Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,135)

Search Parameters:
Keywords = NO UV absorption

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 1959 KiB  
Article
Influence of Molecular Weight of Anthraquinone Acid Dyes on Color Strength, Migration, and UV Protection of Polyamide 6 Fabrics
by Nawshin Farzana, Abu Naser Md Ahsanul Haque, Shamima Akter Smriti, Abu Sadat Muhammad Sayem, Fahmida Siddiqa, Md Azharul Islam, Md Nasim and S M Kamrul Hasan
Physchem 2025, 5(3), 31; https://doi.org/10.3390/physchem5030031 - 4 Aug 2025
Abstract
Anthraquinone acid dyes are widely used in dyeing polyamide due to their good exhaustion and brightness. While ionic interactions primarily govern dye–fiber bonding, the molecular weight (Mw) of these dyes can significantly influence migration, apparent color strength, and fastness behavior. This study offers [...] Read more.
Anthraquinone acid dyes are widely used in dyeing polyamide due to their good exhaustion and brightness. While ionic interactions primarily govern dye–fiber bonding, the molecular weight (Mw) of these dyes can significantly influence migration, apparent color strength, and fastness behavior. This study offers comparative insight into how the Mw of structurally similar anthraquinone acid dyes impacts their diffusion, fixation, and functional outcomes (e.g., UV protection) on polyamide 6 fabric, using Acid Blue 260 (Mw~564) and Acid Blue 127:1 (Mw~845) as representative low- and high-Mw dyes. The effects of dye concentration, pH, and temperature on color strength (K/S) were evaluated, migration index and zeta potential were measured, and UV protection factor (UPF) and FTIR analyses were used to assess fabric functionality. Results showed that the lower-Mw dye exhibited higher migration tendency, particularly at increased dye concentrations, while the higher-Mw dye demonstrated greater color strength and superior wash fastness. Additionally, improved UPF ratings were associated with higher-Mw dye due to enhanced light absorption. These findings offer practical insights for optimizing acid dye selection in polyamide coloration to balance color performance and functional attributes. Full article
(This article belongs to the Section Surface Science)
Show Figures

Figure 1

11 pages, 919 KiB  
Article
Dye-Sensitized Solar Cells Application of TiO2 Using Spirulina and Chlorella Algae Extract
by Maria Vitória França Corrêa, Gideã Taques Tractz, Guilherme Arielo Rodrigues Maia, Hagata Emmanuely Slusarski Fonseca, Larissa Oliveira Berbel, Lucas José de Almeida and Everson do Prado Banczek
Colorants 2025, 4(3), 25; https://doi.org/10.3390/colorants4030025 - 4 Aug 2025
Abstract
The present study investigates dye-sensitized solar cells (DSSCs) incorporating natural extracts from the microalgae Spirulina and Chlorella as photosensitizers. TiO2-based electrodes were prepared and immersed in methanolic algae extracts for 24 and 48 h. UV–Vis spectroscopy revealed absorption peaks near 400 [...] Read more.
The present study investigates dye-sensitized solar cells (DSSCs) incorporating natural extracts from the microalgae Spirulina and Chlorella as photosensitizers. TiO2-based electrodes were prepared and immersed in methanolic algae extracts for 24 and 48 h. UV–Vis spectroscopy revealed absorption peaks near 400 nm and 650 nm, characteristic of chlorophyll. Electrochemical analyses, including photochronoamperometry and open-circuit potential, confirmed the photosensitivity and charge transfer capabilities of all systems. The cell sensitized with Chlorella after 48 h of immersion exhibited the highest energy conversion efficiency (0.0184% ± 0.0015), while Spirulina achieved 0.0105% ± 0.0349 after 24 h. Chlorella’s superior performance is attributed to its higher chlorophyll content and enhanced light absorption, facilitating more efficient electron injection and interaction with the TiO2 surface. Although the efficiency remains lower than that of conventional silicon-based solar cells, the results highlight the potential of natural colorants as sustainable and low-cost alternatives for photovoltaic applications. Nonetheless, further, improvements are required, particularly in dye stability and anchorage, to improve device performance. This research reinforces the viability of natural photosensitizers in DSSC technology and supports continued efforts to optimize their application. Full article
Show Figures

