Influence of Fe Ions on the Surface, Microstructural and Optical Properties of Solution Precursor Plasma-Sprayed TiO2 Coatings
Abstract
1. Introduction
2. Experimental Section
2.1. Solution Precursor Preparation
2.2. Operational Plasma Spray Parameters
2.3. Characterization of the Coatings
3. Results
3.1. SEM-EDX
3.2. XRD Results
3.3. Raman Spectroscopy
3.4. Photoluminescence
3.5. UV-Vis Results
4. Discussion
4.1. Influence of Fe Ions on the Microstructural Properties of TiO2 Coatings
4.2. Influence of Fe Ions on the Optical Properties of TiO2 Coatings
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tang, J.; Durrant, J.R.; Klug, D.R. Mechanism of Photocatalytic Water Splitting in TiO2. Reaction of Water with Photoholes, Importance of Charge Carrier Dynamics, and Evidence for Four-Hole Chemistry. J. Am. Chem. Soc. 2008, 130, 13885–13891. [Google Scholar] [CrossRef] [PubMed]
- Eidsvåg, H.; Bentouba, S.; Vajeeston, P.; Yohi, S.; Velauthapillai, D. TiO2 as a Photocatalyst for Water Splitting—An Experimental and Theoretical Review. Molecules 2021, 26, 1687. [Google Scholar] [CrossRef] [PubMed]
- Moridon, S.N.F.; Arifin, K.; Yunus, R.M.; Minggu, L.J.; Kassim, M.B. Photocatalytic water splitting performance of TiO2 sensitized by metal chalcogenides: A review. Ceram. Int. 2022, 48, 5892–5907. [Google Scholar] [CrossRef]
- ul Haq, A.; Saeed, M.; Khan, S.G.; Ibrahim, M. Photocatalytic Applications of Titanium Dioxide (TiO2). In Titanium Dioxide—Advances and Applications; IntechOpen: London, UK, 2021. [Google Scholar]
- Gupta, S.; Tripathi, M. A review of TiO2 nanoparticles. Chin. Sci. Bull. 2011, 56, 1639–1657. [Google Scholar] [CrossRef]
- Li, R.; Weng, Y.; Zhou, X.; Wang, X.; Mi, Y.; Chong, R.; Han, H.; Li, C. Achieving overall water splitting using titanium dioxide-based photocatalysts of different phases. Energy Environ. Sci. 2015, 8, 2377–2382. [Google Scholar] [CrossRef]
- Li, Y.; Peng, Y.-K.; Hu, L.; Zheng, J.; Prabhakaran, D.; Wu, S.; Puchtler, T.J.; Li, M.; Wong, K.-Y.; Taylor, R.A.; et al. Photocatalytic water splitting by N-TiO2 on MgO (111) with exceptional quantum efficiencies at elevated temperatures. Nat. Commun. 2019, 10, 4421. [Google Scholar] [CrossRef]
- Rusinque, B.; Escobedo, S.; de Lasa, H. Hydrogen Production via Pd-TiO2 Photocatalytic Water Splitting under Near-UV and Visible Light: Analysis of the Reaction Mechanism. Catalysts 2021, 11, 405. [Google Scholar] [CrossRef]
- Fu, Y.-S.; Li, J.; Li, J. Metal/Semiconductor Nanocomposites for Photocatalysis: Fundamentals, Structures, Applications and Properties. Nanomaterials 2019, 9, 359. [Google Scholar] [CrossRef]
- Kumaravel, V.; Mathew, S.; Bartlett, J.; Pillai, S.C. Photocatalytic hydrogen production using metal doped TiO2: A review of recent advances. Appl. Catal. B Environ. 2019, 244, 1021–1064. [Google Scholar] [CrossRef]
- Sulaiman, S.N.A.; Noh, M.Z.; Adnan, N.N.; Bidin, N.; Razak, S.N.A. Effects of photocatalytic activity of metal and non-metal doped TiO2 for Hydrogen production enhancement—A Review. IOP Conf. Ser. J. Phys. Conf. Ser. 2017, 1027, 012006. [Google Scholar]
