Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,006)

Search Parameters:
Keywords = NOx concentrations

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 6611 KiB  
Article
Study on Flow and Heat Transfer Characteristics of Reheating Furnaces Under Oxygen-Enriched Conditions
by Maolong Zhao, Xuanxuan Li and Xianzhong Hu
Processes 2025, 13(8), 2454; https://doi.org/10.3390/pr13082454 - 3 Aug 2025
Viewed by 67
Abstract
A computational fluid dynamics (CFD) numerical simulation methodology was implemented to model transient heating processes in steel industry reheating furnaces, targeting combustion efficiency optimization and carbon emission reduction. The effects of oxygen concentration (O2%) and different fuel types on the flow [...] Read more.
A computational fluid dynamics (CFD) numerical simulation methodology was implemented to model transient heating processes in steel industry reheating furnaces, targeting combustion efficiency optimization and carbon emission reduction. The effects of oxygen concentration (O2%) and different fuel types on the flow and heat transfer characteristics were investigated under both oxygen-enriched combustion and MILD oxy-fuel combustion. The results indicate that MILD oxy-fuel combustion promotes flue gas entrainment via high-velocity oxygen jets, leading to a substantial improvement in the uniformity of the furnace temperature field. The effect is most obvious at O2% = 31%. MILD oxy-fuel combustion significantly reduces NOx emissions, achieving levels that are one to two orders of magnitude lower than those under oxygen-enriched combustion. Under MILD conditions, the oxygen mass fraction in flue gas remains below 0.001 when O2% ≤ 81%, indicating effective dilution. In contrast, oxygen-enriched combustion leads to a sharp rise in flame temperature with an increasing oxygen concentration, resulting in a significant increase in NOx emissions. Elevating the oxygen concentration enhances both thermal efficiency and the energy-saving rate for both combustion modes; however, the rate of improvement diminishes when O2% exceeds 51%. Based on these findings, MILD oxy-fuel combustion using mixed gas or natural gas is recommended for reheating furnaces operating at O2% = 51–71%, while coke oven gas is not. Full article
Show Figures

Figure 1

14 pages, 5172 KiB  
Article
Sustainable Metal Recovery from Photovoltaic Waste: A Nitric Acid-Free Leaching Approach Using Sulfuric Acid and Ferric Sulfate
by Payam Ghorbanpour, Pietro Romano, Hossein Shalchian, Francesco Vegliò and Nicolò Maria Ippolito
Minerals 2025, 15(8), 806; https://doi.org/10.3390/min15080806 - 30 Jul 2025
Viewed by 209
Abstract
In recent years, recovering precious and base metals such as silver and copper from end-of-life products has become a fundamental factor in the sustainable development of many countries. This not only supports environmental goals but is also a profitable economic activity. Therefore, in [...] Read more.
In recent years, recovering precious and base metals such as silver and copper from end-of-life products has become a fundamental factor in the sustainable development of many countries. This not only supports environmental goals but is also a profitable economic activity. Therefore, in this study, we investigate the recovery of silver and copper from an end-of-life photovoltaic panel powder using an alternative leaching system containing sulfuric acid and ferric sulfate instead of nitric acid-based leaching systems, which are susceptible to producing hazardous gases such as NOx. To obtain this goal, a series of experiments were designed with the Central Composite Design (CCD) approach using Response Surface Methodology (RSM) to evaluate the effect of reagent concentrations on the leaching rate. The leaching results showed that high recovery rates of silver (>85%) and copper (>96%) were achieved at room temperature using a solution containing only 0.2 M sulfuric acid and 0.15 M ferric sulfate. Analysis of variance was applied to the leaching data for silver and copper recovery, resulting in two statistical models that predict the leaching efficiency based on reagent concentrations. Results indicate that the models are statistically significant due to their high R2 (0.9988 and 0.9911 for Ag and Cu, respectively) and the low p-value of 0.0043 and 0.0003 for Ag and Cu, respectively. The models were optimized to maximize the dissolution of silver and copper using Design Expert software. Full article
(This article belongs to the Special Issue Recycling of Mining and Solid Wastes)
Show Figures