Figure 1

17 pages, 2112 KiB  
Article
Direct Detection of Orthoflavivirus via Gold Nanorod Plasmon Resonance
by Erica Milena de Castro Ribeiro, Bruna de Paula Dias, Cyntia Silva Ferreira, Samara Mayra Soares Alves dos Santos, Rajiv Gandhi Gopalsamy, Estefânia Mara do Nascimento Martins, Cintia Lopes de Brito Magalhães, Flavio Guimarães da Fonseca, Luiz Felipe Leomil Coelho, Cristiano Fantini, Luiz Orlando Ladeira, Lysandro Pinto Borges and Breno de Mello Silva
Sensors 2025, 25(15), 4775; https://doi.org/10.3390/s25154775 - 3 Aug 2025
Viewed by 59
Abstract
Dengue, Zika, yellow fever, chikungunya, and Mayaro arboviruses represent an increasing threat to public health because of the serious infections they cause annually in many countries. Serological diagnosis of these viruses is challenging, making the development of new diagnostic strategies imperative. In this [...] Read more.
Dengue, Zika, yellow fever, chikungunya, and Mayaro arboviruses represent an increasing threat to public health because of the serious infections they cause annually in many countries. Serological diagnosis of these viruses is challenging, making the development of new diagnostic strategies imperative. In this study, we investigated the effectiveness of gold nanorods (GNRs) functionalized with specific anti-dengue and anti-orthoflavivirus antibodies in detecting viral particles. GNRs were created with a length-to-width ratio of up to 5.5, a size of 71.4 ± 6.5 nm, and a light absorption peak at 927 nm, and they were treated with 4 mM polyethyleneimine. These GNRs were attached to a small amount of monoclonal antibodies that target flaviviruses, and the viral particles were detected by measuring the localized surface plasmon resonance using an UV-Vis/NIR spectrometer. The tests found Orthoflavivirus dengue and Orthoflavivirus zikaense in diluted human serum and ground-up mosquitoes, with the lowest detectable amount being 100 PFU/mL. The GNRs described in this study can be used to enhance flavivirus diagnostic tests or to develop new, faster, and more accurate diagnostic techniques. Additionally, the functionalized GNRs presented here are promising for supporting virological surveillance studies in mosquitoes. Our findings highlight a fast and highly sensitive method for detecting Orthoflavivirus in both human and mosquito samples, with a detection limit as low as 100 PFU/mL. Full article
(This article belongs to the Section Biosensors)
Show Figures

Graphical abstract

24 pages, 8010 KiB  
Article
Mono-(Ni, Au) and Bimetallic (Ni-Au) Nanoparticles-Loaded ZnAlO Mixed Oxides as Sunlight-Driven Photocatalysts for Environmental Remediation
by Monica Pavel, Liubovi Cretu, Catalin Negrila, Daniela C. Culita, Anca Vasile, Razvan State, Ioan Balint and Florica Papa
Molecules 2025, 30(15), 3249; https://doi.org/10.3390/molecules30153249 - 2 Aug 2025
Viewed by 177
Abstract
A facile and versatile strategy to obtain NPs@ZnAlO nanocomposite materials, comprising controlled-size nanoparticles (NPs) within a ZnAlO matrix is reported. The mono-(Au, Ni) and bimetallic (Ni-Au) NPs serving as an active phase were prepared by the polyol-alkaline method, while the ZnAlO support was [...] Read more.
A facile and versatile strategy to obtain NPs@ZnAlO nanocomposite materials, comprising controlled-size nanoparticles (NPs) within a ZnAlO matrix is reported. The mono-(Au, Ni) and bimetallic (Ni-Au) NPs serving as an active phase were prepared by the polyol-alkaline method, while the ZnAlO support was obtained via the thermal decomposition of its corresponding layered double hydroxide (LDH) precursors. X-ray diffraction (XRD) patterns confirmed the successful fabrication of the nanocomposites, including the synthesis of the metallic NPs, the formation of LDH-like structure, and the subsequent transformation to ZnO phase upon LDH calcination. The obtained nanostructures confirmed the nanoplate-like morphology inherited from the original LDH precursors, which tended to aggregate after the addition of gold NPs. According to the UV-Vis spectroscopy, loading NPs onto the ZnAlO support enhanced the light absorption and reduced the band gap energy. ATR-DRIFT spectroscopy, H2-TPR measurements, and XPS analysis provided information about the functional groups, surface composition, and reducibility of the materials. The catalytic performance of the developed nanostructures was evaluated by the photodegradation of bisphenol A (BPA), under simulated solar irradiation. The conversion of BPA over the bimetallic Ni-Au@ZnAlO reached up to 95% after 180 min of irradiation, exceeding the monometallic Ni@ZnAlO and Au@ZnAlO catalysts. Its enhanced activity was correlated with good dispersion of the bimetals, narrower band gap, and efficient charge carrier separation of the photo-induced e/h+ pairs. Full article
Show Figures

