Evaluation of the Corrosion Behavior of Low-Temperature Nitrided AISI 316L Austenitic Stainless Steel †
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- McGuire, M.F. Stainless Steels for Design Engineers; ASM International: Materials Park, OH, USA, 2008; ISBN 978-0-87170-717-8. [Google Scholar]
- Lai, J.K.L.; Shek, C.H.; Lo, K.H. Stainless Steels: An Introduction and Their Recent Developments; Bentham Science Publishers Ltd.: Beijing, China, 2012; ISBN 978-1-60805-305-6. [Google Scholar] [CrossRef]
- Dong, H. S-phase surface engineering of Fe-Cr, Co-Cr and Ni-Cr alloys. Int. Mater. Rev. 2010, 55, 65–98. [Google Scholar] [CrossRef]
- Borgioli, F. From Austenitic Stainless Steel to Expanded Austenite-S Phase: Formation, Characteristics and Properties of an Elusive Metastable Phase. Metals 2020, 10, 187. [Google Scholar] [CrossRef]
- Borgioli, F. The Corrosion Behavior in Different Environments of Austenitic Stainless Steels Subjected to Thermochemical Surface Treatments at Low Temperatures: An Overview. Metals 2023, 13, 776. [Google Scholar] [CrossRef]
- Picard, S.; Memet, J.B.; Sabot, R.; Grosseau-Poussard, J.L.; Rivière, J.P.; Meilland, R. Corrosion behaviour, microhardness and surface characterisation of low energy, high current ion implanted austenitic stainless steel. Mater. Sci. Eng. A 2001, 303, 163–172. [Google Scholar] [CrossRef]
- Karimzadeh, N.; Moghaddam, E.G.; Mirjani, M.; Raeissi, K. The effect of gas mixture of post-oxidation on structure and corrosion behavior of plasma nitrided AISI 316 stainless steel. Appl. Surf. Sci. 2013, 283, 584–589. [Google Scholar] [CrossRef]
- Kumar, N.; Chaudhari, G.P.; Meka, S.R. Investigation of Low-Temperature Liquid Nitriding Conditions for 316 Stainless Steel for Improved Mechanical and Corrosion Response. Trans. Indian Inst. Met. 2020, 73, 235–242. [Google Scholar] [CrossRef]
- Luiz, L.A.; Kurelo, B.C.E.S.; de Souza, G.B.; de Andrade, J.; Marino, C.E.B. Effect of nitrogen plasma immersion ion implantation on the corrosion protection mechanisms of different stainless steels. Mater. Today Commun. 2021, 28, 102655. [Google Scholar] [CrossRef]
- Borgioli, F.; Galvanetto, E.; Bacci, T. Surface modification of austenitic stainless steel by means of low pressure glow-discharge treatments with nitrogen. Coatings 2019, 9, 604. [Google Scholar] [CrossRef]
- Lei, M.K. Phase transformations in plasma source ion nitrided austenitic stainless steel at low temperature. J. Mater. Sci. 1999, 34, 5975–5982. [Google Scholar] [CrossRef]
- Tao, X.; Qi, J.; Rainforth, M.; Matthews, A.; Leyland, A. On the interstitial induced lattice inhomogeneities in nitrogen-expanded austenite. Scr. Mater. 2020, 185, 146–151. [Google Scholar] [CrossRef]
- Bou-Saleh, Z.; Shahryari, A.; Omanovic, S. Enhancement of corrosion resistance of a biomedical grade 316LVM stainless steel by potentiodynamic cyclic polarization. Thin Solid Film. 2007, 515, 4727–4737. [Google Scholar] [CrossRef]
- Sun, S.; Wei, S.; Wang, G.; Jiang, Z.; Lian, J.; Ji, C. The Synthesis and Electrochemical Behavior of High-Nitrogen Nickel-Free Austenitic Stainless Steel. J. Mater. Eng. Perform. 2014, 23, 3957–3962. [Google Scholar] [CrossRef]
- Borgioli, F.; Galvanetto, E.; Bacci, T. Corrosion behaviour of low temperature nitrided nickel-free, AISI 200 and AISI 300 series austenitic stainless steels in NaCl solution. Corros. Sci. 2018, 136, 352–365. [Google Scholar] [CrossRef]
- Frankel, G.S. Pitting Corrosion. In ASM Handbook Volume 13A; ASM International: Materials Park, OH, USA, 2003; pp. 236–241. ISBN 978-0-87170-705-5. [Google Scholar] [CrossRef]
- Frangini, S.; De Cristofaro, N. Analysis of the galvanostatic polarization method for determining reliable pitting potentials on stainless steels in crevice-free conditions. Corros. Sci. 2003, 45, 2769–2786. [Google Scholar] [CrossRef]
- Tzaneva, B.R. The influence of temperature on the corrosion behaviour of high nitrogen austenitic stainless steel in chloride media. Bulg. Chem. Commun. 2014, 46, 378–383. [Google Scholar]
Sample Type | Rs (Ω cm2) | Rct (MΩ cm2) | CPEdl × 105 (Ω−1 sn cm−2) | ndl | Ro (MΩ cm2) | CPEo × 105 (Ω−1 sn cm−2) | no | Rtot (MΩ cm2) |
---|---|---|---|---|---|---|---|---|
untreated | 5.4 ± 0.5 | 1.1 ± 0.3 | 2.9 ± 0.3 | 0.96 ± 0.02 | 1.7 ± 0.5 | 1.6 ± 0.5 | 1.00 ± 0.2 | 2.8 ± 0.8 |
nitrided | 7.9 ± 0.5 | 4.7 ± 0.5 | 1.7 ± 0.3 | 0.94 ± 0.02 | 113 ± 30 | 0.13 ± 0.03 | 0.9 ± 0.2 | 117 ± 30 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Borgioli, F. Evaluation of the Corrosion Behavior of Low-Temperature Nitrided AISI 316L Austenitic Stainless Steel. Eng. Proc. 2025, 105, 1. https://doi.org/10.3390/engproc2025105001
Borgioli F. Evaluation of the Corrosion Behavior of Low-Temperature Nitrided AISI 316L Austenitic Stainless Steel. Engineering Proceedings. 2025; 105(1):1. https://doi.org/10.3390/engproc2025105001
Chicago/Turabian StyleBorgioli, Francesca. 2025. "Evaluation of the Corrosion Behavior of Low-Temperature Nitrided AISI 316L Austenitic Stainless Steel" Engineering Proceedings 105, no. 1: 1. https://doi.org/10.3390/engproc2025105001
APA StyleBorgioli, F. (2025). Evaluation of the Corrosion Behavior of Low-Temperature Nitrided AISI 316L Austenitic Stainless Steel. Engineering Proceedings, 105(1), 1. https://doi.org/10.3390/engproc2025105001