Figure 1

14 pages, 1014 KiB  
Article
Bioenergy Production from Solid Fuel Conversion of Cattle Manure and Resource Utilization of the Combustion Residues
by Eunsung Lee, Junsoo Ha and Seongwook Oa
Processes 2025, 13(8), 2417; https://doi.org/10.3390/pr13082417 - 30 Jul 2025
Viewed by 241
Abstract
Cattle manure accounts for approximately one-third of the total livestock manure produced in the Republic of Korea and is typically composted. To elucidate its feasibility as a renewable resource, this study evaluated the conversion of cattle manure into a solid biofuel and the [...] Read more.
Cattle manure accounts for approximately one-third of the total livestock manure produced in the Republic of Korea and is typically composted. To elucidate its feasibility as a renewable resource, this study evaluated the conversion of cattle manure into a solid biofuel and the nutrient recovery potential of its combustion residues. Solid fuel was prepared from cattle manure collected in Gyeongsangbuk-do, Korea, and its fuel characteristics and ash composition were analyzed after combustion. Combustion tests conducted using a dedicated solid fuel boiler showed that an average lower heating value of 13.27 MJ/kg was achieved, meeting legal standards. Under optimized combustion, CO and NOx emissions (129.9 and 41.5 ppm) were below regulatory limits (200 and 90 ppm); PM was also within the 25 mg/Sm3 standard. The bottom ash contained high concentrations of P2O5 and K, and its heavy metal content was below the regulatory threshold, suggesting its potential reuse as a fertilizer material. Although the Zn concentration in the fly ash exceeded the standard, its quantity was negligible. Therefore, the solid fuel conversion of cattle manure can become a viable and environmentally sustainable solution for both bioenergy production and nutrient recycling, contributing to improved waste management in livestock operations. Full article
(This article belongs to the Section Environmental and Green Processes)
Show Figures

Figure 1

21 pages, 3300 KiB  
Article
Catalytic Ozonation of Nitrite in Denitrification Wastewater Based on Mn/ZSM-5 Zeolites: Catalytic Performance and Mechanism
by Yiwei Zhang, Yulin Sun, Yanqun Zhu, Wubin Weng, Yong He and Zhihua Wang
Processes 2025, 13(8), 2387; https://doi.org/10.3390/pr13082387 - 27 Jul 2025
Viewed by 345
Abstract
In wet flue gas desulfurization and denitrification processes, nitrite accumulation inhibits denitrification efficiency and induces secondary pollution due to its acidic disproportionation. This study developed a Mn-modified ZSM-5 zeolite catalyst, achieving efficient resource conversion of nitrite in nitrogen-containing wastewater through an O3 [...] Read more.
In wet flue gas desulfurization and denitrification processes, nitrite accumulation inhibits denitrification efficiency and induces secondary pollution due to its acidic disproportionation. This study developed a Mn-modified ZSM-5 zeolite catalyst, achieving efficient resource conversion of nitrite in nitrogen-containing wastewater through an O3 + Mn/ZSM-5 catalytic system. Mn/ZSM-5 catalysts with varying SiO2/Al2O3 ratios (prepared by wet impregnation) were characterized by BET, XRD, and XPS. Experimental results demonstrated that Mn/ZSM-5 (SiO2/Al2O3 = 400) exhibited a larger specific surface area, enhanced adsorption capacity, abundant surface Mn3+/Mn4+ species, hydroxyl oxygen species, and chemisorbed oxygen, leading to superior oxidation capability and catalytic activity. Under the optimized conditions of reaction temperature = 40 °C, initial pH = 4, Mn/ZSM-5 dosage = 1 g/L, and O3 concentration = 100 ppm, the NO2 oxidation efficiency reached 94.33%. Repeated tests confirmed that the Mn/ZSM-5 catalyst exhibited excellent stability and wide operational adaptability. The synergistic effect between Mn species and the zeolite support significantly improved ozone utilization efficiency. The O3 + Mn/ZSM-5 system required less ozone while maintaining high oxidation efficiency, demonstrating better cost-effectiveness. Mechanism studies revealed that the conversion pathway of NO2 followed a dual-path catalytic mechanism combining direct ozonation and free radical chain reactions. Practical spray tests confirmed that coupling the Mn/ZSM-5 system with ozone oxidation flue gas denitrification achieved over 95% removal of liquid-phase NO2 byproducts without compromising the synergistic removal efficiency of NOx/SO2. This study provided an efficient catalytic solution for industrial wastewater treatment and the resource utilization of flue gas denitrification byproducts. Full article
(This article belongs to the Special Issue Processes in 2025)
Show Figures