Graphical abstract

19 pages, 4270 KiB  
Article
Viral Inactivation by Light-Emitting Diodes: Action Spectra Reveal Genomic Damage as the Primary Mechanism
by Kazuaki Mawatari, Yasuko Kadomura-Ishikawa, Takahiro Emoto, Yushi Onoda, Kai Ishida, Sae Toda, Takashi Uebanso, Toshihiko Aizawa, Shigeharu Yamauchi, Yasuo Fujikawa, Tomotake Tanaka, Xing Li, Eduardo Suarez-Lopez, Richard J. Kuhn, Ernest R. Blatchley III and Akira Takahashi
Viruses 2025, 17(8), 1065; https://doi.org/10.3390/v17081065 - 30 Jul 2025
Viewed by 247
Abstract
Irradiation with ultraviolet light-emitting diodes (UV-LEDs) represents a promising method for viral inactivation, but a detailed understanding of the wavelength-dependent action spectra remains limited, particularly across different viral components. In this study, we established standardized UV action spectra for infectivity reduction in pathogenic [...] Read more.
Irradiation with ultraviolet light-emitting diodes (UV-LEDs) represents a promising method for viral inactivation, but a detailed understanding of the wavelength-dependent action spectra remains limited, particularly across different viral components. In this study, we established standardized UV action spectra for infectivity reduction in pathogenic viruses using a system equipped with interchangeable LEDs at 13 different peak wavelengths (250–365 nm). The reduction in viral infectivity induced by UV-LED exposure was strongly related to viral genome damage, whereas no significant degradation of viral structural proteins was detected. Peak virucidal efficiency was observed at 267–270 nm across all tested viruses, representing a slight shift from the traditionally expected 260 nm nucleic acid absorption peak. Enveloped RNA viruses, including influenza A virus, respiratory syncytial virus, and coronavirus, exhibited greater UV sensitivity than nonenveloped viruses such as feline calicivirus and adenovirus. These observations indicate that structural characteristics, such as the presence of an envelope and genome organization, influence UV susceptibility. The wavelength-specific action spectra established in this study provide critical data for optimizing UV-LED disinfection systems to achieve efficient viral inactivation while minimizing energy consumption in healthcare, food safety, and environmental sanitation. Full article
Show Figures

Graphical abstract

12 pages, 2396 KiB  
Article
Helical Airflow Synthesis of Quinoxalines: A Continuous and Efficient Mechanochemical Approach
by Jiawei Zhang, Zeli Xiao, Qi Huang, Yang Zhao, Bo Jin and Rufang Peng
Chemistry 2025, 7(4), 121; https://doi.org/10.3390/chemistry7040121 - 29 Jul 2025
Viewed by 202
Abstract
In this work, we report a novel mechanochemical synthesis method for the synthesis of quinoxaline derivatives—a spiral gas–solid two-phase flow approach, which enables the efficient preparation of quinoxaline compounds. Compared to conventional synthetic methods, this approach eliminates the need for heating or solvents [...] Read more.
In this work, we report a novel mechanochemical synthesis method for the synthesis of quinoxaline derivatives—a spiral gas–solid two-phase flow approach, which enables the efficient preparation of quinoxaline compounds. Compared to conventional synthetic methods, this approach eliminates the need for heating or solvents while significantly reducing reaction time. The structures of the synthesized compounds were characterized using nuclear magnetic resonance (NMR), Fourier-transform infrared spectroscopy (FT-IR), ultraviolet-visible (UV–Vis) absorption spectroscopy, powder X-ray diffraction (XRD), differential scanning calorimetry (DSC), and high-performance liquid chromatography (HPLC). Using the synthesis of 2,3-diphenylquinoxaline (1) as a model reaction, the synthetic process was investigated with UV–Vis spectroscopy. The results demonstrate that when the total feed amount was 2 g with a carrier gas pressure of 0.8 MPa, the reaction completed within 2 min, achieving a yield of 93%. Furthermore, kinetic analysis of the reaction mechanism was performed by monitoring the UV–Vis spectra of the products at different time intervals. The results indicate that the synthesis of 1 follows the A4 kinetic model, which describes a two-dimensional diffusion-controlled product growth process following decelerated nucleation. Full article
Show Figures

