Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (8,168)

Search Parameters:
Keywords = NaCl

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
10 pages, 1003 KiB  
Article
Removal of Octinoxate, aUVFilter Compound from Aquatic Environment Using Polydimethylsiloxane Sponge
by Péter Szabó, Zoltán Németh, Ruben Szabó, István Lázár, Zsolt Pirger and Attila Gáspár
Water 2025, 17(15), 2306; https://doi.org/10.3390/w17152306 (registering DOI) - 3 Aug 2025
Abstract
This work demonstrates the potential of polydimethylsiloxane sponges for removing organic UV filter compounds such as octinoxate from aqueous solutions. The sponges were fabricated using simple templates made of hydrophilic fused or pressed particles (sugar or NaCl salt) with an approximate particle size [...] Read more.
This work demonstrates the potential of polydimethylsiloxane sponges for removing organic UV filter compounds such as octinoxate from aqueous solutions. The sponges were fabricated using simple templates made of hydrophilic fused or pressed particles (sugar or NaCl salt) with an approximate particle size of 0.4 mm. Among the prepared sponges, those templated with sugar cubes or coarse salt exhibited the highest adsorption capacity, effectively adsorbing up to 0.6% of their own mass in octinoxate. The PDMS sponges were fully regenerable, allowing for the complete removal of octinoxate without any detectable changes in their adsorption properties or dry weight. Due to their simple fabrication, ease of handling, ability to float, and reusability, PDMS sponges present an environmentally friendly and low-maintenance alternative to conventional filtration systems for the removal of octinoxate and potentially other UV filter compounds from environmental surface waters and recreational water bodies. Full article
(This article belongs to the Section Water Quality and Contamination)
Show Figures

Figure 1

16 pages, 1141 KiB  
Article
Coordinated Roles of Osmotic Adjustment, Antioxidant Defense, and Ion Homeostasis in the Salt Tolerance of Mulberry (Morus alba L. ‘Tailai Sang’) Seedlings
by Nan Xu, Tiane Wang, Yuan Wang, Juexian Dong and Yu Shaopeng
Forests 2025, 16(8), 1258; https://doi.org/10.3390/f16081258 (registering DOI) - 1 Aug 2025
Abstract
Soil salinization severely limits plant growth and productivity. Mulberry (Morus alba L.), an economically and ecologically important tree, is widely cultivated, yet its salt-tolerance mechanisms at the seedling stage remain insufficiently understood. This study investigated the physiological and biochemical responses of two-year-old [...] Read more.
Soil salinization severely limits plant growth and productivity. Mulberry (Morus alba L.), an economically and ecologically important tree, is widely cultivated, yet its salt-tolerance mechanisms at the seedling stage remain insufficiently understood. This study investigated the physiological and biochemical responses of two-year-old mulberry (‘Tailai Sang’) seedlings subjected to six NaCl treatments (0, 50, 100, 150, 200, and 300 mmol L−1) for 28 days. Results showed that growth parameters and photosynthetic gas exchange exhibited dose-dependent declines. The reduction in net photosynthetic rate (Pn) was attributed to both stomatal limitations (decreased stomatal conductance) and non-stomatal limitations, as evidenced by a significant decrease in the maximum quantum efficiency of photosystem II (Fv/Fm) under high salinity. To cope with osmotic stress, seedlings accumulated compatible solutes, including soluble sugars, proteins, and proline. Critically, mulberry seedlings demonstrated effective ion homeostasis by sequestering Na+ in the roots to maintain a high K+/Na+ ratio in leaves, a mechanism that was compromised above 150 mmol L−1. Concurrently, indicators of oxidative stress—malondialdehyde (MDA) and H2O2—rose significantly with salinity, inducing the activities of antioxidant enzymes (SOD, CAT, APX, and GR), which peaked at 150 mmol L−1 before declining under extreme stress. A biomass-based LC50 of 179 mmol L−1 NaCl was determined. These findings elucidate that mulberry salt tolerance is a coordinated process involving three key mechanisms: osmotic adjustment, selective ion distribution, and a robust antioxidant defense system. This study establishes an indicative tolerance threshold under controlled conditions and provides a physiological basis for further field-based evaluations of ‘Tailai Sang’ mulberry for cultivation on saline soils. Full article
Show Figures