Figure 1

25 pages, 4161 KiB  
Article
Indoor/Outdoor Particulate Matter and Related Pollutants in a Sensitive Public Building in Madrid (Spain)
by Elisabeth Alonso-Blanco, Francisco Javier Gómez-Moreno, Elías Díaz-Ramiro, Javier Fernández, Esther Coz, Carlos Yagüe, Carlos Román-Cascón, Dulcenombre Gómez-Garre, Adolfo Narros, Rafael Borge and Begoña Artíñano
Int. J. Environ. Res. Public Health 2025, 22(8), 1175; https://doi.org/10.3390/ijerph22081175 - 25 Jul 2025
Viewed by 362
Abstract
According to the World Health Organization (WHO), indoor air quality (IAQ) is becoming a serious global concern due to its significant impact on human health. However, not all relevant health parameters are currently regulated. For example, particle number concentration (PNC) and its associated [...] Read more.
According to the World Health Organization (WHO), indoor air quality (IAQ) is becoming a serious global concern due to its significant impact on human health. However, not all relevant health parameters are currently regulated. For example, particle number concentration (PNC) and its associated carbonaceous species, such as black carbon (BC), which are classified as carcinogenic by the International Agency for Research on Cancer (IARC), are not currently regulated. Compared with IAQ studies in other types of buildings, studies focusing on IAQ in hospitals or other healthcare facilities are scarce. Therefore, this study aims to evaluate the impact of these outdoor pollutants, among others, on the indoor environment of a hospital under different atmospheric conditions. To identify the seasonal influence, two different periods of two consecutive seasons (summer 2020 and winter 2021) were selected for the measurements. Regulated pollutants (NO, NO2, O3, PM10, and PM2.5) and nonregulated pollutants (PM1, PNC, and equivalent BC (eBC)) in outdoor air were simultaneously measured indoor and outdoor. This study also investigated the impact of indoor activities on indoor air quality. In the absence of indoor activities, outdoor sources significantly contribute to indoor traffic-related pollutants. Indoor and outdoor (I-O) measurements showed similar behavior, but indoor concentrations were lower, with peak levels delayed by up to two hours. Seasonal variations in indoor/outdoor (I/O) ratios were lower for particles than for associated gaseous pollutants. Particle infiltration depended on particle size, with it being higher the smaller the particle size. Indoor activities also significantly affected indoor pollutants. PMx (especially PM10 and PM2.5) concentrations were mainly modulated by walking-induced particle resuspension. Vertical eBC profiles indicated a relatively well-mixed environment. Ventilation through open windows rapidly altered indoor air quality. Outdoor-dominant pollutants (PNC, eBC, and NOX) had I/O ratios ≥ 1. Staying in the room with an open window had a synergistic effect, increasing the I/O ratios for all pollutants. Higher I/O ratios were associated with turbulent outdoor conditions in both unoccupied and occupied conditions. Statistically significant differences were observed between stable (TKE ≤ 1 m2 s−2) and unstable (TKE > 1 m2 s−2) conditions, except for NO2 in summer. This finding was particularly significant when the wind direction was westerly or easterly during unstable conditions. The results of this study highlight the importance of understanding the behavior of indoor particulate matter and related pollutants. These pollutants are highly variable, and knowledge about them is crucial for determining their health effects, particularly in public buildings such as hospitals, where information on IAQ is often limited. More measurement data is particularly important for further research into I-O transport mechanisms, which are essential for developing preventive measures and improving IAQ. Full article
Show Figures

Figure 1

19 pages, 6001 KiB  
Article
Distinct Regional and Seasonal Patterns of Atmospheric NH3 Observed from Satellite over East Asia
by Haklim Choi, Mi Eun Park and Jeong-Ho Bae
Remote Sens. 2025, 17(15), 2587; https://doi.org/10.3390/rs17152587 - 24 Jul 2025
Viewed by 204
Abstract
Ammonia (NH3), as a vital component of the nitrogen cycle, exerts significant influence on the biosphere, air quality, and climate by contributing to secondary aerosol formation through its reactions with sulfur dioxide (SO2) and nitrogen oxides (NOx). [...] Read more.
Ammonia (NH3), as a vital component of the nitrogen cycle, exerts significant influence on the biosphere, air quality, and climate by contributing to secondary aerosol formation through its reactions with sulfur dioxide (SO2) and nitrogen oxides (NOx). Despite its critical environmental role, NH3’s transient atmospheric lifetime and the variability in spatial and temporal distributions pose challenges for effective global monitoring and comprehensive impact assessment. Recognizing the inadequacies in current in situ measurement capabilities, this study embarked on an extensive analysis of NH3’s temporal and spatial characteristics over East Asia, using the Infrared Atmospheric Sounding Interferometer (IASI) onboard the MetOp-B satellite from 2013 to 2024. The atmospheric NH3 concentrations exhibit clear seasonality, beginning to rise in spring, peaking in summer, and then decreasing in winter. Overall, atmospheric NH3 shows an annual increasing trend, with significant increases particularly evident in Eastern China, especially in June. The regional NH3 trends within China have varied, with steady increases across most regions, while the Northeastern China Plain remained stable until a recent rapid rise. South Korea continues to show consistent and accelerating growth. East Asia demonstrates similar NH3 emission characteristics, driven by farmland and livestock. The spatial and temporal inconsistencies between satellite data and global chemical transport models underscore the importance of establishing accurate NH3 emission inventories in East Asia. Full article
Show Figures

