interference of Communication Devices on ECG Machines. Clin. Cardiol. 2009, 32, 588–592. [Google Scholar] [CrossRef] [PubMed]
- Shaw, C.I.; Kacmarek, R.M.; Hampton, R.L.; Riggi, V.; El Masry, A.; Cooper, J.B.; Hurford, W.E. Cellular phone interference with the operation of mechanical ventilators. Crit. Care Med. 2004, 32, 928–931. [Google Scholar] [CrossRef] [PubMed]
- Lawrentschuk, N.; Bolton, D.M. Mobile phone interference with medical equipment and its clinical relevance: A systematic review. Med. J. Aust. 2004, 181, 145–149. [Google Scholar] [CrossRef]
- Bassen, H.I.; Moore, H.J.; Ruggera, P.S. Cellular Phone Interference Testing of Implantable Cardiac Defibrillators In Vitro. Pacing Clin. Electrophysiol. 1998, 21, 1709–1715. [Google Scholar] [CrossRef]
- Karczmarewicz, S.; Janusek, D.; Buczkowski, T.; Gutkowski, R.; Kułakowski, P. Influence of mobile phones on accuracy of ECG interpretation algorithm in automated external defibrillator. Resuscitation 2001, 51, 173–177. [Google Scholar] [CrossRef]
- Censi, F.; Calcagnini, G.; Triventi, M.; Mattei, E.; Bartolini, P. Interference between mobile phones and pacemakers: A look inside. Ann. Ist. Super. Sanita 2007, 43, 254–259. [Google Scholar] [PubMed]
- Buczkowski, T.; Janusek, D.; Zavala-Fernandez, H.; Skrok, M.; Kania, M.; Liebert, A. Influence of Mobile Phones on the Quality of ECG Signal Acquired by Medical Devices. Meas. Sci. Rev. 2013, 13, 231–236. [Google Scholar] [CrossRef]
- van Lieshout, E.J.; van der Veer, S.N.; Hensbroek, R.; Korevaar, J.C.; Vroom, M.B.; Schultz, M.J. Interference by new-generation mobile phones on critical care medical equipment. Crit. Care 2007, 11, R98. [Google Scholar] [CrossRef]
- Wallin, K.E.B.; Marve, T.; Hakansson, P.K. Modern Wireless Telecommunication Technologies and Their Electromagnetic Compatibility with Life-Supporting Equipment. Anesth. Analg. 2005, 101, 1393–1400. [Google Scholar] [CrossRef]
- van der Togt, R. Electromagnetic Interference from Radio Frequency Identification Inducing Potentially Hazardous Incidents in Critical Care Medical Equipment. J. Am. Med. Assoc. 2008, 299, 2884. [Google Scholar] [CrossRef] [PubMed]
- Gwechenberger, M.; Rauscha, F.; Stix, G.; Schmid, G.; Strametz-Juranek, J. Interference of programmed electromagnetic stimulation with pacemakers and automatic implantable cardioverter defibrillators. Bioelectromagnetics 2006, 27, 365–377. [Google Scholar] [CrossRef]
- Tiikkaja, M.; Aro, A.L.; Alanko, T.; Lindholm, H.; Sistonen, H.; Hartikainen, J.E.; Toivonen, L.; Juutilainen, J.; Hietanen, M. Electromagnetic interference with cardiac pacemakers and implantable cardioverter-defibrillators from low-frequency electromagnetic fields in vivo. EP Eur. 2013, 15, 388–394. [Google Scholar] [CrossRef]
- Silny, J. The interference of electronic implants in low frequency electromagnetic fields. Arch. Mal. Coeur Vaiss. 2003, 96, 30–34. [Google Scholar]
- Turagam, M.K.; Deering, T.; Chung, M.; Cheng, J.; Fisher, J.; Lakkireddy, D. Electromagnetic Interference and Cardiac Implantable Electronic Devices. J. Am. Coll. Cardiol. 2019, 73, 210–213. [Google Scholar] [CrossRef] [PubMed]
- TT Electronics. How to Prevent Electromagnetic Interference from Ruining Your Devices. Available online: https://www.ttelectronics.com/blog/electromagnetic-interference/#2 (accessed on 15 July 2025).
