NiO/TiO2 p-n Heterojunction Induced by Radiolysis for Photocatalytic Hydrogen Evolution
Abstract
1. Introduction
2. Materials and Methods
2.1. Chemical Reagents
2.2. Synthesis Method
2.3. Characterization of NiO/TiO2
2.4. Photocatalytic Hydrogen Generation Tests
3. Results and Discussion
3.1. Characterization of the Photocatalysts
3.2. Photocatalytic Hydrogen Generation
3.3. Proposed Photocatalytic Hydrogen Mechanism
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
H2 | Hydrogen |
TiO2 | Titanium Dioxide |
Ni | Nickel |
NiO | Nickel Oxide |
Ni0 | Metallic Nickel |
Ni(OH)2 | Nickel Hydroxide |
NPs | Nanoparticles |
Acac | Acetylacetonate |
N2 | Nitrogen |
O2 | Oxygen |
UV | Ultraviolet |
CB | Conduction Band |
VB | Valence Band |
NHE | Normal Hydrogen Electrode |
TEM | Transmission Electron Microscopy |
HRTEM | High-Resolution Transmission Electron Microscopy |
EELS | Electron Energy Loss Spectroscopy |
ICP-OES | Inductively Coupled Plasma Optical Emission Spectrometry |
DRS | Diffuse Reflectance Spectroscopy |
XRD | X-Ray Diffraction |
XPS | X-ray Photoelectron Spectroscopy |
TRMC | Time-Resolved Microwave Conductivity |
GC | Gas Chromatography |
CONAHCYT | Consejo Nacional de Humanidades, Ciencias y Tecnologías |
CNRS | Centre National de la Recherche Scientifique |
UMR | Unité Mixte de Recherche |
IPICYT | Instituto Potosino de Investigación Científica y Tecnológica |
References
- Sun, H.; Li, L.; Chen, Y.; Kim, H.; Xu, X.; Guan, D.; Hu, Z.; Zhang, L.; Shao, Z.; Jung, W. Boosting ethanol oxidation by NiOOH-CuO nano-heterostructure for energy-saving hydrogen production and biomass upgrading. Appl. Catal. B Environ. 2023, 325, 122388. [Google Scholar] [CrossRef]
- Yuan, X.; Floresyona, D.; Aubert, P.H.; Bui, T.T.; Remita, S.; Ghosh, S.; Brisset, F.; Goubard, F.; Remita, H. Photocatalytic degradation of organic pollutant with polypyrrole nanostructures under UV and visible light. Appl. Catal. B 2019, 242, 284–292. [Google Scholar] [CrossRef]
- Zhang, J.; Zhou, P.; Liu, J.; Yu, J. New understanding of the difference of photocatalytic activity among anatase, rutile and brookite TiO2. Phys. Chem. Chem. Phys. 2014, 16, 20382–20386. [Google Scholar] [CrossRef]
- Méndez-Medrano, M.G.; Kowalska, E.; Lehoux, A.; Herissan, A.; Ohtani, B.; Bahena, D.; Briois, V.; Colbeau-Justin, C.; Rodríguez-López, J.L.; Remita, H. Surface Modification of TiO2 with Ag Nanoparticles and CuO Nanoclusters for Application in Photocatalysis. J. Phys. Chem. C. 2016, 120, 5143–5154. [Google Scholar] [CrossRef]
- Yuan, X.; Kobylanski, M.P.; Cui, Z.; Li, J.; Beaunier, P.; Dragoe, D.; Colbeau-Justin, C.; Zaleska-Medynska, A.; Remita, H. Highly active composite TiO2-polypyrrole nanostructures for water and air depollution under visible light irradiation. J. Environ. Chem. Eng. 2020, 8, 104178. [Google Scholar] [CrossRef]
- Rafique, M.; Hajra, S.; Irshad, M.; Usman, M.; Imran, M.; Assiri, M.A.; Ashraf, W.M. Hydrogen Production Using TiO2-Based Photocatalysts: A Comprehensive Review. ACS Omega 2023, 8, 25640–25648. [Google Scholar] [CrossRef]