Figure 1

20 pages, 3033 KiB  
Review
Recharge Sources and Flow Pathways of Karst Groundwater in the Yuquan Mountain Spring Catchment Area, Beijing: A Synthesis Based on Isotope, Tracers, and Geophysical Evidence
by Yuejia Sun, Liheng Wang, Qian Zhang and Yanhui Dong
Water 2025, 17(15), 2292; https://doi.org/10.3390/w17152292 (registering DOI) - 1 Aug 2025
Viewed by 2
Abstract
Karst groundwater systems are critical to water supply and ecological sustainability in northern China, yet their heterogeneity poses challenges for flow characterization. The Yuquan Mountain (YM) Spring, historically a major karst spring in western Beijing, has experienced persistent drying, raising concerns about its [...] Read more.
Karst groundwater systems are critical to water supply and ecological sustainability in northern China, yet their heterogeneity poses challenges for flow characterization. The Yuquan Mountain (YM) Spring, historically a major karst spring in western Beijing, has experienced persistent drying, raising concerns about its recharge and flow mechanisms. This study integrates published isotope data, spatial distributions of Na+ and Cl as hydrochemical tracers, groundwater age estimates, and geophysical survey results to assess the recharge sources and flow pathways within the YM Spring catchment area. The analysis identifies two major recharge zones: the Tanzhesi area, primarily recharged by direct infiltration of precipitation through exposed carbonate rocks, and the Junzhuang area, which receives mixed recharge from rainfall and Yongding River seepage. Three potential flow pathways are proposed, including shallow flow along faults and strata, and a deeper, speculative route through the Jiulongshan-Xiangyu syncline. The synthesis of multiple lines of evidence leads to a refined conceptual model that illustrates how geological structures govern recharge, flow, and discharge processes in this karst system. These findings not only enhance the understanding of subsurface hydrodynamics in complex geological settings but also provide a scientific basis for future spring restoration planning and groundwater management strategies in the regions. Full article
Show Figures

Figure 1

13 pages, 3774 KiB  
Article
Design of TEMPO-Based Polymer Cathode Materials for pH-Neutral Aqueous Organic Redox Flow Batteries
by Yanwen Ren, Qianqian Zheng, Cuicui He, Jingjing Nie and Binyang Du
Materials 2025, 18(15), 3624; https://doi.org/10.3390/ma18153624 (registering DOI) - 1 Aug 2025
Viewed by 93
Abstract
Aqueous organic redox flow batteries (AORFBs) represent an advancing class of electrochemical energy storage systems showing considerable promise for large-scale grid integration due to their unique aqueous organic chemistry. However, the use of small-molecule active materials in AORFBs is significantly limited by the [...] Read more.
Aqueous organic redox flow batteries (AORFBs) represent an advancing class of electrochemical energy storage systems showing considerable promise for large-scale grid integration due to their unique aqueous organic chemistry. However, the use of small-molecule active materials in AORFBs is significantly limited by the issue of stability and crossover. To address these challenges, we designed a high-water-solubility polymer cathode material, P-T-S, which features a polyvinylimidazole backbone functionalized with 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) and sulfonate groups. P-T-S exhibits a solubility of 34 Ah L−1 in water and 31 Ah L−1 in 1.0 M NaCl aqueous solution (NaClaq). When paired with methyl viologen to assemble a pH-neutral AORFB with a theoretical capacity of 15 Ah L−1, the system exhibits a material utilization rate of 92.0%, an average capacity retention rate of 99.74% per cycle (99.74% per hour), and an average Coulombic efficiency of 98.69% over 300 consecutive cycles at 30 mA cm−2. This work provides a new design strategy for polymer materials for high-performance AORFBs. Full article
Show Figures