- Zhao, Y.; Lu, X.; Dong, Y.; Feng, Z.; Zhao, B.; Yan, W. Study on synthetic system for conducted EMI noise analysis and suppression+. Procedia Earth Planet. Sci. 2009, 1, 1593–1598. [Google Scholar] [CrossRef]
- Shurenkov, V.; Pershenkov, V. Electromagnetic pulse effects and damage mechanism on the semiconductor electronics. Facta Univ. Ser. Electron. Energetics 2016, 29, 621–629. [Google Scholar] [CrossRef]
- Buckus, R.; Strukčinskienė, B.; Raistenskis, J.; Stukas, R.; Šidlauskienė, A.; Čerkauskienė, R.; Isopescu, D.N.; Stabryla, J.; Cretescu, I. A Technical Approach to the Evaluation of Radiofrequency Radiation Emissions from Mobile Telephony Base Stations. Int. J. Environ. Res. Public Health 2017, 14, 244. [Google Scholar] [CrossRef]
- Magiera, A.; Solecka, J. Radiofrequency electromagnetic radiation from Wi-fi and its effects on human health, in particular children and adolescents. Review. Rocz Panstw Zakl Hig 2020, 71, 251–259. [Google Scholar] [CrossRef] [PubMed]
- O’Connor, D.T. EMC: Electromagnetic Theory to Practical Design, P.A. Chatterton and M.A. Houlden. Wiley, 1991. Number of pages: 310. Price: £39.95. Qual Reliab Eng Int 1992, 8, 156. [Google Scholar] [CrossRef]
- Molyneux-Child, J.W. EMC Shielding Materials, 2nd illustrated ed.; Newnes: Oxford, UK, 1997. [Google Scholar]
- Djalel, D. Study of the Influence High-voltage Power Lines on Environment and Human Health (Case Study: The Electromagnetic Pollution in Tebessa City, Algeria). J. Electr. Electron. Eng. 2014, 2, 1. [Google Scholar] [CrossRef]
- Qiu, X.; Pin, Y.; Zhao, Y.; Yan, W.; Luo, Y.; Rong, R.; Feng, W. Study on modern signal process and analysis for radiated EMI noise mechanism diagnosis. In Proceedings of the 2010 International Conference on Microwave and Millimeter Wave Technology, Chengdu, China, 8–11 May 2010; pp. 906–909. [Google Scholar] [CrossRef]
- Muttaqi, K.M.; Haque, M.E. Electromagnetic Interference Generated from Fast Switching Power Electronic Devices. Int. J. Innov. Energy Syst. Power 2008, 3, 19–45. [Google Scholar]
- Singh, S.; Kapoor, N. Health Implications of Electromagnetic Fields, Mechanisms of Action, and Research Needs. Adv. Biol. 2014, 2014, 198609. [Google Scholar] [CrossRef]
- Ciaula, D. Towards 5G communication systems: Are there health implications? Int. J. Hyg. Environ. Health 2018, 221, 367–375. [Google Scholar] [CrossRef]
- Hamedani, B.G.; Goliaei, B.; Shariatpanahi, S.P.; Nezamtaheri, M. An overview of the biological effects of extremely low frequency electromagnetic fields combined with ionizing radiation. Prog. Biophys. Mol. Biol. 2022, 172, 50–59. [Google Scholar] [CrossRef] [PubMed]
- IARC Classifies Radiofrequency Electromagnetic Fields as Possibly Carcinogenic to Humans. 2011. Available online: https://www.iarc.who.int/wp-content/uploads/2018/07/pr208_E.pdf (accessed on 21 July 2025).
- Grigorieva, N.; Sirenko, S.; Shakhbazov, V.; Belous, O.; Fisun, A. Effect of water irradiated with electromagnetic waves on electrokinetic properties of cell nuclei. In Proceedings of the Fifth International Kharkov Symposium on Physics and Engineering of Microwaves, Millimeter, and Submillimeter Waves (IEEE Cat. No.04EX828), Kharkov, Ukraine, 21–26 June 2004; pp. 871–873. [Google Scholar] [CrossRef]
- The Water in You: Water and the Human Body. Available online: https://www.usgs.gov/water-science-school/science/water-you-water-and-human-body (accessed on 2 September 2025).