Graphical abstract

22 pages, 2728 KiB  
Article
Intelligent Deep Learning Modeling and Multi-Objective Optimization of Boiler Combustion System in Power Plants
by Chen Huang, Yongshun Zheng, Hui Zhao, Jianchao Zhu, Yongyan Fu, Zhongyi Tang, Chu Zhang and Tian Peng
Processes 2025, 13(8), 2340; https://doi.org/10.3390/pr13082340 - 23 Jul 2025
Viewed by 220
Abstract
The internal combustion process in a boiler in power plants has a direct impact on boiler efficiency and NOx generation. The objective of this study is to propose an intelligent deep learning modeling and multi-objective optimization approach that considers NOx emission concentration and [...] Read more.
The internal combustion process in a boiler in power plants has a direct impact on boiler efficiency and NOx generation. The objective of this study is to propose an intelligent deep learning modeling and multi-objective optimization approach that considers NOx emission concentration and boiler thermal efficiency simultaneously for boiler combustion in power plants. Firstly, a hybrid deep learning model, namely, convolutional neural network–bidirectional gated recurrent unit (CNN-BiGRU), is employed to predict the concentration of NOx emissions and the boiler thermal efficiency. Then, based on the hybrid deep prediction model, variables such as primary and secondary airflow rates are considered as controllable variables. A single-objective optimization model based on an improved flow direction algorithm (IFDA) and a multi-objective optimization model based on NSGA-II are developed. For multi-objective optimization using NSGA-II, the average NOx emission concentration is reduced by 5.01%, and the average thermal efficiency is increased by 0.32%. The objective functions are to minimize the boiler thermal efficiency and the concentration of NOx emissions. Comparative analysis of the experiments shows that the NSGA-II algorithm can provide a Pareto optimal front based on the requirements, resulting in better results than single-objective optimization. The effectiveness of the NSGA-II algorithm is demonstrated, and the obtained results provide reference values for the low-carbon and environmentally friendly operation of coal-fired boilers in power plants. Full article
(This article belongs to the Special Issue Modeling, Simulation and Control in Energy Systems)
Show Figures

Figure 1

23 pages, 2056 KiB  
Article
Nanoceria Coated with Maltodextrin or Chitosan: Effects on Key Genes of Oxidative Metabolism, Proliferation, and Autophagy in Human Embryonic Lung Fibroblasts
by Elena V. Proskurnina, Madina M. Sozarukova, Elizaveta S. Ershova, Ekaterina A. Savinova, Larisa V. Kameneva, Natalia N. Veiko, Vladimir P. Saprykin, Khamzat K. Vyshegurov, Vladimir K. Ivanov and Svetlana V. Kostyuk
Molecules 2025, 30(15), 3078; https://doi.org/10.3390/molecules30153078 - 23 Jul 2025
Viewed by 284
Abstract
Nanoceria is a multifaceted enzyme-like catalyst of ROS-mediated (reactive oxygen species) reactions, which results in its multiple biomedical applications. Biodegradable polysaccharide coatings improve biocompatibility, while the effects of these coatings on the ROS-related activity of nanoceria in cells need thorough studies. Here, we [...] Read more.
Nanoceria is a multifaceted enzyme-like catalyst of ROS-mediated (reactive oxygen species) reactions, which results in its multiple biomedical applications. Biodegradable polysaccharide coatings improve biocompatibility, while the effects of these coatings on the ROS-related activity of nanoceria in cells need thorough studies. Here, we used human embryonic lung fibroblasts to study the effects of maltodextrin and chitosan coatings on cellular oxidative metabolism of nanoceria by examining cell viability, mitochondrial potential, accumulation of nanoparticles in cells, intracellular ROS, expression of NOX4 (NADPH oxidase 4), NRF2 (nuclear factor erythroid 2-related factor 2), NF-κB (nuclear factor kappa-light-chain-enhancer of activated B cells), and STAT3 (signal transducer and activator of transcription 3) proteins as well as the expression of biomarkers of DNA damage/repair, cell proliferation, and autophagy. Both types of polysaccharide-coated nanoceria were non-toxic up to millimolar concentrations. For maltodextrin-coated nano-CeO2, in contrast to bare nanoparticles, there was no oxidative DNA damage/repair with moderate activation of NOX4 expression. Like bare nanoceria, maltodextrin-coated nanoparticles demonstrate the proliferative impact and do not activate autophagy. However, maltodextrin-coated nanoparticles have an activating impact on mitochondrial potential and the NF-κB pathway. Chitosan-coated nanoceria causes short-term intracellular oxidative stress, activation of the expression of NOX4, STAT3, and NRF2, oxidative DNA damage, and double-strand breaks accompanied by activation of DNA repair systems. In contrast to maltodextrin-coated nanoparticles, chitosan-coated nanoceria inhibits the NF-κB pathway and activates autophagy. These findings would be useful in the development of advanced nanoceria-based pharmaceuticals and contribute to the understanding of the biochemical properties of nanoceria as a modulator of ROS-dependent signaling pathways. Full article
Show Figures