- Lv, C.; Lan, X.; Wang, L.; Yu, Q.; Zhang, M.; Sun, H.; Shi, J. Alkaline-earth-metal-doped TiO2 for enhanced photodegradation and H2 evolution: Insights into the mechanisms. Catal. Sci. Technol. 2019, 9, 6124–6135. [Google Scholar] [CrossRef]
- Rafique, M.; Hajra, S.; Irshad, M.; Usman, M.; Imran, M.; Assiri, M.A.; Ashraf, W.M. Hydrogen Production Using TiO2-Based Photocatalysts: A Comprehensive Review. ACS Omega 2023, 8, 25640–25648. [Google Scholar] [CrossRef] [PubMed]
- Nair, P.B.; Justinvictor, V.B.; Daniel, G.P.; Joy, K.; Ramakrishnan, V.; Kumar, D.D.; Thomas, P.V. Structural, optical, photoluminescence and photocatalytic investigations on Fe doped TiO2 thin films. Thin Solid Films 2014, 550, 121–127. [Google Scholar] [CrossRef]
- Safari, M.; Talebi, R.; Rostami, M.H.; Nikazar, M.; Dadvar, M. Synthesis of iron-doped TiO2 for degradation of reactive Orange16. J. Environ. Health Sci. Eng. 2014, 12, 19. [Google Scholar] [CrossRef] [PubMed]
- Zahid, R.; Manzoor, M.; Rafiq, A.; Ikram, M.; Nafees, M.; Butt, A.R.; Hussain, S.G.; Ali, S. Influence of Iron Doping on Structural, Optical and Magnetic Properties of TiO2 Nanoparticles. Electron. Mater. Lett. 2018, 14, 587–593. [Google Scholar] [CrossRef]
- Yamashita, H.; Harada, M.; Misaka, J.; Takeuchi, M.; Neppolian, B.; Anpo, M. Photocatalytic degradation of organic compounds diluted in water using visible light-responsive metal ion-implanted TiO2 catalysts: Fe ion-implanted TiO2. Catal. Today 2003, 84, 191–196. [Google Scholar] [CrossRef]
- Dholam, R.; Patel, N.; Adami, M.; Miotello, A. Hydrogen production by photocatalytic water-splitting using Cr- or Fe-doped TiO2 composite thin films photocatalyst. Int. J. Hydrogen Energy 2009, 34, 5337–5346. [Google Scholar] [CrossRef]
- Moradi, H.; Eshaghi, A.; Hosseini, S.R.; Ghani, K. Fabrication of Fe-doped TiO2 nanoparticles and investigation of photocatalytic decolorization of reactive red 198 under visible light irradiation. Ultrason. Sonochem. 2016, 32, 314–319. [Google Scholar] [CrossRef]
- Kim, H.-J.; Jeong, K.-J.; Bae, D.-S. Synthesis and Characterization of Fe Doped TiO2 Nanoparticles by a Sol-Gel and Hydrothermal Process. Korean J. Mater. Res. 2012, 22, 249–252. [Google Scholar]
- Zhang, X.; Zhou, M.; Lei, L. Co-deposition of photocatalytic Fe doped TiO2 coatings by MOCVD. Catal. Commun. 2006, 7, 427–431. [Google Scholar] [CrossRef]
- Othman, S.H.; Rashid, S.A.; Ghazi, T.I.M.; Abdullah, N. Fe-Doped TiO2 Nanoparticles Produced via MOCVD: Synthesis, Characterization, and Photocatalytic Activity. J. Nanomater. 2011, 2011, 571601. [Google Scholar] [CrossRef]
- Kim, Y.; Yang, S.; Jeon, E.H.; Baik, J.; Kim, N.; Kim, H.S.; Lee, H. Enhancement of Photo-Oxidation Activities Depending on Structural Distortion of Fe-Doped TiO2 Nanoparticles. Nanoscale Res. Lett. 2016, 11, 41. [Google Scholar] [CrossRef]
- El Mragui, A.; Logvina, Y.; da Silva, L.P.; Zegaoui, O.; da Silva, J.C.G.E. Synthesis of Fe- and Co-Doped TiO2 with Improved Photocatalytic Activity Under Visible Irradiation Toward Carbamazepine Degradation. Materials 2019, 12, 3874. [Google Scholar] [CrossRef]