- Chung, Y.H.; Han, K.; Lin, C.Y.; O’Neill, D.; Mul, G.; Mei, B.; Yang, C.M. Photocatalytic hydrogen production by photo-reforming of methanol with one-pot synthesized Pt-containing TiO2 photocatalysts. Catal. Today 2020, 356, 95–100. [Google Scholar] [CrossRef]
- Chen, Y.; Soler, L.; Armengol-Profitós, M.; Xie, C.; Crespo, D.; Llorca, J. Enhanced photoproduction of hydrogen on Pd/TiO2 prepared by mechanochemistry. Appl. Catal. B 2022, 309, 121275. [Google Scholar] [CrossRef]
- Fang, S.; Liu, Y.; Sun, Z.; Lang, J.; Bao, C.; Hu, Y.H. Photocatalytic hydrogen production over Rh-loaded TiO2: What is the origin of hydrogen and how to achieve hydrogen production from water? Appl. Catal. B 2020, 278, 119316. [Google Scholar] [CrossRef]
- Méndez-Medrano, M.G.; Kowalska, E.; Lehoux, A.; Herissan, A.; Ohtani, B.; Rau, S.; Colbeau-Justin, C.; Rodríguez-López, J.L.; Remita, H. Surface Modification of TiO2 with Au Nanoclusters for Efficient Water Treatment and Hydrogen Generation under Visible Light. J. Phys. Chem. C 2016, 120, 25010–25022. [Google Scholar] [CrossRef]
- Gogoi, D.; Namdeo, A.; Golder, A.K.; Peela, N.R. Ag-doped TiO2 photocatalysts with effective charge transfer for highly efficient hydrogen production through water splitting. Int. J. Hydrogen Energy 2020, 45, 2729–2744. [Google Scholar] [CrossRef]
- Luna, A.L.; Dragoe, D.; Wang, K.; Beaunier, P.; Kowalska, E.; Ohtani, B.; Bahena Uribe, D.; Valenzuela, M.A.; Remita, H.; Colbeau-Justin, C. Photocatalytic Hydrogen Evolution Using Ni-Pd/TiO2: Correlation of Light Absorption, Charge-Carrier Dynamics, and Quantum Efficiency. J. Phys. Chem. C. 2017, 121, 14302–14311. [Google Scholar] [CrossRef]
- Xu, Y.; Xu, R. Nickel-based cocatalysts for photocatalytic hydrogen production. Appl. Surf. Sci. 2015, 351, 779–793. [Google Scholar] [CrossRef]
- Wang, Z.; Fan, J.; Cheng, B.; Yu, J.; Xu, J. Nickel-based cocatalysts for photocatalysis: Hydrogen evolution, overall water splitting and CO2 reduction. Mater. Today Phys. 2020, 15, 100279. [Google Scholar] [CrossRef]
- Sreethawong, T.; Suzuki, Y.; Yoshikawa, S. Photocatalytic evolution of hydrogen over mesoporous TiO2 supported NiO photocatalyst prepared by single-step sol-gel process with surfactant template. Int. J. Hydrogen Energy 2005, 30, 1053–1062. [Google Scholar] [CrossRef]
- Zheng, D.; Zhao, H.; Wang, S.; Hu, J.; Chen, Z. NiO-TiO2 p-n heterojunction for solar hydrogen generation. Catalysts 2021, 11, 1427. [Google Scholar] [CrossRef]
- Rawool, S.A.; Pai, M.R.; Banerjee, A.M.; Arya, A.; Ningthoujam, R.S.; Tewari, R.; Rao, R.; Chalke, B.; Ayyub, P.; Tripathi, A.K.; et al. pn Heterojunctions in NiO:TiO2 composites with type-II band alignment assisting sunlight driven photocatalytic H2 generation. Appl. Catal. B 2018, 221, 443–458. [Google Scholar] [CrossRef]
- Yu, J.; Hai, Y.; Cheng, B. Enhanced photocatalytic H2-production activity of TiO2 by Ni(OH)2 cluster modification. J. Phys. Chem. C 2011, 115, 4953–4958. [Google Scholar] [CrossRef]
- Lakshmana Reddy, N.; Cheralathan, K.K.; Durga Kumari, V.; Neppolian, B.; Muthukonda Venkatakrishnan, S. Photocatalytic Reforming of Biomass Derived Crude Glycerol in Water: A Sustainable Approach for Improved Hydrogen Generation Using Ni(OH)2 Decorated TiO2 Nanotubes under Solar Light Irradiation. ACS Sustain. Chem. Eng. 2018, 6, 3754–3764. [Google Scholar] [CrossRef]