- Misek, J.; Veterník, M.; Tonhajzerova, I.; Jakusova, V.; Janousek, L.; Jakus, J. Radiofrequency electromagnetic field affects heart rate variability in rabbits. Physiol. Res. 2020, 69, 633–643. [Google Scholar] [CrossRef] [PubMed]
- Ubed, H.; Memon, I.; Mangi, F.; Razaq, M.; Rahat, A.; Ahmed, Z. The Mobile Phone Electromagnetic Radiation Effects on Heart Rate Variability Function. J. Health Rehabil. Res. 2024, 4, 1479–1483. [Google Scholar] [CrossRef]
- Mattei, E.; Censi, F.; Calcagnini, G.; Falsaperla, R. Workers with Cardiac AIMD Exposed to EMF: Methods and Case Studies for Risk Analysis in the Framework of the European Regulations. Int. J. Environ. Res. Public Health 2021, 18, 9709. [Google Scholar] [CrossRef]
- Martinelli, I.; Cinato, M.; Keita, S.; Marsal, D.; Antoszewski, V.; Tao, J.; Kunduzova, O. Cardiac Cell Exposure to Electromagnetic Fields: Focus on Oxdative Stress and Apoptosis. Biomedicines 2022, 10, 929. [Google Scholar] [CrossRef]
- Faraji, N.; Salehi, I.; Alizadeh, A.; Pourgholaminejad, A.; Komaki, A.; Azandaryani, M.T.; Sadeghian, R.; Golipoor, Z. Comparing the Effects of Long-term Exposure to Extremely Low-frequency Electromagnetic Fields with Different Values on Learning, Memory, Anxiety, and β-amyloid Deposition in Adult Rats. Basic Clin. Neurosci. J. 2021, 12, 849–860. [Google Scholar] [CrossRef]
- Hasan, I.; Jahan, M.R.; Islam, N.; Islam, M.R. Effect of 2400 MHz mobile phone radiation exposure on the behavior and hippocampus morphology in Swiss mouse model. Saudi J. Biol. Sci. 2022, 29, 102–110. [Google Scholar] [CrossRef]
- Azimzadeh, M.; Jelodar, G. Prenatal and early postnatal exposure to radiofrequency waves (900 MHz) adversely affects passive avoidance learning and memory. Toxicol. Ind. Health 2020, 36, 1024–1030. [Google Scholar] [CrossRef]
- Lin, Y.; Gao, P.; Guo, Y.; Chen, Q.; Lang, H.; Guo, Q.; Miao, X.; Li, J.; Zeng, L.; Guo, G. Effects of Long-Term Exposure to L-Band High-Power Microwave on the Brain Function of Male Mice. Biomed. Res. Int. 2021, 2021, 237370. [Google Scholar] [CrossRef]
- Pall, M.L. Wi-Fi is an important threat to human health. Environ. Res. 2018, 164, 405–416. [Google Scholar] [CrossRef]
- Mohammadpour-Aghdam, M.; Molaeirad, A.; Faraji-Dana, R.; Azizi, A. In Vitro Effects of Cellular Phone Electromagnetic Fields at 940 MHz on the Structure and Half-Life of Recombinant Human Growth Hormone. Iran. J. Sci. Technol. Trans. A Sci. 2020, 44, 641–649. [Google Scholar] [CrossRef]
- Selmaoui, B.; Touitou, Y. Association Between Mobile Phone Radiation Exposure and the Secretion of Melatonin and Cortisol, Two Markers of the Circadian System: A Review. Bioelectromagnetics 2021, 42, 5–17. [Google Scholar] [CrossRef]
- Touitou, Y.; Selmaoui, B.; Lambrozo, J. Assessment of cortisol secretory pattern in workers chronically exposed to ELF-EMF generated by high voltage transmission lines and substations. Environ. Int. 2022, 161, 107103. [Google Scholar] [CrossRef]
- Hagras, A.M.; Toraih, E.A.; Fawzy, M.S. Mobile phones electromagnetic radiation and NAD+-dependent isocitrate dehydrogenase as a mitochondrial marker in asthenozoospermia. Biochim. Open 2016, 3, 19–25. [Google Scholar] [CrossRef]
- Kesari, K.K.; Agarwal, A.; Henkel, R. Radiations and male fertility. Reprod. Biol. Endocrinol. 2018, 16, 118. [Google Scholar] [CrossRef]
- Assefa, E.M.; Abdu, S.M. Histopathologic effects of mobile phone radiation exposure on the testes and sperm parameters: A systematic literature review of animal studies. Front. Reprod. Health 2025, 6, 1515166. [Google Scholar] [CrossRef] [PubMed]
- Adah, A.; Adah, D.; Biobaku, K.; Adeyemi, A. Effects of electromagnetic radiations on the male reproductive system. Anat. J. Afr. 2018, 7, 1152–1161. [Google Scholar] [CrossRef]
- Kosek, O.; Mete, B.; Ocal, I.; Yar, K.; Demirhindi, H.; Tokus, M. Relationship between low-frequency electromagnetic field and computer vision syndrome. Eur. Rev. Med. Pharmacol. Sci. 2023, 27, 1801–1807. [Google Scholar] [CrossRef] [PubMed]
- Better Internet for Kids. Available online: https://digital-strategy.ec.europa.eu/en/factpages/better-internet-kids (accessed on 21 July 2025).