Figure 1

22 pages, 1534 KiB  
Article
Predictability of Air Pollutants Based on Detrended Fluctuation Analysis: Ekibastuz Сoal-Mining Center in Northeastern Kazakhstan
by Oleksandr Kuchanskyi, Andrii Biloshchytskyi, Yurii Andrashko, Alexandr Neftissov, Svitlana Biloshchytska and Sergiy Bronin
Urban Sci. 2025, 9(7), 273; https://doi.org/10.3390/urbansci9070273 - 16 Jul 2025
Viewed by 582
Abstract
Environmental comfort and air pollution are among the most important indicators for assessing the population’s quality of life in urban agglomerations. This study aims to explore long-term memory in air pollution time series by analyzing the dynamics of the Hurst exponent and evaluating [...] Read more.
Environmental comfort and air pollution are among the most important indicators for assessing the population’s quality of life in urban agglomerations. This study aims to explore long-term memory in air pollution time series by analyzing the dynamics of the Hurst exponent and evaluating the predictability index. This type of statistical pre-forecast analysis is essential for developing accurate forecasting models for such time series. The effectiveness of air quality monitoring systems largely depends on the precision of these forecasts. The Ekibastuz coal-mining center, which houses one of the largest coal-fired power stations in Kazakhstan and the world, with a capacity of about 4000 MW, was chosen as an example for the study. Data for the period from 1 March 2023 to 31 December 2024 were collected and analyzed at the Ekibastuz coal-fired power station. During the specified period, 14 indicators (67,527 observations) were collected at 10 min intervals, including mass concentrations of CO, NO, NO2, SO2, PM2.5, and PM10, as well as current mass consumption of CO, NO, NO2, SO2, dust, and NOx. The detrended fluctuation analysis of a time series of air pollution indicators was used to calculate the Hurst exponent and identify long-term memory. Changes in the Hurst exponent in regards to dynamics were also investigated, and a predictability index was calculated to monitor emissions of pollutants in the air. Long-term memory is recorded in the structure of all the time series of air pollution indicators. Dynamic analysis of the Hurst exponent confirmed persistent time series characteristics, with an average Hurst exponent of about 0.7. Identifying the time series plots for which the Hurst exponent is falling (analysis of the indicator of dynamics), along with the predictability index, is a sign of an increase in the influence of random factors on the time series. This is a sign of changes in the dynamics of the pollutant release concentrations and may indicate possible excess emissions that need to be controlled. Calculating the dynamic changes in the Hurst exponent for the emission time series made it possible to identify two distinct clusters corresponding to periods of persistence and randomness in the operation of the coal-fired power station. The study shows that evaluating the predictability index helps fine-tune the parameters of time series forecasting models, which is crucial for developing reliable air pollution monitoring systems. The results obtained in this study allow us to conclude that the method of trended fluctuation analysis can be the basis for creating an indicator of the level of air pollution, which allows us to quickly respond to possible deviations from the established standards. Environmental services can use the results to build reliable monitoring systems for air pollution from coal combustion emissions, especially near populated areas. Full article
Show Figures