- Xie, L.; Hao, J.G.; Chen, H.Q.; Li, Z.X.; Ge, S.Y.; Mi, Y.; Yang, K.; Lu, K.Q. Recent advances of nickel hydroxide-based cocatalysts in heterogeneous photocatalysis. Catal. Commun. 2022, 162, 106371. [Google Scholar] [CrossRef]
- Wang, C.; Dragoe, D.; Colbeau-Justin, C.; Haghi-Ashtiani, P.; Ghazzal, M.N.; Remita, H. Highly Dispersed Ni-Pt Bimetallic Cocatalyst: The Synergetic Effect Yields Pt-Like Activity in Photocatalytic Hydrogen Evolution. ACS Appl. Mater. Interfaces 2023, 15, 42637–42647. [Google Scholar] [CrossRef]
- Luna, A.L.; Novoseltceva, E.; Louarn, E.; Beaunier, P.; Kowalska, E.; Ohtani, B.; Valenzuela, M.A.; Remita, H.; Colbeau-Justin, C. Synergetic effect of Ni and Au nanoparticles synthesized on titania particles for efficient photocatalytic hydrogen production. Appl. Catal. B 2016, 191, 18–28. [Google Scholar] [CrossRef]
- Yu, X.; Zhang, J.; Zhao, Z.; Guo, W.; Qiu, J.; Mou, X.; Li, A.; Claverie, J.P.; Liu, H. NiO-TiO2 p-n heterostructured nanocables bridged by zero-bandgap rGO for highly efficient photocatalytic water splitting. Nano Energy 2015, 16, 207–217. [Google Scholar] [CrossRef]
- Uddin, M.T.; Nicolas, Y.; Olivier, C.; Jaegermann, W.; Rockstroh, N.; Junge, H.; Toupance, T. Band alignment investigations of heterostructure NiO/TiO2 nanomaterials used as efficient heterojunction earth-abundant metal oxide photocatalysts for hydrogen production. Phys. Chem. Chem. Phys. 2017, 19, 19279–19288. [Google Scholar] [CrossRef]
- Liu, J.; Li, Y.; Ke, J.; Wang, S.; Wang, L.; Xiao, H. Black NiO-TiO2 nanorods for solar photocatalysis: Recognition of electronic structure and reaction mechanism. Appl. Catal. B 2018, 224, 705–714. [Google Scholar] [CrossRef]
- D’Amario, L.; Föhlinger, J.; Boschloo, G.; Hammarström, L. Unveiling hole trapping and surface dynamics of NiO nanoparticles. Chem. Sci. 2018, 9, 223–230. [Google Scholar] [CrossRef]
- Ibupoto, Z.H.; Abbasi, M.A.; Liu, X.; Alsalhi, M.S.; Willander, M. The synthesis of NiO/TiO2 heterostructures and their valence band offset determination. J. Nanomater. 2014, 2014, 928658. [Google Scholar] [CrossRef]
- Melián, E.P.; Suárez, M.N.; Jardiel, T.; Rodríguez, J.M.D.; Caballero, A.C.; Araña, J.; Calatayud, D.G.; Díaz, O.G. Influence of nickel in the hydrogen production activity of TiO2. Appl. Catal. B 2014, 152–153, 192–201. [Google Scholar] [CrossRef]
- Yu, C.; Li, M.; Yang, D.; Pan, K.; Yang, F.; Xu, Y.; Yuan, L.; Qu, Y.; Zhou, W. NiO nanoparticles dotted TiO2 nanosheets assembled nanotubes P-N heterojunctions for efficient interface charge separation and photocatalytic hydrogen evolution. Appl. Surf. Sci. 2021, 568, 150981. [Google Scholar] [CrossRef]
- Remita, H.; Lampre, I. Synthesis of Metallic Nanostructures Using Ionizing Radiation and Their Applications. Materials 2024, 17, 364. [Google Scholar] [CrossRef]
- Ray, P.; Clément, M.; Martini, C.; Abdellah, I.; Beaunier, P.; Rodriguez-Lopez, J.L.; Huc, V.; Remita, H.; Lampre, I. Stabilisation of small mono- and bimetallic gold-silver nanoparticles using calix [8]arene derivatives. New J. Chem. 2018, 42, 14128–14137. [Google Scholar] [CrossRef]