- Kafi, S.T.; Ahmed, A.M.; Ismail, B.A.; Nayel, E.A.; Awad, A.R.; Alhassan, E.A. Effects of RF Radiation Emitted from Cellphones on Human Eye Function (Vision Acuity/Refraction). J. Electr. Eng. 2015, 3, 128–133. [Google Scholar] [CrossRef]
- Antona, B.; Barrio, A.R.; Gascó, A.; Pinar, A.; González-Pérez, M.; Puell, M.C. Symptoms associated with reading from a smartphone in conditions of light and dark. Appl. Ergon. 2018, 68, 12–17. [Google Scholar] [CrossRef]
- Akib, M.N.; Pirade, S.R.; Syawal, S.R.; Fauzan, M.M.; Eka, H.; Seweng, A. Association between prolonged use of smartphone and the incidence of dry eye among junior high school students. Clin. Epidemiol. Glob. Health 2021, 11, 100761. [Google Scholar] [CrossRef]
- Karimi, F.; Shokoohi-Rad, S.; Ansari, M.-R.; Sabzi, F.; Saffari, R.; Rajaei, P. Comparison of intraocular pressure changes due to exposure to mobile phone electromagnetics radiations in normal and glaucoma eye. Middle East. Afr. J. Ophthalmol. 2020, 27, 10. [Google Scholar] [CrossRef]
- Levitt, B.B.; Lai, H.C.; Manville, A.M. Low-level EMF effects on wildlife and plants: What research tells us about an ecosystem approach. Front. Public Health 2022, 10, 1000840. [Google Scholar] [CrossRef]
- Levitt, B.B.; Lai, H.C.; Manville, A.M. Effects of non-ionizing electromagnetic fields on flora and fauna, Part 2 impacts: How species interact with natural and man-made EMF. Rev. Environ. Health 2022, 37, 327–406. [Google Scholar] [CrossRef]
- Dunham, A.; Pegg, J.; Carolsfeld, W.; Davies, S.; Murfitt, I.; Boutillier, J. Effects of submarine power transmission cables on a glass sponge reef and associated megafaunal community. Mar. Environ. Res. 2015, 107, 50–60. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Wang, J.; Sun, Q.; Zhang, H.; Chen, P.; Li, Q.; Wang, Y.; Qiao, G. Immune response of mollusk Onchidium struma to extremely low-frequency electromagnetic fields (ELF-EMF, 50 Hz) exposure based on immune-related enzyme activity and De novo transcriptome analysis. Fish Shellfish Immunol. 2020, 98, 574–584. [Google Scholar] [CrossRef] [PubMed]
- Scott, K.; Harsanyi, P.; Lyndon, A.R. Understanding the effects of electromagnetic field emissions from Marine Renewable Energy Devices (MREDs) on the commercially important edible crab, Cancer pagurus (L.). Mar. Pollut. Bull. 2018, 131, 580–588. [Google Scholar] [CrossRef]
- Harsanyi, P.; Scott, K.; Easton, B.A.A.; Ortiz, G.d.l.C.; Chapman, E.C.N.; Piper, A.J.R.; Rochas, C.M.V.; Lyndon, A.R. The Effects of Anthropogenic Electromagnetic Fields (EMF) on the Early Development of Two Commercially Important Crustaceans, European Lobster, Homarus gammarus (L.) and Edible Crab, Cancer pagurus (L.). J. Mar. Sci. Eng. 2022, 10, 564. [Google Scholar] [CrossRef]
- Fey, D.P.; Jakubowska, M.; Greszkiewicz, M.; Andrulewicz, E.; Otremba, Z.; Urban-Malinga, B. Are magnetic and electromagnetic fields of anthropogenic origin potential threats to early life stages of fish? Aquat. Toxicol. 2019, 209, 150–158. [Google Scholar] [CrossRef]
- Hutchison, Z.L.; Gill, A.B.; Sigray, P.; He, H.; King, J.W. Anthropogenic electromagnetic fields (EMF) influence the behaviour of bottom-dwelling marine species. Sci. Rep. 2020, 10, 4219. [Google Scholar] [CrossRef]
- Newton, K.C.; Donato, N.H.; Henkel, S.K.; Chapple, T.K. The Effects of Anthropogenic Electromagnetic Fields on the Behavior of Geomagnetically Displaced Skates. bioRxiv 2024. [Google Scholar] [CrossRef]