Figure 1

18 pages, 2518 KiB  
Article
NiO/TiO2 p-n Heterojunction Induced by Radiolysis for Photocatalytic Hydrogen Evolution
by Ana Andrea Méndez-Medrano, Xiaojiao Yuan, Diana Dragoe, Christophe Colbeau-Justin, José Luis Rodríguez López and Hynd Remita
Materials 2025, 18(15), 3513; https://doi.org/10.3390/ma18153513 - 26 Jul 2025
Viewed by 399
Abstract
Titanium dioxide (TiO2), a widely used semiconductor in photocatalysis owing to its adequate potential for water hydrolysis, chemical stability, low toxicity, and low cost. However, its efficiency is limited by fast charge-carrier recombination and poor visible light absorption. Coupling TiO2 [...] Read more.
Titanium dioxide (TiO2), a widely used semiconductor in photocatalysis owing to its adequate potential for water hydrolysis, chemical stability, low toxicity, and low cost. However, its efficiency is limited by fast charge-carrier recombination and poor visible light absorption. Coupling TiO2 with a p-type semiconductor, such as nickel oxide (NiO), forming a p-n heterojunction, decreases the recombination of charge carriers and increases photocatalytic activity. In this work, the surface of TiO2 modified with NiO nanoparticles (NPs) induced by radiolysis for photocatalytic hydrogen production was studied. The photocatalytic activity of NiO/TiO2 was evaluated using methanol as a hole scavenger under UV–visible light. All modified samples presented superior photocatalytic activity compared to bare TiO2. The dynamics of the charge carriers, a key electronic phenomenon in photocatalysis, was investigated by time-resolved microwave conductivity (TRMC). The results highlight the crucial role of Ni-based NPs modification in enhancing the separation of the charge carrier and activity under UV–visible irradiation. Furthermore, the results revealed that under visible irradiation, NiO-NPs inject electrons into the conduction band of titanium dioxide. Full article
(This article belongs to the Section Advanced Nanomaterials and Nanotechnology)
Show Figures

Figure 1

18 pages, 4008 KiB  
Article
Carboxymethyl Chitosan Cinnamaldehyde Coated SilverNanocomposites for Antifungal Seed Priming in Wheat: A Dual-Action Approach Toward Sustainable Crop Protection
by María Mondéjar-López, María Paz García-Simarro, Lourdes Gómez-Gómez, Oussama Ahrazem and Enrique Niza
Polymers 2025, 17(15), 2031; https://doi.org/10.3390/polym17152031 - 25 Jul 2025
Viewed by 238
Abstract
Biogenic silver nanoparticles (AgNPs) were synthesized via a green chemistry strategy using wheat extract and subsequently functionalized with a carboxymethyl chitosan–cinnamaldehyde (CMC=CIN) conjugate through covalent imine bonding. The resulting nanohybrid (AgNP–CMC=CIN) was extensively characterized to confirm successful biofunctionalization: UV–Vis spectroscopy revealed characteristic cinnamaldehyde [...] Read more.
Biogenic silver nanoparticles (AgNPs) were synthesized via a green chemistry strategy using wheat extract and subsequently functionalized with a carboxymethyl chitosan–cinnamaldehyde (CMC=CIN) conjugate through covalent imine bonding. The resulting nanohybrid (AgNP–CMC=CIN) was extensively characterized to confirm successful biofunctionalization: UV–Vis spectroscopy revealed characteristic cinnamaldehyde absorption peaks; ATR-FTIR spectra confirmed polymer–terpene bonding; and TEM analysis evidenced uniform nanoparticle morphology. Dynamic light scattering (DLS) measurements indicated an increase in hydrodynamic size upon coating (from 59.46 ± 12.63 nm to 110.17 ± 4.74 nm), while maintaining low polydispersity (PDI: 0.29 to 0.27) and stable surface charge (zeta potential ~ −30 mV), suggesting colloidal stability and homogeneous polymer encapsulation. Antifungal activity was evaluated against Fusarium oxysporum, Penicillium citrinum, Aspergillus niger, and Aspergillus brasiliensis. The minimum inhibitory concentration (MIC) against F. oxysporum was significantly reduced to 83 μg/mL with AgNP–CMC=CIN, compared to 708 μg/mL for uncoated AgNPs, and was comparable to the reference fungicide tebuconazole (52 μg/mL). Seed priming with AgNP–CMC=CIN led to improved germination (85%) and markedly reduced fungal colonization, while maintaining a favorable phytotoxicity profile. These findings highlight the potential of polysaccharide-terpene-functionalized biogenic AgNPs as a sustainable alternative to conventional fungicides, supporting their application in precision agriculture and integrated crop protection strategies. Full article
(This article belongs to the Special Issue Polymer Materials for Environmental Applications)
Show Figures