- Myron, J.J.J.; Freeman, G.R. The radiolysis of ethanol liquid phase. Can. J. Chem. 1965, 43, 35–43. [Google Scholar] [CrossRef]
- Tahiri Alaoui, O.; Herissan, A.; Le Quoc, C.; Zekri, M.E.M.; Sorgues, S.; Remita, H.; Colbeau-Justin, C. Elaboration, charge-carrier lifetimes and activity of Pd-TiO2 photocatalysts obtained by gamma radiolysis. J. Photochem. Photobiol. A Chem. 2012, 242, 34–43. [Google Scholar] [CrossRef]
- Fairley, N.; Fernandez, V.; Richard-Plouet, M.; Guillot-Deudon, C.; Walton, J.; Smith, E.; Flahaut, D.; Greiner, M.; Biesinger, M.; Tougaard, S.; et al. Systematic and collaborative approach to problem solving using X-ray photoelectron spectroscopy. Appl. Surf. Sci. Adv. 2021, 5, 100112. [Google Scholar] [CrossRef]
- Luna, A.L.; Matter, F.; Schreck, M.; Wohlwend, J.; Tervoort, E.; Colbeau-Justin, C.; Niederberger, M. Monolithic metal-containing TiO2 aerogels assembled from crystalline pre-formed nanoparticles as efficient photocatalysts for H2 generation. Appl. Catal. B 2020, 267, 118660. [Google Scholar] [CrossRef]
- Remita, H.; Méndez-Medrano, M.G.; Colbeau-Justin, C. Effect of Modification of TiO2 with Metal Nanoparticles on its Photocatalytic Properties Studied by Time Resolved Microwave Conductivity. In Visible Light-Active Photocatalysis; Ghosh, S., Ed.; Wiley-VCH: Weinheim, Germany, 2018; pp. 129–164. [Google Scholar]
- Méndez-Medrano, A.A.; Bahena-Uribe, D.; Dragoe, D.; Clavaguéra, C.; Colbeau-Justin, C.; Palomares Báez, J.P.; Rodríguez-López, J.L.; Remita, H. Enhanced Photocatalytic Activity of Surface-Modified TiO2 with Bimetallic AuPd Nanoalloys for Hydrogen Generation. Sol. RRL 2024, 8, 2400106. [Google Scholar] [CrossRef]
- Yuan, X.; Dragoe, D.; Beaunier, P.; Uribe, D.B.; Ramos, L.; Méndez-Medrano, M.G.; Remita, H. Polypyrrole nanostructures modified with mono- and bimetallic nanoparticles for photocatalytic H2 generation. J. Mater. Chem. A 2020, 8, 268–276. [Google Scholar] [CrossRef]
- Langenberg, E.; Rebled, J.; Estradé, S.; Daumont, C.J.M.; Ventura, J.; Coy, L.E.; Polo, M.C.; García-Cuenca, M.V.; Ferrater, C.; Noheda, B.; et al. Long-range order of Ni2+ and Mn4+ and ferromagnetism in multiferroic (Bi0.9La0.1)2NiMnO6 thin films. J. Appl. Phys. 2010, 108, 123907. [Google Scholar] [CrossRef]
- Potapov, P.L.; Kulkova, S.E.; Schryvers, D.; Verbeeck, J. Structural and chemical effects on EELS L3,2 ionization edges in Ni-based intermetallic compounds. Phys. Rev. B 2001, 64, 184110. [Google Scholar] [CrossRef]
- De Groot, F.M.F.; Hu, Z.W.; Lopez, M.F.; Kaindl, G.; Guillot, F.; Tronc, M. Differences between L3 and L2 x-ray absorption spectra of transition metal compounds. J. Chem. Phys. 1994, 101, 6570–6576. [Google Scholar] [CrossRef]
- Wang, W.; Liu, S.; Nie, L.; Cheng, B.; Yu, J. Enhanced photocatalytic H2-production activity of TiO2 using Ni(NO3)2 as an additive. Phys. Chem. Chem. Phys. 2013, 15, 12033–12039. [Google Scholar] [CrossRef]
- Chen, W.T.; Chan, A.; Sun-Waterhouse, D.; Llorca, J.; Idriss, H.; Waterhouse, G.I.N. Performance comparison of Ni/TiO2 and Au/TiO2 photocatalysts for H2 production in different alcohol-water mixtures. J. Catal. 2018, 367, 27–42. [Google Scholar] [CrossRef]