- Migał, P.; Murawska, A.; Strachecka, A.; Bieńkowski, P.; Roman, A. Honey Bee Proteolytic System and Behavior Parameters under the Influence of an Electric Field at 50 Hz and Variable Intensities for a Long Exposure Time. Animals 2021, 11, 863. [Google Scholar] [CrossRef]
- Migdal, P.; Bieńkowski, P.; Cebrat, M.; Berbeć, E.; Plotnik, M.; Murawska, A.; Sobkiewicz, P.; Łaszkiewicz, A.; Latarowski, K. Exposure to a 900 MHz electromagnetic field induces a response of the honey bee organism on the level of enzyme activity and the expression of stress-related genes. PLoS ONE 2023, 18, e0285522. [Google Scholar] [CrossRef]
- Odemer, R.; Odemer, F. Effects of radiofrequency electromagnetic radiation (RF-EMF) on honey bee queen development and mating success. Sci. Total Environ. 2019, 661, 553–562. [Google Scholar] [CrossRef]
- Treder, M.; Müller, M.; Fellner, L.; Traynor, K.; Rosenkranz, P. Defined exposure of honey bee colonies to simulated radiofrequency electromagnetic fields (RF-EMF): Negative effects on the homing ability, but not on brood development or longevity. Sci. Total Environ. 2023, 896, 165211. [Google Scholar] [CrossRef]
- Wyszkowska, J.; Kobak, J.; Aonuma, H. Electromagnetic field exposure affects the calling song, phonotaxis, and level of biogenic amines in crickets. Environ. Sci. Pollut. Res. 2023, 30, 93255–93268. [Google Scholar] [CrossRef]
- Frątczak, M.; Vargová, B.; Tryjanowski, P.; Majláth, I.; Jerzak, L.; Kurimský, J.; Cimbala, R.; Jankowiak, Ł.; Conka, Z.; Majláthová, V. Infected Ixodes ricinus ticks are attracted by electromagnetic radiation of 900 MHz. Ticks Tick. Borne Dis. 2020, 11, 101416. [Google Scholar] [CrossRef] [PubMed]
- Cranfield, C.G.; Dawe, A.; Karloukovski, V.; Dunin–Borkowski, R.E.; de Pomerai, D.; Dobson, J. Biogenic magnetite in the nematode Caenorhabditis elegans. Proc. R. Soc. Lond. B Biol. Sci. 2004, 271, S436–S439. [Google Scholar] [CrossRef] [PubMed]
- Hiscock, H.G.; Mouritsen, H.; Manolopoulos, D.E.; Hore, P. Disruption of Magnetic Compass Orientation in Migratory Birds by Radiofrequency Electromagnetic Fields. Biophys. J. 2017, 113, 1475–1484. [Google Scholar] [CrossRef]
- Ritz, T.; Thalau, P.; Phillips, J.B.; Wiltschko, R.; Wiltschko, W. Resonance effects indicate a radical-pair mechanism for avian magnetic compass. Nature 2004, 429, 177–180. [Google Scholar] [CrossRef] [PubMed]
- Kobylkov, D.; Wynn, J.; Winklhofer, M.; Chetverikova, R.; Xu, J.; Hiscock, H.; Hore, P.J.; Mouritsen, H. Electromagnetic 0.1–100 kHz noise does not disrupt orientation in a night-migrating songbird implying a spin coherence lifetime of less than 10 µs. J. R. Soc. Interface 2019, 16, 20190716. [Google Scholar] [CrossRef]
- Leberecht, B.; Wong, S.Y.; Satish, B.; Döge, S.; Hindman, J.; Venkatraman, L.; Apte, S.; Haase, K.; Musielak, I.; Dautaj, G.; et al. Upper bound for broadband radiofrequency field disruption of magnetic compass orientation in night-migratory songbirds. Proc. Natl. Acad. Sci. USA 2023, 120, e2301153120. [Google Scholar] [CrossRef]
- Boga, A.; Emre, M.; Sertdemir, Y.; Uncu, I.; Binokay, S.; Demirhan, O. Effects of GSM-like radiofrequency irradiation during the oogenesis and spermiogenesis of Xenopus laevis. Ecotoxicol. Environ. Saf. 2016, 129, 137–144. [Google Scholar] [CrossRef] [PubMed]
- Marushchak, O.; Nekrasova, O.; Oskyrko, O.; Voitenko, V.; Zhytnyk, D. Electromagnetic Field Influence on Peculiarities of Rana Temporaria Linnaeus, 1758 (Anura, Ranidae) Ontogeny. Environ. Res. Eng. Manag. 2019, 75, 82–89. [Google Scholar] [CrossRef]