Graphical abstract

16 pages, 4508 KiB  
Article
Natural Kelp (Laminaria japonica) Hydrogel with Anisotropic Mechanical Properties, Low Friction and Self-Cleaning for Triboelectric Nanogenerator
by Dongnian Chen, Hui Yu, Jiajia Hao, Qiang Chen and Lin Zhu
Gels 2025, 11(8), 597; https://doi.org/10.3390/gels11080597 (registering DOI) - 1 Aug 2025
Viewed by 44
Abstract
Kelp is a natural hydrogel material, which has been widely used in food industry. However, as a natural material, its properties have not been well explored. In this work, the surface and mechanical properties of kelp were investigated. The surface of kelp exhibited [...] Read more.
Kelp is a natural hydrogel material, which has been widely used in food industry. However, as a natural material, its properties have not been well explored. In this work, the surface and mechanical properties of kelp were investigated. The surface of kelp exhibited superoleophobicity and a self-clean property. The friction coefficient (COF) of the kelp surface was also low (<0.1). Interestingly, kelp demonstrated anisotropic mechanical properties either with or without metal ions. The tensile strength and toughness of kelp along with the growth direction (H) were better than those at the direction vertical to the growth direction (V). The adsorption of metal ions would significantly enhance the mechanical properties and ionic conductivity. Triboelectric nanogenerator (TENG) was assembled using kelp with NaCl, which showed excellent output performance (open-circuit voltage of 30 V, short-circuit current of 0.73 μA and charge transfer on contact of 10.5 nC). A writing tablet was prepared to use as the kelp-based self-powered tactile sensor. This work provides a new insight into natural kelp, which may be used as a renewable material. Full article
(This article belongs to the Special Issue Applications of Gels in Energy Materials and Devices)
Show Figures

Figure 1

7 pages, 10330 KiB  
Proceeding Paper
Evaluation of the Corrosion Behavior of Low-Temperature Nitrided AISI 316L Austenitic Stainless Steel
by Francesca Borgioli
Eng. Proc. 2025, 105(1), 1; https://doi.org/10.3390/engproc2025105001 (registering DOI) - 1 Aug 2025
Viewed by 18
Abstract
Nitriding of austenitic stainless steels at low temperatures hinders the precipitation of chromium nitrides and causes the formation of a supersaturated solid solution of nitrogen atoms in the austenite lattice, known as expanded austenite. In this study, the corrosion behavior of low-temperature nitrided [...] Read more.
Nitriding of austenitic stainless steels at low temperatures hinders the precipitation of chromium nitrides and causes the formation of a supersaturated solid solution of nitrogen atoms in the austenite lattice, known as expanded austenite. In this study, the corrosion behavior of low-temperature nitrided AISI 316L is investigated in a NaCl solution using different electrochemical techniques, electrochemical impedance spectroscopy, cyclic potentiodynamic polarization and galvanostatic tests, in order to assess the effect of test conditions. The nitrided layer has an enhanced resistance to localized corrosion, but its ability to repassivate depends on the damage extent caused by the different tests. Full article
Show Figures