- Wahyuni, E.T.; Lestari, N.D.; Cinjana, I.R.; Annur, S.; Natsir, T.A.; Mudasir, M. Doping TiO2 with Fe from iron rusty waste for enhancing its activity under visible light in the Congo red dye photodegradation. J. Eng. Appl. Sci. 2023, 70, 9. [Google Scholar] [CrossRef]
- Modan, E.M.; Plaiasu, A.G. Advantages and Disadvantages of Chemical Methods in the Elaboration of Nanomaterials. Ann. Dun. Jos. Univ. Galati, Fasc. IX Metall. Mater. Sci. 2020, 43, 1. [Google Scholar] [CrossRef]
- Mondal, K.; Malode, S.J.; Shetti, N.P.; Alqarni, S.A.; Pandiaraj, S.; Alodhayb, A. Porous nanostructures for hydrogen generation and storage. J. Energy Storage 2024, 76, 109719. [Google Scholar] [CrossRef]
- Ismael, M. Enhanced photocatalytic hydrogen production and degradation of organic pollutants from Fe (III) doped TiO2 nanoparticles. J. Environ. Chem. Eng. 2020, 8, 103676. [Google Scholar] [CrossRef]
- Skocaj, M.; Filipic, M.; Petkovic, J.; Novak, S. Titanium dioxide in our everyday life; is it safe? Radiol. Oncol. 2011, 45, 227–247. [Google Scholar] [CrossRef]
- Khan, I.; Saeed, K.; Khan, I. Nanoparticles: Properties, applications and toxicities. Arab. J. Chem. 2019, 12, 908–931. [Google Scholar] [CrossRef]
- Yang, L.; Wang, J.; Lv, H.; Ji, X.-M.; Liu, J.-M.; Wang, S. Hollow-Structured Microporous Organic Networks Adsorbents Enabled Specific and Sensitive Identification and Determination of Aflatoxins. Toxins 2022, 14, 137. [Google Scholar] [CrossRef]
- Mendez, M.S.; Lemarchand, A.; Traore, M.; Perruchot, C.; Sassoye, C.; Selmane, M.; Nikravech, M.; Amar, M.B.; Kanaev, A. Photocatalytic Activity of Nanocoatings Based on Mixed Oxide V-TiO2 Nanoparticles with Controlled Composition and Size. Catalysts 2021, 11, 1457. [Google Scholar]
- Chien, L.K. Solution Precursor Plasma Spray Deposition of Porous Tin Oxide Coatings for Gas Sensors; Library and Archives Canada = Bibliothèque et Archives Canada: Ottawa, ON, Canada, 2006. [Google Scholar]
- Mittal, G.; Paul, S. Suspension and Solution Precursor Plasma and HVOF Spray: A Review. J. Therm. Spray Technol. 2022, 31, 1443–1475. [Google Scholar] [CrossRef]
- Du, L.; Coyle, T.W.; Chien, K.; Pershin, L.; Li, T.; Golozar, M. Titanium Dioxide Coating Prepared by Use of a Suspension-Solution Plasma-Spray Process. J. Therm. Spray Technol. 2015, 24, 915–924. [Google Scholar] [CrossRef]
- Aruna, S.T.; Vismaya, A.; Balaji, N. Photocatalytic behavior of titania coatings fabricated by suspension and solution precursor plasma spray processes. Mater. Manuf. Process. 2021, 36, 868–875. [Google Scholar] [CrossRef]
- Chen, D.; Jordan, E.H.; Gell, M.; Ma, X. Dense TiO2 Coating Using the Solution Precursor Plasma Spray Process. J. Am. Ceram. Soc. 2008, 91, 865–872. [Google Scholar] [CrossRef]
- Chen, D.; Jordan, E.H.; Gell, M. Porous TiO2 coating using the solution precursor plasma spray process. Surf. Coat. Technol. 2008, 202, 6113–6119. [Google Scholar] [CrossRef]