- Stankevičiūtė, M.; Jakubowska, M.; Pažusienė, J.; Makaras, T.; Otremba, Z.; Urban-Malinga, B.; Fey, D.P.; Greszkiewicz, M.; Sauliutė, G.; Baršienė, J.; et al. Genotoxic and cytotoxic effects of 50 Hz 1 mT electromagnetic field on larval rainbow trout (Oncorhynchus mykiss), Baltic clam (Limecola balthica) and common ragworm (Hediste diversicolor). Aquat. Toxicol. 2019, 208, 109–117. [Google Scholar] [CrossRef]
- Vian, A.; Davies, E.; Gendraud, M.; Bonnet, P. Plant Responses to High Frequency Electromagnetic Fields. Biomed. Res. Int. 2016, 2016, 1830262. [Google Scholar] [CrossRef] [PubMed]
- Sharma, S.; Sharma, P.; Bahel, S.; Singh, J.; Katnoria, J.K. Comprehensive analysis of genotoxic effects and antioxidative defence mechanisms in plant test system exposed to 1800 MHz electromagnetic radiations: A root chromosomal aberration and FTIR spectroscopy approach. Toxicol. Environ. Health Sci. 2023, 15, 385–398. [Google Scholar] [CrossRef]
- Mshenskaya, N.S.; Grinberg, M.A.; Kalyasova, E.A.; Vodeneev, V.A.; Ilin, N.V.; Slyunyaev, N.N.; Mareev, E.A.; Sinitsyna, Y.V. The Effect of an Extremely Low-Frequency Electromagnetic Field on the Drought Sensitivity of Wheat Plants. Plants 2023, 12, 826. [Google Scholar] [CrossRef]
- Ramesh, B.; Kavitha, G.; Gokiladevi, S.; Balachandar, R.K.; Kavitha, K.; Gengadharan, A.C.; Puvanakrishnan, R. Effect of Extremely Low Power Time-Varying Electromagnetic Field on Germination and Other Characteristics in Foxtail Millet (Setaria italica) Seeds. Bioelectromagnetics 2020, 41, 526–539. [Google Scholar] [CrossRef]
- EMI Shielding Market Insights. Available online: https://www.verifiedmarketreports.com/product/emi-shielding-market/?utm_source=chatgpt.com/ (accessed on 2 September 2025).
- EMI Shielding Market. Available online: https://www.transparencymarketresearch.com/emi-shielding-market.html (accessed on 22 July 2025).
- Key Takeaways—The GSMA Mobile Economy Report 2022. Available online: https://www.reputiva.com/key-takeaways-the-gsma-mobile-economy-report-2022/?utm_source=chatgpt.com (accessed on 2 September 2025).
- EMI Shielding Market Size, Share and Trends. Available online: https://www.Marketsandmarkets.Com/Market-Reports/Emi-Shielding-Market (accessed on 22 July 2025).
- EMI Shielding Market Size & Trends. Available online: https://www.grandviewresearch.com/industry-analysis/emi-shielding-market-report (accessed on 22 July 2025).
- Chung, D.D.L. Materials for electromagnetic interference shielding. Mater. Chem. Phys. 2020, 255, 123587. [Google Scholar] [CrossRef]
- Maity, S.; Chatterjee, A. Conductive polymer-based electro-conductive textile composites for electromagnetic interference shielding: A review. J. Ind. Text. 2018, 47, 2228–2252. [Google Scholar] [CrossRef]
- Yu, Y.; Zhang, Y.; Zhou, Y.; Xia, J.; Chen, M.; Fu, H.; Cao, Y.; Wang, T.; Wu, C.; Luo, Z.; et al. Enhanced Electromagnetic Interference Shielding Properties of CNT/Carbon Composites by Designing a Hierarchical Porous Structure. Nanomaterials 2024, 14, 1099. [Google Scholar] [CrossRef]
- Zecchi, S.; Cristoforo, G.; Bartoli, M.; Tagliaferro, A.; Torsello, D.; Rosso, C.; Boccaccio, M.; Acerra, F. A Comprehensive Review of Electromagnetic Interference Shielding Composite Materials. Micromachines 2024, 15, 187. [Google Scholar] [CrossRef]
- Huskić, M.; Kepić, D.; Kleut, D.; Mozetič, M.; Vesel, A.; Anžlovar, A.; Bogdanović, D.B.; Jovanović, S. The Influence of Reaction Conditions on the Properties of Graphene Oxide. Nanomaterials 2024, 14, 281. [Google Scholar] [CrossRef]