Figure 1

17 pages, 2016 KiB  
Article
DFT-Guided Next-Generation Na-Ion Batteries Powered by Halogen-Tuned C12 Nanorings
by Riaz Muhammad, Anam Gulzar, Naveen Kosar and Tariq Mahmood
Computation 2025, 13(8), 180; https://doi.org/10.3390/computation13080180 (registering DOI) - 1 Aug 2025
Viewed by 115
Abstract
Recent research on the design and synthesis of new and upgraded materials for secondary batteries is growing to fulfill future energy demands around the globe. Herein, by using DFT calculations, the thermodynamic and electrochemical properties of Na/Na+@C12 complexes and then [...] Read more.
Recent research on the design and synthesis of new and upgraded materials for secondary batteries is growing to fulfill future energy demands around the globe. Herein, by using DFT calculations, the thermodynamic and electrochemical properties of Na/Na+@C12 complexes and then halogens (X = Br, Cl, and F) as counter anions are studied for the enhancement of Na-ion battery cell voltage and overall performance. Isolated C12 nanorings showed a lower cell voltage (−1.32 V), which was significantly increased after adsorption with halide anions as counter anions. Adsorption of halides increased the Gibbs free energy, which in turn resulted in higher cell voltage. Cell voltage increased with the increasing electronegativity of the halide anion. The Gibbs free energy of Br@C12 was −52.36 kcal·mol1, corresponding to a desirable cell voltage of 2.27 V, making it suitable for use as an anode in sodium-ion batteries. The estimated cell voltage of these considered complexes ensures the effective use of these complexes in sodium-ion secondary batteries. Full article
(This article belongs to the Special Issue Feature Papers in Computational Chemistry)
Show Figures

Figure 1

16 pages, 1219 KiB  
Article
Salicylic Acid with NaCl Acts as a Stressor and Alters Root Traits and the Estimated Root Surface Area of Rapeseed (Brassica napus L.) Genotypes in Hydroponic Culture
by Jannatul Afrin, Nikunjo Chakroborty, Rebeka Sultana, Jobadatun Naher and Arif Hasan Khan Robin
Stresses 2025, 5(3), 48; https://doi.org/10.3390/stresses5030048 (registering DOI) - 1 Aug 2025
Viewed by 47
Abstract
Understanding the alterations to the shoot and root traits of rapeseed (Brassica napus) in response to salt stress is vital for improving its ability to thrive in saline-prone regions. This research aims to evaluate the responses of shoot and root traits [...] Read more.
Understanding the alterations to the shoot and root traits of rapeseed (Brassica napus) in response to salt stress is vital for improving its ability to thrive in saline-prone regions. This research aims to evaluate the responses of shoot and root traits of rapeseed at the vegetative stage under salt- and salicylic acid-induced stress in hydroponic culture. Five parents and ten F3 segregants of rapeseed were subjected to three treatments: T1: control, T2: 8 dSm−1 salt, and T3: 8 dSm−1 salt + 0.1 mM salicylic acid at 21 days of age. Salinity stress significantly reduced the estimated root surface area by 54% compared to control, highlighting the plasticity of roots under stress. The simultaneous application of salt and SA did not alleviate the salinity stress, but rather reinforced the degree of stress and decreased the number of leaves, diameter of the main axis, chlorophyll content, and estimated root surface area by 18.5%, 15.4%, 38.8%, and 23%, respectively, compared to T2. The parental genotype M-245 followed by F3 genotype M-232×M-223 accounted for the higher overall estimated root surface area. These results provide novel insights into the responses of root traits in rapeseed breeding lines under dual treatment, which hold promising implications for future rapeseed breeding efforts focused on sustainable rapeseed production. Full article
(This article belongs to the Section Plant and Photoautotrophic Stresses)
Show Figures