- Adán, C.; Marugán, J.; van Grieken, R.; Chien, K.; Pershin, L.; Coyle, T.; Mostaghimi, J. Effect of Liquid Feed-Stock Composition on the Morphology of Titanium Dioxide Films Deposited by Thermal Plasma Spray. J. Nanosci. Nanotechnol. 2015, 15, 6651–6662. [Google Scholar] [CrossRef] [PubMed]
- Li, D.-Y.; Zhang, X.; Li, J.-W.; Zhang, Y.-J.; Zhang, Y.; Zhang, C. Effects of Si Doping on Structure and Photocatalytic Performance of TiO2 Coatings Deposited by Solution Plasma Spraying. Surf. Technol. 2018, 5, 220–226. [Google Scholar]
- Mittal, G.; Bhamji, I.; Fanicchia, F.; Paul, S. Development of Solution Precursor Plasma Spray TiO2/Al2O3 Composite Coatings for Heat Exchanger Application. In Proceedings of the Corrosion 2021, Virtual, 19–30 April 2021. NACE-2021-16304. [Google Scholar]
- Kumar, R.; Govindarajan, S.; Janardhana, R.K.S.K.; Rao, T.N.; Joshi, S.V.; Anandan, S. Facile One-Step Route for the Development of In-Situ Co-Catalyst Modified Ti3+ Self-Doped TiO2 for Improved Visible-Light Photocatalytic Activity. ACS Appl. Mater. Interfaces 2016, 8, 27642–27653. [Google Scholar] [CrossRef]
- Unabia, R.; Candidato, R.T., Jr.; Pawlowski, L. Current Progress in Solution Precursor Plasma Spraying of Cermets: A Review. Metals 2018, 8, 420. [Google Scholar] [CrossRef]
- Simfroso, K.T.; Cabo, S.R.S.; Unabia, R.B.; Britos, A.; Sokołowski, P.; Candidato, R.T., Jr. Solution Precursor Plasma Spraying of TiO2 Coatings Using a Catalyst-Free Precursor. Materials 2023, 16, 1515. [Google Scholar] [CrossRef] [PubMed]
- Kozerski, S.; Pawłowski, L.; Jaworski, R.; Roudet, F.; Petit, F. Two zones microstructure of suspension plasma sprayed hydroxyapatite coatings. Surf. Coat. Technol. 2010, 204, 1380–1387. [Google Scholar] [CrossRef]
- Yang, D. An Efficient Photocatalyst Structure: TiO2(B) Nanofibers with a Shell of Anatase Nanocrystals. J. Am. Chem. Soc. 2009, 131, 17885–17893. [Google Scholar] [CrossRef] [PubMed]
- Ferrara, M.C.; Montecchi, M.; Mittiga, A.; Schioppa, M.; Mazzarelli, S.; Tapfer, L.; Lovergine, N.; Prete, P. Synthesis and annealing effects on microstructure and optical properties of wide-bandgap polycrystalline ferro-pseudobrookite FeTi2O5 sol-gel layers. Ceram. Int. 2025, 51, 9669–9676. [Google Scholar] [CrossRef]
- Cullity, B.D. Elements of X-ray Diffraction; Addison-Wesley Metallurgy Series; Addison-Wesley Publishing: Boston, MA, USA, 1956. [Google Scholar]
- Challagulla, S.; Tarafder, K.; Ganesan, R.; Roy, S. Structure sensitive photocatalytic reduction of nitroarenes over TiO2. Sci. Rep. 2017, 7, 8783. [Google Scholar] [CrossRef]
- Wu, Z.; Zhang, C.; Liu, J.; Wen, F.; Cao, H.; Pei, Y. The Investigation of Microstructure, Photocatalysis and Corrosion Resistance of C-Doped Ti–O Films Fabricated by Reactive Magnetron Sputtering Deposition with CO2 Gas. Coatings 2021, 11, 881. [Google Scholar] [CrossRef]
- Loan, T.T.; Huong, V.H.; Huyen, N.T.; Quyet, L.V.; Bang, N.A.; Long, N.N. Anatase to rutile phase transformation of iron-doped titanium dioxide nanoparticles: The role of iron content. Opt. Mater. 2021, 111, 110651. [Google Scholar] [CrossRef]