- Milenkovic, M.; Saeed, W.; Yasir, M.; Milivojevic, D.; Azmy, A.; Nassar, K.E.S.; Syrgiannis, Z.; Spanopoulos, I.; Bajuk-Bogdanovic, D.; Maletić, S.; et al. Carbonized Apples and Quinces Stillage for Electromagnetic Shielding. Nanomaterials 2024, 14, 1882. [Google Scholar] [CrossRef]
- Milenković, M.; Saeed, W.; Yasir, M.; Sredojević, D.; Budimir, M.; Stefanović, A.; Bajuk-Bogdanović, D.; Jovanović, S. Study of Graphene Oxide and Silver Nanowires Interactions and Its Association with Electromagnetic Shielding Effectiveness. Int. J. Mol. Sci. 2024, 25, 13401. [Google Scholar] [CrossRef]
- Marinković, D.; Dorontić, S.; Kepić, D.; Haddadi, K.; Yasir, M.; Nardin, B.; Jovanović, S. New Electromagnetic Interference Shielding Materials: Biochars, Scaffolds, Rare Earth, and Ferrite-Based Materials. Nanomaterials 2025, 15, 541. [Google Scholar] [CrossRef]
- Stefanović, A.; Yasir, M.; Tobías-Rossell, G.; Rojano, S.S.; Sredojević, D.; Kepić, D.; Kleut, D.; Saeed, W.; Milović, M.; Bajuk-Bogdanović, D.; et al. A New Route to Tune the Electrical Properties of Graphene Oxide: A Simultaneous, One-Step N-Doping and Reduction as a Tool for Its Structural Transformation. Molecules 2025, 30, 3579. [Google Scholar] [CrossRef] [PubMed]
- Wolf, E.L. Physical and Electrical Properties of Graphene. In Applications of Graphene; Springer: Cham, Switzerland, 2014; pp. 1–18. [Google Scholar] [CrossRef]
- Koo, C.M.; Sambyal, P.; Iqbal, A.; Shahzad, F.; Hong, J. Graphene and Its Derivative for EMI Shielding. In Two-Dimensional Materials for Electromagnetic Shielding, 1st ed.; Koo, C.M., Sambyal, P., Iqbal, A., Shahzad, F., Hong, J., Eds.; WILEY-VCH GmbH: Weinheim, Germany, 2021; Chapter 4; pp. 69–124. [Google Scholar] [CrossRef]
- Hong, S.K.; Kim, K.Y.; Kim, T.Y.; Kim, J.H.; Park, S.W.; Cho, B.J. Electromagnetic interference shielding effectiveness of monolayer graphene. Nanotechnology 2012, 23, 455704. [Google Scholar] [CrossRef] [PubMed]
- Lu, Z.; Ma, L.; Tan, J.; Wang, H.; Ding, X. Transparent multi-layer graphene/polyethylene terephthalate structures with excellent microwave absorption and electromagnetic interference shielding performance. Nanoscale 2016, 8, 16684–16693. [Google Scholar] [CrossRef] [PubMed]
- Dresselhaus, M.S.; Jorio, A.; Filho, A.G.S.; Saito, R. Defect characterization in graphene and carbon nanotubes using Raman spectroscopy. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2010, 368, 5355–5377. [Google Scholar] [CrossRef]
- Oliveira, F.M.; Luxa, J.; Bouša, D.; Sofer, Z.; Gusmão, R. Electromagnetic Interference Shielding by Reduced Graphene Oxide Foils. ACS Appl. Nano Mater. 2022, 5, 6792–6800. [Google Scholar] [CrossRef]
- Sun, M.; Li, J. Graphene oxide membranes: Functional structures, preparation and environmental applications. Nano Today 2018, 20, 121–137. [Google Scholar] [CrossRef]
- Moura, D.; Caridade, S.G.; Sousa, M.P.; Cunha, E.; Rocha, H.C.; Mano, J.F.; Paiva, M.C.; Alves, N.M. High performance free-standing films by layer-by-layer assembly of graphene flakes and ribbons with natural polymers. J. Mater. Chem. B 2016, 4, 7718–7730. [Google Scholar] [CrossRef]
- Lee, H.; Paeng, K.; Kim, I.S. A review of doping modulation in graphene. Synth. Met. 2018, 244, 36–47. [Google Scholar] [CrossRef]
- Zhou, Y.; He, X.; Li, M. Roles of doping in enhancing the performance of graphene/graphene-like semiconductors. AIP Adv. 2025, 15, 010701. [Google Scholar] [CrossRef]