Figure 1

20 pages, 6058 KiB  
Article
The GPI-Anchored Aspartyl Proteases Encoded by the YPS1 and YPS7 Genes of Candidozyma auris and Their Role Under Stress Conditions
by Alvaro Vidal-Montiel, Daniel Clark-Flores, Eulogio Valentín-Gómez, Juan Pedro Luna-Arias, Erika Rosales-Cruz, César Hernández-Rodríguez, Lourdes Villa-Tanaca and Margarita Juárez-Montiel
J. Fungi 2025, 11(8), 573; https://doi.org/10.3390/jof11080573 (registering DOI) - 1 Aug 2025
Viewed by 71
Abstract
Candidozyma auris is a multidrug-resistant, thermo- and osmotolerant yeast capable of persisting on biotic and abiotic surfaces, attributes likely linked to its cell wall composition. Here, seven putative genes encoding yapsins, aspartyl proteases GPI-anchored to the membrane or cell wall, were identified in [...] Read more.
Candidozyma auris is a multidrug-resistant, thermo- and osmotolerant yeast capable of persisting on biotic and abiotic surfaces, attributes likely linked to its cell wall composition. Here, seven putative genes encoding yapsins, aspartyl proteases GPI-anchored to the membrane or cell wall, were identified in the genomes of C. auris CJ97 and 20-1498, from clades III and IV, respectively. The C. auris YPS1 gene is orthologous to the SAP9 of C. albicans. The YPS7 gene is orthologous to YPS7 in C. glabrata and S. cerevisiae, so that they may share similar roles. An in silico analysis suggested an interaction between pepstatin and the catalytic domain of Yps1 and Yps7. Although this inhibitor, when combined with caffeine, had a subtle effect on the growth of C. auris, it induced alterations in the cell wall. CauYPS1 and CauYPS7 expression increased under nutrient starvation and NaCl, and at 42 °C. The transcriptome of the 20-1498 strain suggests that autophagy may play a role in thermal stress, probably degrading deleterious proteins or maintaining cell wall and vacuolar homeostasis. Therefore, CauYps1 and CauYps7 may play a role in the cell wall integrity of C. auris in stress conditions, and they could be a target of new antifungal or antivirulence agents. Full article
Show Figures

Graphical abstract

16 pages, 2729 KiB  
Article
Effect of Enterobacter bugandensis R-18 on Maize Growth Promotion Under Salt Stress
by Xingguo Tian, Qianru Liu, Jingjing Song, Xiu Zhang, Guoping Yang, Min Li, Huan Qu, Ahejiang Tastanbek and Yarong Tan
Microorganisms 2025, 13(8), 1796; https://doi.org/10.3390/microorganisms13081796 - 31 Jul 2025
Viewed by 165
Abstract
Soil salinization poses a significant constraint to agricultural productivity. However, certain plant growth-promoting bacteria (PGPB) can mitigate salinity stress and enhance crop performance. In this study, a bacterial isolate, R-18, isolated from saline-alkali soil in Ningxia, China, was identified as Enterobacter bugandensis based [...] Read more.
Soil salinization poses a significant constraint to agricultural productivity. However, certain plant growth-promoting bacteria (PGPB) can mitigate salinity stress and enhance crop performance. In this study, a bacterial isolate, R-18, isolated from saline-alkali soil in Ningxia, China, was identified as Enterobacter bugandensis based on 16S rRNA gene sequencing. The isolate was characterized for its morphological, biochemical, and plant growth-promoting traits and was evaluated for its potential to alleviate NaCl-induced stress in maize (Zea mays L.) under hydroponic conditions. Isolate R-18 exhibited halotolerance, surviving at NaCl concentrations ranging from 2.0% to 10.0%, and alkaliphilic adaptation, growing at pH 8.0–11.0. Biochemical assays confirmed it as a Gram-negative bacterium, displaying positive reactions in the Voges–Proskauer (V–P) tests, catalase activity, citrate utilization, fluorescent pigment production, starch hydrolysis, gelatin liquefaction, and ammonia production, while testing negative for the methyl red and cellulose hydrolysis. Notably, isolate R-18 demonstrated multiple plant growth-promoting attributes, including nitrogen fixation, phosphate and potassium solubilization, ACC deaminase activity, and indole-3-acetic acid (IAA) biosynthesis. Under 100 mM NaCl stress, inoculation with isolate R-18 significantly enhanced maize growth, increasing plant height, stem dry weight, root fresh weight, and root dry weight by 20.64%, 47.06%, 34.52%, and 31.25%, respectively. Furthermore, isolate R-18 improved ion homeostasis by elevating the K+/Na+ ratio in maize tissues. Physiological analyses revealed increased chlorophyll and proline content, alongside reduced malondialdehyde (MDA) levels, indicating mitigated oxidative damage. Antioxidant enzyme activity was modulated, with decreased superoxide dismutase (SOD) and peroxidase (POD) activities but increased catalase (CAT) activity. These findings demonstrated that Enterobacter bugandensis R-18 effectively alleviated NaCl-induced growth inhibition in maize by enhancing osmotic adjustment, reducing oxidative stress, and improving ion balance. Full article
(This article belongs to the Section Plant Microbe Interactions)
Show Figures