Figure 1

29 pages, 42729 KiB  
Article
Sustainable and Functional Polymeric Coating for Wood Preservation
by Ramona Marina Grigorescu, Rodica-Mariana Ion, Lorena Iancu, Sofia Slamnoiu-Teodorescu, Anca Irina Gheboianu, Elvira Alexandrescu, Madalina Elena David, Mariana Constantin, Iuliana Raut, Celina Maria Damian, Cristian-Andi Nicolae and Bogdan Trica
Coatings 2025, 15(8), 875; https://doi.org/10.3390/coatings15080875 - 25 Jul 2025
Viewed by 331
Abstract
The development of sustainable and functional nanocomposites has attracted considerable attention in recent years due to their broad spectrum of potential applications, including wood preservation. Also, a global goal is to reuse the large volumes of waste for environmental issues. In this context, [...] Read more.
The development of sustainable and functional nanocomposites has attracted considerable attention in recent years due to their broad spectrum of potential applications, including wood preservation. Also, a global goal is to reuse the large volumes of waste for environmental issues. In this context, the aim of the study was to obtain soda lignin particles, to graft ZnO nanoparticles onto their surface and to apply these hybrids, embedded into a biodegradable polymer matrix, as protection/preservation coating for oak wood. The organic–inorganic hybrids were characterized in terms of compositional, structural, thermal, and morphological properties that confirm the efficacy of soda lignin extraction and ZnO grafting by physical adsorption onto the decorating support and by weak interactions and coordination bonding between the components. The developed solution based on poly(3-hydroxybutyrate-co-3-hydroxyvalerate) and lignin-ZnO was applied to oak wood specimens by brushing, and the improvement in hydrophobicity (evaluated by water absorption that decreased by 48.8% more than wood, humidity tests where the treated sample had a humidity of 4.734% in comparison with 34.911% for control, and contact angle of 97.8° vs. 80.5° for untreated wood) and UV and fungal attack protection, while maintaining the color and aspect of specimens, was sustained. L.ZnO are well dispersed into the polymer matrix, ensuring a smooth and less porous wood surface. According to the results, the obtained wood coating using both a biodegradable polymeric matrix and a waste-based preservative can be applied for protection against weathering degradation factors, with limited water uptake and swelling of the wood, UV shielding, reduced wood discoloration and photo-degradation, effective protection against fungi, and esthetic quality. Full article
Show Figures