Figure 1

23 pages, 8407 KiB  
Article
Assessing the Combined Influence of Indoor Air Quality and Visitor Flow Toward Preventive Conservation at the Peggy Guggenheim Collection
by Maria Catrambone, Emiliano Cristiani, Cristiano Riminesi, Elia Onofri and Luciano Pensabene Buemi
Atmosphere 2025, 16(7), 860; https://doi.org/10.3390/atmos16070860 - 15 Jul 2025
Viewed by 363
Abstract
The study at the Peggy Guggenheim Collection in Venice highlights critical interactions between indoor air quality, visitor dynamics, and microclimatic conditions, offering insights into preventive conservation of modern artworks. By analyzing pollutants such as ammonia, formaldehyde, and organic acids, alongside visitor density and [...] Read more.
The study at the Peggy Guggenheim Collection in Venice highlights critical interactions between indoor air quality, visitor dynamics, and microclimatic conditions, offering insights into preventive conservation of modern artworks. By analyzing pollutants such as ammonia, formaldehyde, and organic acids, alongside visitor density and environmental data, the research identified key patterns and risks. Through three seasonal monitoring campaigns, the concentrations of SO2 (sulphur dioxide), NO (nitric oxide), NO2 (nitrogen dioxide), NOx (nitrogen oxides), HONO (nitrous acid), HNO3 (nitric acid), O3 (ozone), NH3 (ammonia), CH3COOH (acetic acid), HCOOH (formic acid), and HCHO (formaldehyde) were determined using passive samplers, as well as temperature and relative humidity data loggers. In addition, two specific short-term monitoring campaigns focused on NH3 were performed to evaluate the influence of visitor presence on indoor concentrations of the above compounds and environmental parameters. NH3 and HCHO concentrations spiked during high visitor occupancy, with NH3 levels doubling in crowded periods. Short-term NH3 campaigns confirmed a direct correlation between visitor numbers and the above indoor concentrations, likely due to human emissions (e.g., sweat, breath) and off-gassing from materials. The indoor/outdoor ratios indicated that several pollutants originated from indoor sources, with ammonia and acetic acid showing the highest indoor concentrations. By measuring the number of visitors and microclimate parameters (temperature and humidity) every 3 s, we were able to precisely estimate the causality and the temporal shift between these quantities, both at small time scale (a few minute delay between peaks) and at medium time scale (daily average conditions due to the continuous inflow and outflow of visitors). Full article
(This article belongs to the Section Air Quality)
Show Figures

Figure 1

17 pages, 1170 KiB  
Article
Effect of Sulfur Poisoning During Worldwide Harmonized Light Vehicles Test Cycle on NOx Reduction Performance and Active Sites of Selective Catalytic Reduction Filter
by Zhou Zhou, Fei Yu, Dongxia Yang, Shiying Chang, Xiaokun He, Yunkun Zhao, Jiangli Ma, Ting Chen, Huilong Lai and He Lin
Catalysts 2025, 15(7), 682; https://doi.org/10.3390/catal15070682 - 14 Jul 2025
Viewed by 427
Abstract
Selective catalytic reduction filter (SDPF) technology constitutes a critical methodology for controlling nitrogen oxide (NOx) and particulate matter emissions from light-duty diesel vehicles. A series of SDPFs with different sulfur poisoning times and concentrations were prepared using the worldwide harmonized light [...] Read more.
Selective catalytic reduction filter (SDPF) technology constitutes a critical methodology for controlling nitrogen oxide (NOx) and particulate matter emissions from light-duty diesel vehicles. A series of SDPFs with different sulfur poisoning times and concentrations were prepared using the worldwide harmonized light vehicles test cycle (WLTC). Bench testing revealed that sulfur poisoning diminished the catalyst’s NH3 storage capacity, impaired the transient NOx reduction efficiency, and induced premature ammonia leakage. After multiple sulfur poisoning incidents, the NOx reduction performance stabilized. Higher SO2 concentrations accelerated catalyst deactivation and hastened the attainment of this equilibrium state. The characterization results for the catalyst indicate that the catalyst accumulated the same sulfur content after tail gas poisoning with different sulfur concentrations and that sulfur existed in the form of SO42−. The sulfur species in low-sulfur-poisoning-concentration catalysts mainly included sulfur ammonia and sulfur copper species, while high-sulfur-poisoning-concentration catalysts contained a higher proportion of sulfur copper species. Neither species type significantly altered the zeolite coating’s crystalline structure. Sulfur ammonia species could easily lead to a significant decrease in the specific surface area of the catalyst, which could be decomposed at 500 °C to achieve NOx reduction performance regeneration. In contrast, sulfur copper species required higher decomposition temperatures (600 °C), achieving only partial regeneration. Full article
(This article belongs to the Section Environmental Catalysis)
Show Figures