Figure 1

22 pages, 3461 KiB  
Article
Evaluation of the Impact of the LPBF Manufacturing Conditions on Microstructure and Corrosion Behaviour in 3.5 wt.% NaCl of the WE43 Magnesium Alloy
by Jorge de la Pezuela, Sara Sánchez-Gil, Juan Pablo Fernández-Hernán, Alena Michalcova, Pilar Rodrigo, Maria Dolores López, Belén Torres and Joaquín Rams
Materials 2025, 18(15), 3613; https://doi.org/10.3390/ma18153613 (registering DOI) - 31 Jul 2025
Viewed by 92
Abstract
This work expands the processing window of the laser powder bed fusion (LPBF) processing of WE43 magnesium alloy by evaluating laser powers and scanning speeds up to 400 W and 1200 mm/s, and their effect on densification, microstructure, and electrochemical performance. Relative density [...] Read more.
This work expands the processing window of the laser powder bed fusion (LPBF) processing of WE43 magnesium alloy by evaluating laser powers and scanning speeds up to 400 W and 1200 mm/s, and their effect on densification, microstructure, and electrochemical performance. Relative density of 99.9% was achieved for 300 W and 800 mm/s, showing that the use of high laser power is not a limitation for the manufacturing of Mg alloys, as has been usually considered. Microstructural characterisation revealed refined grains and the presence of RE-rich intermetallic particles, while microhardness increased with height due to thermal gradients. Electrochemical testing in 3.5 wt.% NaCl solution, a more aggressive media than those already used, indicated that the corrosion of samples with density values below 99% is conditioned by the porosity; however, above this value, in the WE43, the corrosion evolution is more related to the microstructure of the samples, according to electrochemical evaluation. This study demonstrates the viability of high-energy LPBF processing for WE43, offering optimised mechanical and corrosion properties for biomedical and structural applications. Full article
(This article belongs to the Special Issue Novel Materials for Additive Manufacturing)
Show Figures

Figure 1

16 pages, 4133 KiB  
Article
Preparation, Performance Evaluation and Mechanisms of a Diatomite-Modified Starch-Based Fluid Loss Agent
by Guowei Zhou, Xin Zhang, Weijun Yan and Zhengsong Qiu
Processes 2025, 13(8), 2427; https://doi.org/10.3390/pr13082427 - 31 Jul 2025
Viewed by 158
Abstract
Natural polymer materials are increasingly utilized in drilling fluid additives. Starch has come to be applied extensively due to its low cost and favorable fluid loss reduction properties. However, its poor temperature resistance and high viscosity limit its application in high-temperature wells. This [...] Read more.
Natural polymer materials are increasingly utilized in drilling fluid additives. Starch has come to be applied extensively due to its low cost and favorable fluid loss reduction properties. However, its poor temperature resistance and high viscosity limit its application in high-temperature wells. This study innovatively introduces for the first time diatomite as an inorganic material in the modification process of starch-based fluid loss additives. Through synergistic modification with acrylamide and acrylic acid, we successfully resolved the longstanding challenge of balancing temperature resistance with viscosity control in existing modification methods. The newly developed fluid loss additive demonstrates remarkable performance: It remains effective at 160 °C when used independently. When added to a 4% sodium bentonite base mud, it achieves an 80% fluid loss reduction rate—significantly higher than the 18.95% observed in conventional starch-based products. The resultant filter cake exhibits thin and compact characteristics. Moreover, this additive shows superior contamination resistance, tolerating 30% NaCl and 0.6% calcium contamination, outperforming other starch-based treatments. With starch content exceeding 75%, the product not only demonstrates enhanced performance but also achieves significant cost reduction compared to conventional starch products (typically containing < 50% starch content). Full article
(This article belongs to the Section Food Process Engineering)
Show Figures