- Khan, M.I.; Bhatti, K.A.; Qindeel, R.; Althobaiti, H.S.; Alonizan, N. Structural, electrical and optical properties of multilayer TiO2 thin films deposited by sol–gel spin coating. Results Phys. 2017, 7, 1437–1439. [Google Scholar] [CrossRef]
- Chetibi, L.; Busko, T.; Kulish, N.P.; Hamana, D.; Chaeib, S.; Achour, S. Photoluminescence properties of TiO2 nanofibers. J. Nanopart. Res. 2017, 19, 129. [Google Scholar] [CrossRef]
- Horti, N.C.; Kamatagi, M.D.; Patil, N.R.; Nataraj, S.K.; Sannaikar, M.S.; Inamdar, S.R. Synthesis and photoluminescence properties of titanium oxide (TiO2) nanoparticles: Effect of calcination temperature. Optik 2019, 194, 163070. [Google Scholar] [CrossRef]
- Shyniya, C.R.; Amarsingh Bhabu, K.; Rajasekaran, T.R. Enhanced electrochemical behavior of novel acceptor doped titanium dioxide catalysts for photocatalytic applications. J. Mater. Sci. Mater. Electron. 2017, 28, 6959–6970. [Google Scholar] [CrossRef]
- Saha, A.; Moya, A.; Kahnt, A.; Iglesias, D.; Marchesan, S.; Wannemacher, R.; Prato, M.; Vilatela, J.J.; Guldi, D.M. Interfacial Charge Transfer in Functionalized Multi-walled Carbon Nanotube@TiO2 nanofibres. Nanoscale 2017, 9, 7911–7921. [Google Scholar] [CrossRef]
- Liboon, A., Jr.; Cabo, S.R.; Unabia, R.B.; Bagsican, F.R.G.; Candidato, R.T., Jr. Phase Composition, Microstructure, and Optical Characteristics of Spin-Coated La-TiO2 and Fe-TiO2. Phys. Status Solidi A 2023, 220, 2200756. [Google Scholar] [CrossRef]
- Dev, P.R.; David, T.M.; Justin, S.J.M.; Wilson, P.; Palaniappan, A. A plausible impact on the role of pulses in anodized TiO2 nanotube arrays enhancing Ti3+ defects. J. Nanopart. Res. 2020, 22, 56. [Google Scholar] [CrossRef]
- Makuła, P.; Pacia, M.; Macyk, W. How To Correctly Determine the Band Gap Energy of Modified Semiconductor Photocatalysts Based on UV–Vis Spectra. J. Phys. Chem. Lett. 2018, 9, 6814–6817. [Google Scholar] [CrossRef] [PubMed]
- Suram, S.K.; Newhouse, P.F.; Gregoire, J.M. High Throughput Light Absorber Discovery, Part 1: An Algorithm for Automated Tauc Analysis. ACS Comb. Sci. 2016, 18, 673–681. [Google Scholar] [CrossRef] [PubMed]
- Gesesse, G.D.; Gomis-Berenguer, A.; Barthe, M.-F.; Ania, C.O. On the analysis of diffuse reflectance measurements to estimate the optical properties of amorphous porous carbons and semiconductor/carbon catalysts. J. Photochem. Photobiol. A Chem. 2010, 398, 112622. [Google Scholar] [CrossRef]
- Khurram, R.; Wang, Z.; Ehsan, M.F.; Peng, S.; Shafiq, M.; Khan, B. Synthesis and characterization of an α-Fe2O3/ZnTe heterostructure for photocatalytic degradation of Congo red, methyl orange and methylene blue. RSC Adv. 2020, 10, 44997–45007. [Google Scholar] [CrossRef]
- Simfroso, K.T.; Liboon, A.Q., Jr.; Candidato, R.T., Jr. A Numerical Investigation of the Thermal Transport Properties of Argon + Hydrogen Plasma Working Gases in the Presence of Various TiO2 Precursor Solutions. Phys. Chem. Res. 2023, 11, 897–912. [Google Scholar]