- Chen, J.; Wang, M.; Hu, J.; Han, J.; Yu, H.; Guo, R. TiO2 nanosheet/NiO nanorod/poly(dopamine) ternary hybrids towards efficient visible light photocatalysis. Colloids Surf. A Physicochem. Eng. Asp. 2022, 637, 128197. [Google Scholar] [CrossRef]
- Makuła, P.; Pacia, M.; Macyk, W. How To Correctly Determine the Band Gap Energy of Modified Semiconductor Photocatalysts Based on UV-Vis Spectra. J. Phys. Chem. Lett. 2018, 9, 6814–6817. [Google Scholar] [CrossRef]
- Li, W.; Liang, R.; Hu, A.; Huang, Z.; Zhou, N. Generation of oxygen vacancies in visible light activated one-dimensional iodine TiO2 photocatalysts. RSC Adv. 2014, 4, 36959–36966. [Google Scholar] [CrossRef]
- Biesinger, M.C.; Payne, B.P.; Grosvenor, A.P.; Lau, L.W.M.; Gerson, A.R.; Smart, R.S.C. Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni. Appl. Surf. Sci. 2011, 257, 2717–2730. [Google Scholar] [CrossRef]
- Zou, D.; Yi, Y.; Song, Y.; Guan, D.; Xu, M.; Ran, R.; Wang, W.; Zhou, W.; Shao, Z. BaCe0.16Y0.04Fe0.8O3-δ nanocomposite: A new high-performance cobalt-free triple-conducting cathode for protonic ceramic fuelcells operating at reduced temperatures. J. Mater. Chem. A 2022, 10, 5381–5390. [Google Scholar] [CrossRef]
- Zhao, H.; Li, C.F.; Liu, L.Y.; Palma, B.; Hu, Z.Y.; Renneckar, S.; Larter, S.; Li, Y.; Kibria, M.G.; Hu, J.; et al. n-p Heterojunction of TiO2-NiO core-shell structure for efficient hydrogen generation and lignin photoreforming. J. Colloid Interface Sci. 2021, 585, 694–704. [Google Scholar] [CrossRef]
- Lai, B.; Mei, F.; Gu, Y. Bifunctional Solid Catalyst for Organic Reactions in Water: Simultaneous Anchoring of Acetylacetone Ligands and Amphiphilic Ionic Liquid “Tags” by Using a Dihydropyran Linker. Chem. Asian J. 2018, 13, 2529–2542. [Google Scholar] [CrossRef]
- Kim, S.I.; Thiyagarajan, P.; Jang, J.H. Great improvement in pseudocapacitor properties of nickel hydroxide via simple gold deposition. Nanoscale 2014, 6, 11646–11652. [Google Scholar] [CrossRef]
- Hai, Z.; El Kolli, N.; Uribe, D.B.; Beaunier, P.; José-Yacaman, M.; Vigneron, J.; Etcheberry, A.; Sorgues, S.; Colbeau-Justin, C.; Chen, J.; et al. Modification of TiO2 by bimetallic Au-Cu nanoparticles for wastewater treatment. J. Mater. Chem. A 2013, 1, 10829–10835. [Google Scholar] [CrossRef]
- Chen, J.; Wang, M.; Han, J.; Guo, R. TiO2 nanosheet/NiO nanorod hierarchical nanostructures: P–n heterojunctions towards efficient photocatalysis. J. Colloid Interface Sci. 2020, 562, 313–321. [Google Scholar] [CrossRef]
- Rosen, B.M.; Quasdorf, K.W.; Wilson, D.A.; Zhang, N.; Resmerita, A.M.; Garg, N.K.; Percec, V. Nickel-catalyzed cross-couplings involving carbon-oxygen bonds. Chem. Rev. 2011, 111, 1346–1416. [Google Scholar] [CrossRef]
- Dong, Y.; Jv, J.J.; Li, Y.; Li, W.H.; Chen, Y.Q.; Sun, Q.; Ma, J.P.; Dong, Y. Bin. Nickel-metalated porous organic polymer for Suzuki-Miyaura cross-coupling reaction. RSC Adv. 2019, 9, 20266–20272. [Google Scholar] [CrossRef]
- Kaniukov, E.Y.; Shumskaya, A.E.; Kutuzau, M.D.; Bundyukova, V.D.; Yakimchuk, D.V.; Borgekov, D.B.; Ibragimova, M.A.; Korolkov, I.V.; Giniyatova, S.G.; Kozlovskiy, A.L.; et al. Degradation mechanism and way of surface protection of nickel nanostructures. Mater. Chem. Phys. 2019, 223, 88–97. [Google Scholar] [CrossRef]