Figure 1

9 pages, 1703 KiB  
Article
Plasma/Serum Electrolyte and Metabolite Testing on Blood Gas Analyzer ABL837, a New Application
by Vera Y. Chen, Rachel Fullarton and Yu Chen
Diagnostics 2025, 15(15), 1923; https://doi.org/10.3390/diagnostics15151923 - 31 Jul 2025
Viewed by 147
Abstract
Background: Core laboratory chemistry analyzers typically use plasma and serum samples, while blood gas instruments use whole blood for electrolyte and metabolite tests. Due to high costs to back up the core lab chemistry analyzers, especially in the remote small community hospitals, [...] Read more.
Background: Core laboratory chemistry analyzers typically use plasma and serum samples, while blood gas instruments use whole blood for electrolyte and metabolite tests. Due to high costs to back up the core lab chemistry analyzers, especially in the remote small community hospitals, we have verified the interchangeability of serum/plasma electrolytes and metabolites on blood gas instruments (GEM4000 and Radiometer ABL90) vs. chemistry analyzers. In this study, we sought to extend the investigation to another blood gas device—Radiometer ABL837. Methods: One plasma separator tube and one serum separator tube were drawn from 20 apparently healthy individuals and outpatients and 20 intensive care unit patients. All the samples were run on Roche Cobas8000, and then were run on three Radiometer ABL837 analyzers for sodium (Na+), potassium (K+), chloride (Cl), glucose, lactate (plasma only), and creatinine parameters. Paired measurements between the ABL837 and Cobas8000 were compared, and their difference were assessed for statistical and clinical significance. Results: ABL837 demonstrated statistical significance (p < 0.05) vs. Cobas8000 on all the plasma and serum parameters. However, no parameter differences were found when comparing the plasma/serum results on ABL837 to those on Cobas8000, indicating that none were clinically significant. ABL837 also demonstrated good–excellent correlations with Cobas8000 on all the parameters. Conclusions: When comparing metabolite and electrolyte values with plasma and serum sample types, the ABL837 blood gas instruments and Cobas 8000 chemistry analyzer are interchangeable. These data proves that ABL837 can be used as a backup for a chemistry analyzer in measuring plasma and serum electrolyte and metabolite concentrations. Full article
(This article belongs to the Special Issue Recent Advances in Clinical Biochemistry)
Show Figures

Figure 1

18 pages, 2510 KiB  
Article
The Glutathione Peroxidase Gene Family in Chenopodium quinoa: Genome-Wide Identification, Classification, Gene Expression and Functional Analysis
by Jing Yang, Anna Xu, Kexin An, Lilong Wang, Taiping Luo, Xinyue Yu, Haibo Yin, Shanli Guo and Xia Zhang
Antioxidants 2025, 14(8), 940; https://doi.org/10.3390/antiox14080940 - 30 Jul 2025
Viewed by 154
Abstract
Glutathione peroxidase (GPX) is crucial in mediating plant responses to abiotic stresses. In this study, bioinformatics methods were used to identify the GPX gene family in quinoa. A total of 15 CqGPX genes were identified at the quinoa genome level and conducted preliminary [...] Read more.
Glutathione peroxidase (GPX) is crucial in mediating plant responses to abiotic stresses. In this study, bioinformatics methods were used to identify the GPX gene family in quinoa. A total of 15 CqGPX genes were identified at the quinoa genome level and conducted preliminary analysis on their protein characteristics, chromosome distribution, gene structure, conserved domain structure, cis-acting elements, and expression patterns. Phylogenetic analysis showed that the GPX genes of quinoa, Arabidopsis, soybean, rice, and maize were divided into three groups. Most of the CqGPXs had the three characteristic conserved motifs and other conserved sequences and amino acid residues. Six types of cis-acting elements were identified in the CqGPX gene promoter, with stress and hormone response-related cis-acting elements constituting the two main categories. Additionally, the expression patterns of CqGPX genes across various tissues and their responses to treatments with NaCl, PEG, CdCl2, and H2O2 were also investigated. The qRT-PCR results showed significant differences in the expression levels of the CqGPX genes under stress treatment at different time points. Consistently, the activity of glutathione peroxidase enzymes increased under stresses. Heterologous expression of CqGPX4 and CqGPX15 conferred stress tolerance to E. coli. This study will provide a reference for exploring the function of CqGPX genes. Full article
(This article belongs to the Special Issue Oxidative Stress in Plant Stress and Plant Physiology)
Show Figures