- Thakur, A.K.; Kurtyka, K.; Majumder, M.; Yang, X.; Ta, H.Q.; Bachmatiuk, A.; Liu, L.; Trzebicka, B.; Rummeli, M.H. Recent Advances in Boron- and Nitrogen-Doped Carbon-Based Materials and Their Various Applications. Adv. Mater. Interfaces 2022, 9, 2101964. [Google Scholar] [CrossRef]
- Wan, S.; Chen, Y.; Fang, S.; Wang, S.; Xu, Z.; Jiang, L.; Baughman, R.H.; Cheng, Q. High-strength scalable graphene sheets by freezing stretch-induced alignment. Nat. Mater. 2021, 20, 624–631. [Google Scholar] [CrossRef]
- Chen, C.; Kennel, E.B.; Stiller, A.H.; Stansberry, P.G.; Zondlo, J.W. Carbon foam derived from various precursors. Carbon 2006, 44, 1535–1543. [Google Scholar] [CrossRef]
- Wu, M.; Ren, Q.; Gao, P.; Ma, W.; Shen, B.; Wang, L.; Zheng, W.; Cui, P.; Yi, X. Enhanced electrical conductivity and EMI shielding performance through cell size-induced CNS alignment in PP/CNS foam. Compos. Commun. 2023, 43, 101716. [Google Scholar] [CrossRef]
- Liu, H.; Dong, M.; Huang, W.; Gao, J.; Dai, K.; Guo, J.; Zheng, G.; Liu, C.; Shen, C.; Guo, Z. Lightweight conductive graphene/thermoplastic polyurethane foams with ultrahigh compressibility for piezoresistive sensing. J. Mater. Chem. C Mater. 2017, 5, 73–83. [Google Scholar] [CrossRef]
- Patle, V.K.; Kumar, R.; Sharma, A.; Dwivedi, N.; Muchhala, D.; Chaudhary, A.; Mehta, Y.; Mondal, D.; Srivastava, A. Three dimension phenolic resin derived carbon-CNTs hybrid foam for fire retardant and effective electromagnetic interference shielding. Compos. Part. C Open Access 2020, 2, 100020. [Google Scholar] [CrossRef]
- Bernal, M.M.; Martin-Gallego, M.; Molenberg, I.; Huynen, I.; Manchado, M.A.L.; Verdejo, R. Influence of carbon nanoparticles on the polymerization and EMI shielding properties of PU nanocomposite foams. RSC Adv. 2014, 4, 7911. [Google Scholar] [CrossRef]
Category | Examples | Advantages | Limitations | Shielding Effectiveness | Ref. |
---|---|---|---|---|---|
Metals | Cu, Ag, Ni, Al, Fe |
|
| Very high >100 dB | [123] |
Metal-coated Polymers/Foams | Ni-coated PU foams, Cu-coated fabrics |
|
| High 60–90 dB | [10] |
Conductive Polymers | Polyaniline, Polypyrrole |
|
| Moderate 20–60 dB | [124] |
Carbon-based Nanomaterials | Graphene, CNTs, carbon foams, carbon black |
|
| High when engineered 40–90 dB, potentially higher in composites | [125,126] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Prekodravac Filipovic, J.; Milenkovic, M.; Kepic, D.; Dorontic, S.; Yasir, M.; Nardin, B.; Jovanovic, S. Electromagnetic Interference in the Modern Era: Concerns, Trends, and Nanomaterial-Based Solutions. Nanomaterials 2025, 15, 1558. https://doi.org/10.3390/nano15201558
Prekodravac Filipovic J, Milenkovic M, Kepic D, Dorontic S, Yasir M, Nardin B, Jovanovic S. Electromagnetic Interference in the Modern Era: Concerns, Trends, and Nanomaterial-Based Solutions. Nanomaterials. 2025; 15(20):1558. https://doi.org/10.3390/nano15201558
Chicago/Turabian StylePrekodravac Filipovic, Jovana, Mila Milenkovic, Dejan Kepic, Sladjana Dorontic, Muhammad Yasir, Blaz Nardin, and Svetlana Jovanovic. 2025. "Electromagnetic Interference in the Modern Era: Concerns, Trends, and Nanomaterial-Based Solutions" Nanomaterials 15, no. 20: 1558. https://doi.org/10.3390/nano15201558
APA StylePrekodravac Filipovic, J., Milenkovic, M., Kepic, D., Dorontic, S., Yasir, M., Nardin, B., & Jovanovic, S. (2025). Electromagnetic Interference in the Modern Era: Concerns, Trends, and Nanomaterial-Based Solutions. Nanomaterials, 15(20), 1558. https://doi.org/10.3390/nano15201558