Graphical abstract

19 pages, 7589 KiB  
Article
Analysis of PM2.5 Transport Characteristics and Continuous Improvement in High-Emission-Load Areas of the Beijing–Tianjin–Hebei Region in Winter
by Yuyao Qiang, Chuanda Wang, Xiaoqi Wang and Shuiyuan Cheng
Sustainability 2025, 17(14), 6389; https://doi.org/10.3390/su17146389 - 11 Jul 2025
Viewed by 318
Abstract
The air quality in the Beijing–Tianjin–Hebei region of China has markedly improved in recent decades. Characterizing current PM2.5 transmission between cities in light of the continuous reduction in emissions from various sources is of great significance for the formulation of future regional [...] Read more.
The air quality in the Beijing–Tianjin–Hebei region of China has markedly improved in recent decades. Characterizing current PM2.5 transmission between cities in light of the continuous reduction in emissions from various sources is of great significance for the formulation of future regional joint prevention and control strategies. To address these issues, a WRF-CAMx modeling project was implemented to explore the pollution characteristics from the perspectives of transport flux, regional source apportionment, and the comprehensive impact of multiple pollutants from 2013 to 2020. It was found that the net PM2.5 transport flux among cities declined considerably during the study period and was positively affected by the continuous reduction in emission sources. The variations in local emissions and transport contributions in various cities from 2013 to 2020 revealed differences in emission control policies and efforts. It is worth noting that under polluted weather conditions, obvious interannual differences in PM2.5 transport fluxes in the BTH region were observed, emphasizing the need for more scientifically based regional collaborative control strategies. The change in the predominant precursor from SO2 to NOx has posed new challenges for emission reduction. NOx emission reductions will significantly decrease PM2.5 concentrations, while SO2 and NH3 reductions show limited effects. The reduction in NOx emissions might have a fluctuating impact on the generation of SOAs, possibly due to changes in atmospheric oxidation. However, the deep treatment of NOx has a positive effect on the synergistic improvement of multiple air pollutants. This emphasizes the need to enhance the reduction in NOx emissions in the future. The results of this study can serve as a reference for the development of effective PM2.5 precursor control strategies and regional differentiation optimization improvement policies in the BTH region. Full article
Show Figures

Figure 1

14 pages, 3940 KiB  
Article
DOC Study on the Effects of Catalyst Active Component Loading and Carrier Properties on the Catalytic Conversion Efficiency of Key Gaseous Pollutants
by Yantao Zou and Liguang Xiao
Sustainability 2025, 17(14), 6354; https://doi.org/10.3390/su17146354 - 11 Jul 2025
Viewed by 358
Abstract
Based on engine bench testing, this study investigated the effect of diesel oxidation catalytic converter (DOC) formulations on the gaseous emissions performance of diesel engines equipped with a DOC+ catalyzed diesel particulate filter (CDPF)+selective catalytic reduction (SCR) system after the treatment system. The [...] Read more.
Based on engine bench testing, this study investigated the effect of diesel oxidation catalytic converter (DOC) formulations on the gaseous emissions performance of diesel engines equipped with a DOC+ catalyzed diesel particulate filter (CDPF)+selective catalytic reduction (SCR) system after the treatment system. The experimental results indicate that changes in DOC formulations have no significant effect on engine fuel economy. As the precious metal loading increases and the Pt/Pd ratio decreases, the T50 for CO and HC decreases, and the low-temperature conversion rates (<300 °C) for CO and HC increase. However, as the temperature continues to rise, the beneficial effect of increased precious metal loading or Pd on CO and HC conversion rates gradually weakens. The average conversion rates in the high-temperature range (≥300 °C) show little difference. The NO conversion rate increases with increasing precious metal loading. The NO conversion rate is more sensitive to Pt content, with higher Pt content formulations promoting NO oxidation, contrary to the trends observed for CO and HC conversion rates. When the SCR inlet temperature is low, high NO2 concentrations are beneficial for improving the SCR’s NOx conversion efficiency. When the SCR inlet temperature is high, the SCR’s NOx conversion efficiency exceeds 90% with no significant differences. No significant impact of DOC formulation changes on CDPF pressure drop under external conditions was observed. Full article
(This article belongs to the Special Issue Technology Applications in Sustainable Energy and Power Engineering)
Show Figures