- Zhang, Y.; Zhang, Z.; Yang, J.; Yue, Y.; Zhang, H. Evaporation characteristics of viscous droplets on stainless steel superhydrophobic surface. Int. J. Therm. Sci. 2023, 18, 107843. [Google Scholar] [CrossRef]
- Rosa, D.; Abbasova, N.; Di Palma, L. Titanium Dioxide Nanoparticles Doped with Iron for Water Treatment via Photocatalysis: A Review. Nanomaterials 2024, 14, 293. [Google Scholar] [CrossRef] [PubMed]
- Eddy, D.R.; Permana, M.D.; Sakti, L.K.; Sheha, G.A.N.; Solihudin; Hidayat, S.; Takei, T.; Kumada, N.; Rahayu, I. Heterophase Polymorph of TiO2 (Anatase, Rutile, Brookite, TiO2 (B)) for Efficient Photocatalyst: Fabrication and Activity. Nanomaterials 2023, 13, 704. [Google Scholar] [CrossRef] [PubMed]
- Baszczuk, A.; Jasiorski, M.; Winnicki, M. Low-Temperature Transformation of Amorphous Sol–Gel TiO2 Powder to Anatase During Cold Spray Deposition. J. Therm. Spray Technol. 2018, 27, 1551–1562. [Google Scholar] [CrossRef]
- Othman, S.H.; Abdul Rashid, S.; Mohd Ghazi, T.I.; Abdullah, N. Effect of Fe doping on Phase Transition of TiO2 Nanoparticles Synthesized by MOVCD. J. Appl. Sci. 2010, 10, 1044–1051. [Google Scholar] [CrossRef]
- Bojinova, A.; Kralchevska, R.; Poulios, I.; Dushkin, C. Anatase/rutile TiO2 composites: Influence of the mixing ratio on the photocatalytic degradation of Malachite Green and Orange II in slurry. Mater. Chem. Phys. 2007, 106, 187–192. [Google Scholar] [CrossRef]
- Tian, B.; Li, C.; Zhang, J. One-step preparation, characterization and visible-light photocatalytic activity of Cr-doped TiO2 with anatase and rutile bicrystalline phases. Chem. Eng. J. 2012, 191, 402–409. [Google Scholar] [CrossRef]
- He, J.; Du, Y.; Bai, Y.; An, J.; Cai, X.; Chen, Y.; Wang, P.; Yang, X.; Feng, Q. Facile Formation of Anatase/Rutile TiO2 Nanocomposites with Enhanced Photocatalytic Activity. Molecules 2019, 24, 2996. [Google Scholar] [CrossRef]
- Fan, X.; Fan, J.; Hu, X.; Liu, E.; Kang, L.; Tang, C.; Ma, Y.; Wu, H.; Li, Y. Preparation and characterization of Ag deposited and Fe doped TiO2 nanotube arrays for photocatalytic hydrogen production by water splitting. Ceram. Int. 2014, 40, 15907–15917. [Google Scholar] [CrossRef]
- Kusumawardani, L.J.; Syahputri, Y. Study of structural and optical properties of Fe(III)-doped TiO2 prepared by sol-gel method. IOP Conf. Ser. Earth Environ. Sci. 2019, 299, 012066. [Google Scholar] [CrossRef]
- Dash, P.; Thirumurugan, S.; Tseng, C.-L.; Lin, Y.-C.; Chen, S.-L.; Dhawan, U.; Chung, R.-J. Synthesis of Methotrexate-Loaded Dumbbell-Shaped Titanium Dioxide/Gold Nanorods Coated with Mesoporous Silica and Decorated with Upconversion Nanoparticles for Near-Infrared-Driven Trimodal Cancer Treatment. ACS Appl. Mater. Interfaces 2023, 15, 33335–33347. [Google Scholar] [CrossRef]
- Král, K.; Menšík, M. Photoluminescence of Nanostructures with Indirect Band Gap. In Proceedings of the International Conference on Transparent Optical Networks ICTON 2014, IEEE Xplore, Graz, Austria, 6–10 July 2014. [Google Scholar]