Figure 1

14 pages, 8505 KiB  
Article
Overexpression of Ent-Kaurene Synthase Genes Enhances Gibberellic Acid Biosynthesis and Improves Salt Tolerance in Anoectochilus roxburghii (Wall.) Lindl.
by Lin Yang, Fuai Sun, Shanyan Zhao, Hangying Zhang, Haoqiang Yu, Juncheng Zhang and Chunyan Yang
Genes 2025, 16(8), 914; https://doi.org/10.3390/genes16080914 - 30 Jul 2025
Viewed by 184
Abstract
Background: Anoectochilus roxburghii (Wall.) Lindl. (A. roxburghii) was widely used in traditional Chinese medicine and also as a health food in China. Gibberellins (GAs) are plant hormones that regulate various aspects of growth and development in A. roxburghii. Ent-kaurene [...] Read more.
Background: Anoectochilus roxburghii (Wall.) Lindl. (A. roxburghii) was widely used in traditional Chinese medicine and also as a health food in China. Gibberellins (GAs) are plant hormones that regulate various aspects of growth and development in A. roxburghii. Ent-kaurene synthase (KS) plays a crucial role in the biosynthesis of GAs in plants. However, there is limited functional analysis of KS in GA biosynthesis and its effect on salt tolerance, especially in A. roxburghii. Methods: The ArKS genes were cloned from A. roxburghii, and its salt tolerance characteristics were verified by prokaryotic expression. Under salt stress, analyze the regulation of KS gene on GA and active ingredient content by qRT-PCR and HPLC-MS/MS, and explore the mechanism of exogenous GAs promoting active ingredient enrichment by regulating the expression level of the KS under salt stress. Results: The ArKS protein was highly homologous to KSs with other plant species; subcellular localization of KS protein was lacking kytic vacuole. The transformants displayed a significant increase in salt tolerance under the stress conditions of 300 mM NaCl. And the expression of ArKS genes and the GAs accumulation was downregulated under the salt stress; among them, the contents of GA3, GA7, GA8, GA24, and GA34 showed a significant decrease. It was further found that there was an increase (1.36 times) in MDA content and a decrease (0.84 times) in relative chlorophyll content under the salt conditions from A. roxburghii. However, the content of active constituents was elevated from A. roxburghii under the NaCl stress, including polysaccharides, total flavonoids, and free amino acids, which increased by 1.14, 1.23, and 1.44 times, respectively. Interestingly, the ArKS gene expression and the chlorophyll content was increased, MDA content showed a decrease from 2.02 μmoL·g−1 to 1.74 μmoL·g−1 after exogenous addition of GAs, and the elevation of active constituents of polysaccharides, total flavonoids, and free amino acids were increased by 1.02, 1.09, and 1.05 times, implying that GAs depletion mitigated the damage caused by adversity to A. roxburghii. Conclusions: The ArKS gene cloned from A. roxburghii improved the salt tolerance of plants under salt stress by regulating GA content. Also, GAs not only alleviate salt tolerance but also play a key role in the synthesis of active components in A. roxburghii. The functions of KS genes and GAs were identified to provide ideas for improving the salt tolerance and quality of ingredients in artificial cultivation from A. roxburghii. Full article
(This article belongs to the Section Plant Genetics and Genomics)
Show Figures

Figure 1

Back to TopTop