Figure 1

16 pages, 1892 KiB  
Article
Evolutionary Characteristics of Sulphate Ions in Condensable Particulate Matter Following Ultra-Low Emissions from Coal-Fired Power Plants During Low Winter Temperatures
by Yun Xu, Haixiang Lu, Kai Zhou, Ke Zhuang, Yaoyu Zhang, Chunlei Zhang, Liu Yang and Zhongyi Sheng
Sustainability 2025, 17(14), 6342; https://doi.org/10.3390/su17146342 - 10 Jul 2025
Viewed by 290
Abstract
Coal-fired power plants exacerbate hazy weather under low winter temperatures, while sulphate ions (SO42−) in condensable particulate matter (CPM) emitted from ultra-low emission coal-fired power plants accelerate sulphate formation. The transformation of gaseous precursors (SO2, NOx, NH3 [...] Read more.
Coal-fired power plants exacerbate hazy weather under low winter temperatures, while sulphate ions (SO42−) in condensable particulate matter (CPM) emitted from ultra-low emission coal-fired power plants accelerate sulphate formation. The transformation of gaseous precursors (SO2, NOx, NH3) is the main pathway for sulphate formation by homogeneous or non-homogeneous reactions. For the sustainability of the world, in this paper, the effects of condensation temperature, H2O, NOX and NH3 on the SO42− generation characteristics under low-temperature rapid condensation conditions are investigated. With lower temperatures, especially from 0 °C cooling to −20 °C, the concentration of SO42− was as high as 26.79 mg/m3. With a greater proportion of H2SO4 in the aerosol state, and a faster rate of sulphate formation, H2O vapour condensation can provide a reaction site for sulphuric acid aerosol generation. SO42− in CPM is mainly derived from the non-homogeneous reaction of SO2. SO3 is an important component of CPM and provides a reaction site for the formation of SO42−. SO2 and SO3, in combination with Stefan flow, jointly play a synergistic role in the generation of SO42−. The content of SO42− was as high as 36.18 mg/m3. While NOX sometimes inhibits the formation of SO42−, NH3 has a key role in the nucleation process of CPM. NH3, SO2 and NOX have been found to rapidly form sulphate with particle sizes up to 5 µm at sub-zero temperatures and promote the formation of sulphuric acid aerosols. Full article
Show Figures

Graphical abstract

20 pages, 3470 KiB  
Article
Hydrogen Supplementation in SI Engines: Enhancing Efficiency and Reducing Emissions with a Focus on Knock Phenomena
by Saugirdas Pukalskas, Alfredas Rimkus, Tadas Vipartas, Saulius Stravinskas, Donatas Kriaučiūnas, Gabrielius Mejeras and Andrius Ušinskas
Machines 2025, 13(7), 571; https://doi.org/10.3390/machines13070571 - 1 Jul 2025
Viewed by 330
Abstract
This study investigates the impact of hydrogen supplementation on the performance, efficiency, and emissions of a spark-ignition internal combustion engine, with a specific focus on knock phenomena. A Nissan HR16DE engine was modified to operate in a dual-fuel mode using gasoline (E95) and [...] Read more.
This study investigates the impact of hydrogen supplementation on the performance, efficiency, and emissions of a spark-ignition internal combustion engine, with a specific focus on knock phenomena. A Nissan HR16DE engine was modified to operate in a dual-fuel mode using gasoline (E95) and high-purity hydrogen. Hydrogen was injected via secondary manifold injectors and managed through a reprogrammable MoTeC ECU, allowing precise control of ignition timing and fuel delivery. Experiments were conducted across various engine speeds and loads, with hydrogen mass fractions ranging from 0% to 30%. Results showed that increasing hydrogen content enhanced combustion intensity, thermal efficiency, and stability. Brake specific fuel consumption decreased by up to 43.4%, while brake thermal efficiency improved by 2–3%. CO, HC, and CO2 emissions were significantly reduced. However, NOx emissions increased with higher hydrogen concentrations due to elevated combustion temperatures. Knock tendency was effectively mitigated by retarding ignition timing, ensuring peak in-cylinder pressure occurred at 14–15° CAD aTDC. These findings demonstrate the potential of hydrogen supplementation to reduce fossil fuel use and greenhouse gas emissions in spark ignition engines, while highlighting the importance of precise combustion control to address challenges such as knock and NOx formation. Full article
(This article belongs to the Special Issue Advanced Engine Energy Saving Technology)
Show Figures

Figure 1

Back to TopTop