Figure 1

22 pages, 4984 KiB  
Article
Plasmonic Effect of Au Nanoparticles Deposited onto TiO2-Impact on the Photocatalytic Conversion of Acetaldehyde
by Maciej Trzeciak, Jacek Przepiórski, Agnieszka Kałamaga and Beata Tryba
Molecules 2025, 30(15), 3118; https://doi.org/10.3390/molecules30153118 - 25 Jul 2025
Viewed by 214
Abstract
A comparison of two synthesis methods for depositing Au nanoparticles onto TiO2 was performed: (1) impregnation with HAuCl4 followed by thermal treatment in argon, and (2) magnetron sputtering from a Au disc. The obtained materials were used for acetaldehyde decomposition in [...] Read more.
A comparison of two synthesis methods for depositing Au nanoparticles onto TiO2 was performed: (1) impregnation with HAuCl4 followed by thermal treatment in argon, and (2) magnetron sputtering from a Au disc. The obtained materials were used for acetaldehyde decomposition in a high temperature reaction chamber and ch aracterised by UV-Vis/DR, XPS, XRD, SEM, and photoluminescence measurements. The process was carried out using an air/acetaldehyde gas flow under UV or UV-Vis LED irradiation. The mechanism of acetaldehyde decomposition and conversion was elaborated by in situ FTIR measurements of the photocatalyst surface during the reaction. Simultaneously, concentration of acetaldehyde in the outlet gas was monitored using gas chromatography. All the Au/TiO2 samples showed absorption in the visible region, with a maximum around 550 nm. The plasmonic effect of Au nanoparticles was observed under UV-Vis light irradiation, especially at elevated temperatures such as 100 °C, for Au/TiO2 prepared by the magnetron sputtering method. This resulted in a significant increase in the conversion of acetaldehyde at the beginning, followed by gradual decrease over time. The collected FTIR spectra indicated that, under UV-Vis light, acetaldehyde was strongly adsorbed onto Au/TiO2 surface and formed crotonaldehyde or aldol. Under UV, acetaldehyde was mainly adsorbed in the form of acetate species. The plasmonic effect of Au nanoparticles increased the adsorption of acetaldehyde molecules onto TiO2 surface, while reducing their decomposition rate. The increased temperature of the process enhanced the decomposition of the acetaldehyde. Full article
(This article belongs to the Special Issue Research on Heterogeneous Catalysis—2nd Edition)
Show Figures

Figure 1

17 pages, 1594 KiB  
Article
Molecular-Level Insights into Meta-Phenylenediamine and Sulfonated Zinc Phthalocyanine Interactions for Enhanced Polyamide Membranes: A DFT and TD-DFT Study
by Ameni Gargouri and Bassem Jamoussi
Polymers 2025, 17(15), 2019; https://doi.org/10.3390/polym17152019 - 24 Jul 2025
Viewed by 285
Abstract
Access to clean water is a pressing global concern and membrane technologies play a vital role in addressing this challenge. Thin-film composite membranes prepared via interfacial polymerization (IPol) using meta-phenylenediamine (MPD) and trimesoyl chloride (TMC) exhibit excellent separation performance, but face limitations such [...] Read more.
Access to clean water is a pressing global concern and membrane technologies play a vital role in addressing this challenge. Thin-film composite membranes prepared via interfacial polymerization (IPol) using meta-phenylenediamine (MPD) and trimesoyl chloride (TMC) exhibit excellent separation performance, but face limitations such as fouling and low hydrophilicity. This study investigated the interaction between MPD and sulfonated zinc phthalocyanine, Zn(SO2)4Pc, as a potential strategy for enhancing membrane properties. Using Density Functional Theory (DFT) and Time-Dependent DFT (TD-DFT), we analyzed the optimized geometries, electronic structures, UV–Vis absorption spectra, FT-IR vibrational spectra, and molecular electrostatic potentials of MPD, Zn(SO2)4Pc, and their complexes. The results show that MPD/Zn(SO2)4Pc exhibits reduced HOMO-LUMO energy gaps and enhanced charge delocalization, particularly in aqueous environments, indicating improved stability and reactivity. Spectroscopic features confirmed strong interactions via hydrogen bonding and π–π stacking, suggesting that Zn(SO2)4Pc can act as a co-monomer or additive during IPol to improve polyamide membrane functionality. A conformational analysis of MPD/Zn(SO2)4Pc was conducted using density functional theory (DFT) to evaluate the impact of dihedral rotation on molecular stability. The 120° conformation was identified as the most stable, due to favorable π–π interactions and intramolecular hydrogen bonding. These findings offer computational evidence for the design of high-performance membranes with enhanced antifouling, selectivity, and structural integrity for sustainable water treatment applications. Full article
(This article belongs to the Special Issue Nanocomposite Polymer Membranes for Advanced Water Treatment)
Show Figures