- De, S.; Zhang, J.; Luque, R.; Yan, N. Ni-based bimetallic heterogeneous catalysts for energy and environmental applications. Energy Environ. Sci. 2016, 9, 3314–3347. [Google Scholar] [CrossRef]
- Zhao, X.; Xie, W.; Shao, X.; Wang, Z.; Yang, B.; Yang, C.; Wang, J.; Su, X. An effective Ni/C co-catalyst for promoting photocatalytic hydrogen evolution over TiO2 nanospheres. Mater. Sci. Semicond. Process. 2022, 148, 106775. [Google Scholar] [CrossRef]
- Chen, X.; Chen, W.; Lin, P.; Yang, Y.; Gao, H.; Yuan, J.; Shangguan, W. In situ photodeposition of nickel oxides on CdS for highly efficient hydrogen production via visible-light-driven photocatalysis. Catal. Commun. 2013, 36, 104–108. [Google Scholar] [CrossRef]
- Quiroz-Cardoso, O.; Oros-Ruiz, S.; Solís-Gómez, A.; López, R.; Gómez, R. Enhanced photocatalytic hydrogen production by CdS nanofibers modified with graphene oxide and nickel nanoparticles under visible light. Fuel 2019, 237, 227–235. [Google Scholar] [CrossRef]
- Yan, Z.; Sun, Z.; Liu, X.; Jia, H.; Du, P. Cadmium sulfide/graphitic carbon nitride heterostructure nanowire loading with a nickel hydroxide cocatalyst for highly efficient photocatalytic hydrogen production in water under visible light. Nanoscale 2016, 8, 4748–4756. [Google Scholar] [CrossRef]
- Sun, B.; Zhou, G.; Gao, T.; Zhang, H.; Yu, H. NiO nanosheet/TiO2 nanorod-constructed p-n heterostructures for improved photocatalytic activity. Appl. Surf. Sci. 2016, 364, 322–331. [Google Scholar] [CrossRef]
- Mannaa, M.A.; Qasim, K.F.; Alshorifi, F.T.; El-Bahy, S.M.; Salama, R.S. Role of NiO Nanoparticles in Enhancing Structure Properties of TiO2 and Its Applications in Photodegradation and Hydrogen Evolution. ACS Omega 2021, 6, 30386–30400. [Google Scholar] [CrossRef]
- Ortega Méndez, J.A.; López, C.R.; Pulido Melián, E.; González Díaz, O.; Doña Rodríguez, J.M.; Fernández Hevia, D.; Macías, M. Production of hydrogen by water photo-splitting over commercial and synthesised Au/TiO2 catalysts. Appl. Catal. B 2014, 147, 439–452. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Méndez-Medrano, A.A.; Yuan, X.; Dragoe, D.; Colbeau-Justin, C.; Rodríguez López, J.L.; Remita, H. NiO/TiO2 p-n Heterojunction Induced by Radiolysis for Photocatalytic Hydrogen Evolution. Materials 2025, 18, 3513. https://doi.org/10.3390/ma18153513
Méndez-Medrano AA, Yuan X, Dragoe D, Colbeau-Justin C, Rodríguez López JL, Remita H. NiO/TiO2 p-n Heterojunction Induced by Radiolysis for Photocatalytic Hydrogen Evolution. Materials. 2025; 18(15):3513. https://doi.org/10.3390/ma18153513
Chicago/Turabian StyleMéndez-Medrano, Ana Andrea, Xiaojiao Yuan, Diana Dragoe, Christophe Colbeau-Justin, José Luis Rodríguez López, and Hynd Remita. 2025. "NiO/TiO2 p-n Heterojunction Induced by Radiolysis for Photocatalytic Hydrogen Evolution" Materials 18, no. 15: 3513. https://doi.org/10.3390/ma18153513
APA StyleMéndez-Medrano, A. A., Yuan, X., Dragoe, D., Colbeau-Justin, C., Rodríguez López, J. L., & Remita, H. (2025). NiO/TiO2 p-n Heterojunction Induced by Radiolysis for Photocatalytic Hydrogen Evolution. Materials, 18(15), 3513. https://doi.org/10.3390/ma18153513