Figure 1

22 pages, 7139 KiB  
Article
Influence of Fe Ions on the Surface, Microstructural and Optical Properties of Solution Precursor Plasma-Sprayed TiO2 Coatings
by Key Simfroso, Romnick Unabia, Anna Gibas, Michał Mazur, Paweł Sokołowski and Rolando Candidato
Coatings 2025, 15(8), 870; https://doi.org/10.3390/coatings15080870 - 24 Jul 2025
Viewed by 880
Abstract
This work investigates on how Fe incorporation influences the surface, microstructural, and optical properties of solution precursor plasma-sprayed TiO2 coatings. The Fe-TiO2 coatings were prepared using titanium isopropoxide and iron acetylacetonate as precursors, with ethanol as the solvent. X-ray diffraction analysis [...] Read more.
This work investigates on how Fe incorporation influences the surface, microstructural, and optical properties of solution precursor plasma-sprayed TiO2 coatings. The Fe-TiO2 coatings were prepared using titanium isopropoxide and iron acetylacetonate as precursors, with ethanol as the solvent. X-ray diffraction analysis revealed the existence of both anatase and rutile TiO2 phases, with a predominant rutile phase, also confirmed by Raman spectroscopy. There was an increase in the anatase crystals upon the addition of Fe ions. A longer spray distance further enhanced the anatase content and reduced the average TiO2 crystallite sizes present in the Fe-added coatings. SEM cross-sectional images displayed finely grained, densely packed deposits in the Fe-added coatings. UV-Vis spectroscopy showed visible-light absorption by the Fe-TiO2 coatings, with reduced band gap energies ranging from 2.846 ± 0.002 eV to 2.936 ± 0.003 eV. Photoluminescence analysis showed reduced emission intensity at 356 nm (3.48 eV) for the Fe-TiO2 coatings. These findings confirm solution precursor plasma spray to be an effective method for developing Fe-TiO2 coatings with potential application as visible-light-active photocatalysts. Full article
Show Figures

Figure 1

17 pages, 3345 KiB  
Article
Novel Tetraphenolic Porphyrazine Capable of MRSA Photoeradication
by Wojciech Szczolko, Eunice Zuchowska, Tomasz Koczorowski, Michal Kryjewski, Jolanta Dlugaszewska and Dariusz T. Mlynarczyk
Molecules 2025, 30(15), 3069; https://doi.org/10.3390/molecules30153069 - 22 Jul 2025
Viewed by 238
Abstract
This work presents the synthesis, characterization and evaluation of physicochemical and biological properties of two new aminoporphyrazine derivatives bearing magnesium(II) cations in their cores and peripheral pyrrolyl groups. The synthesis was carried out in several stages, using classical methods and the Microwave-Assisted Organic [...] Read more.
This work presents the synthesis, characterization and evaluation of physicochemical and biological properties of two new aminoporphyrazine derivatives bearing magnesium(II) cations in their cores and peripheral pyrrolyl groups. The synthesis was carried out in several stages, using classical methods and the Microwave-Assisted Organic Synthesis (MAOS) approach. The obtained compounds were characterized using spectral techniques: UV-Vis spectrophotometry, mass spectrometry, 1H and 13C NMR spectroscopy. The porphyrazine derivatives were tested for their electrochemical properties (CV and DPV), which revealed four redox processes, of which in compound 7 positive shifts of oxidation potentials were observed, resulting from the presence of free phenolic hydroxyl groups. In spectroelectrochemical measurements, changes in UV-Vis spectra associated with the formation of positive-charged states were noted. Photophysical studies revealed the presence of characteristic absorption Q and Soret bands, low fluorescence quantum yields and small Stokes shifts. The efficiency of singlet oxygen generation (ΦΔ) was higher for compound 6 (up to 0.06), but compound 7, despite its lower efficiency (0.02), was distinguished by a better biological activity profile. Toxicity tests using the Aliivibrio fischeri bacteria indicated the lower toxicity of 7 compared to 6. The most promising result was the strong photodynamic activity of porphyrazine 7 against the Methicillin-resistant Stapylococcus aureus (MRSA) strain, leading to a more-than-5.6-log decrease in viable counts after the colony forming units (CFU) after light irradiation. Compound 6 did not show any significant antibacterial activity. The obtained data indicate that porphyrazine 7 is a promising candidate for applications in photodynamic therapy of bacterial infections. Full article
Show Figures

Figure 1

22 pages, 1486 KiB  
Review
Review on Aging Behavior and Durability Enhancement of Bamboo Fiber-Reinforced Polymer Composites
by Sameeksha Shettigar, Mandya Channegowda Gowrishankar and Manjunath Shettar
Molecules 2025, 30(15), 3062; https://doi.org/10.3390/molecules30153062 - 22 Jul 2025
Viewed by 245
Abstract
This review article focuses on the long-term durability challenges associated with bamboo fiber-reinforced polymer composites when subjected to various environmental aging conditions such as water immersion, hygrothermal fluctuations, ultraviolet (UV) radiation, soil burial, and refrigerated storage. The primary issue addressed is the degradation [...] Read more.
This review article focuses on the long-term durability challenges associated with bamboo fiber-reinforced polymer composites when subjected to various environmental aging conditions such as water immersion, hygrothermal fluctuations, ultraviolet (UV) radiation, soil burial, and refrigerated storage. The primary issue addressed is the degradation of mechanical and structural performance of bamboo fiber-reinforced polymer composites due to moisture absorption, fiber swelling, and fiber–matrix interface deterioration. To mitigate these aging effects, the study evaluates and compares multiple strategies, including chemical and physical fiber surface treatments, filler additions, and fiber hybridization, which aim to enhance moisture resistance and mechanical stability. These composites are relevant in automotive interiors, construction panels, building insulation, and consumer goods due to their eco-friendly nature and potential to replace conventional synthetic composites. This review is necessary to consolidate current knowledge, identify effective enhancement approaches, and guide the development of environmentally resilient bamboo fiber-reinforced polymer composites for real-world applications. Full article
(This article belongs to the Special Issue Advances in Natural Fiber Composites)
Show Figures

Figure 1

27 pages, 8396 KiB  
Article
Biosynthesis of Zinc Oxide Nanostructures Using Leaf Extract of Azadirachta indica: Characterizations and In Silico and Nematicidal Potentials
by Gulrana Khuwaja, Anis Ahmad Chaudhary, Abadi M. Mashlawi, Abdullah Ali Alamri, Faris Alfifi, Kahkashan Anjum, Md Shamsher Alam, Mohammad Intakhab Alam, Syed Kashif Ali, Nadeem Raza, Mohamed A. M. Ali and Mohd Imran
Catalysts 2025, 15(7), 693; https://doi.org/10.3390/catal15070693 - 21 Jul 2025
Viewed by 465
Abstract
Biosynthesized ZnO nanostructures were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), ultraviolet–visible (UV-vis) spectroscopy, and Fourier transform–infrared (FT-IR) spectroscopy. XRD confirmed a hexagonal wurtzite phase with an average crystallite size of 36.44 nm, while UV-vis spectroscopy showed [...] Read more.
Biosynthesized ZnO nanostructures were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), ultraviolet–visible (UV-vis) spectroscopy, and Fourier transform–infrared (FT-IR) spectroscopy. XRD confirmed a hexagonal wurtzite phase with an average crystallite size of 36.44 nm, while UV-vis spectroscopy showed a distinct absorption peak at 321 nm. The Zeta potential of the ZnO nanostructures was −24.28 mV, indicating high stability in suspension, which is essential for their dispersion and functionality in biological and environmental applications. The nematicidal activity of ZnO was evaluated in vitro at concentrations of 150, 300, 450, and 600 ppm, with the highest concentration achieving 75.71% mortality of second-stage juveniles (J2s) after 72 h. The calculated LC50 values for the treatments were 270.33 ppm at 72 h. Additionally, molecular docking studies indicated significant interactions between the ZnO nanostructures and nematode proteins, HSP-90 and ODR1, supporting their potential nematicidal mechanism. This research highlights the effectiveness of neem leaf extract-mediated ZnO nanostructures as an eco-friendly, sustainable alternative for nematode control, presenting a promising solution for agricultural pest management. Full article
(This article belongs to the Special Issue (Bio)nanomaterials in Catalysis)
Show Figures

Figure 1

Back to TopTop