- Pallotti, D.K.; Passoni, L.; Maddalena, P.; Di Fonzo, F.; Letteiri, S. Photoluminescence Mechanisms in Anatase and Rutile TiO2. J. Phys. Chem. C 2017, 121, 9011–9021. [Google Scholar] [CrossRef]
- Tizei, L.H.G.; Kociak, M. Chapter Four—Quantum Nanooptics in the Electron Microscope. Adv. Imaging Electron Phys. 2017, 199, 185–235. [Google Scholar]
- Nasralla, N.H.S.; Yeganeh, M.; Šiller, L. Photoluminescence study of anatase and rutile structures of Fe-doped TiO2 nanoparticles at different dopant concentrations. Appl. Phys. A 2020, 126, 192. [Google Scholar] [CrossRef]
- Miriyala, N.; Prashanthi, K.; Thundat, T. Oxygen vacancy dominant strong visible photoluminescence from BiFeO3 nanotubes. Phys. Status Solidi RRL 2013, 7, 668–671. [Google Scholar] [CrossRef]
- Nguyen, V.N.; Nguyen, N.K.T.; Nguyen, P.H. Hydrothermal synthesis of Fe-doped TiO2 nanostructure photocatalyst. Adv. Nat. Sci. Nanosci. Nanotechnol. 2011, 2, 035014. [Google Scholar] [CrossRef]
- Sood, S.; Umar, A.; Mehta, S.K.; Kansal, S.K. Highly effective Fe-doped TiO2 nanoparticles photocatalysts for visible-light driven photocatalytic degradation of toxic organic compounds. J. Colloid Interface Sci. 2015, 450, 213–223. [Google Scholar] [CrossRef]
- Fu, Q.; Wang, S.; Zhou, B.; Xia, W.; Liu, X.; Han, X.; Duan, Z.; Liu, T.; Sun, X.; Yuan, X.; et al. Defect-Mediated Efficient and Tunable Emission in van der Waals Integrated Light Sources at Room Temperature. Adv. Funct. Mater. 2024, 35, 2414062. [Google Scholar] [CrossRef]
- Gouma, P.I.; Mills, M.J. Anatase-to-rutile transformation in titania powders. J. Am. Ceram. Soc. 2001, 84, 619–622. [Google Scholar] [CrossRef]
- Gao, Q.; Wu, X.; Fan, Y. The effect of iron ions on the anatase–rutile phase transformation of titania (TiO2) in mica–titania pigments. Dyes. Pigm. 2012, 95, 96–101. [Google Scholar] [CrossRef]
- Banerjee, A.N. The design, fabrication, and photocatalytic utility of nanostructured semiconductors: Focus on TiO2-based nanostructures. Nanotechnol. Sci. Appl. 2011, 4, 35–65. [Google Scholar] [CrossRef]
- Smijs, T.G.; Pavel, S. Titanium dioxide and zinc oxide nanoparticles in sunscreens: Focus on their safety and effectiveness. Nanotechnol. Sci. Appl. 2011, 4, 95–112. [Google Scholar] [CrossRef]
Parameters | Values |
---|---|
Plasma power | 28 kW |
Ar flow rate | 45 slpm |
H2 flow rate | 5 slpm |
Plasma torch velocity | 500 mm/s |
Solution feed rate | 35 g/min |
Stand-off distance | 40, 50, 60 mm |
Substrate | Stainless steel |
Nozzle diameter | 0.2 mm |
Injection pressure | 1 bar |
Number of spray passes | 10 cycles |
Stand-Off Distance | Coating Label | |
---|---|---|
TiO2 | Fe-TiO2 | |
40 mm | 40TiO2 | 40Fe-TiO2 |
50 mm | 50TiO2 | 50Fe-TiO2 |
60 mm | 60TiO2 | 60Fe-TiO2 |
Stand-Off Distance | TiO2 | Fe-TiO2 | ||
---|---|---|---|---|
Tauc Plot | TAUC PLOT | |||
40 mm | 3.310 ± 0.326 eV | 3.328 ± 0.002 eV | 2.864 ± 0.377 eV | 2.846 ± 0.002 eV |
50 mm | 3.171 ± 0.434 eV | 3.168 ± 0.007 eV | 2.904 ± 0.314 eV | 2.920 ± 0.003 eV |
60 mm | 3.108 ± 0.414 eV | 3.139 ± 0.001 eV | 2.924 ± 0.284 eV | 2.936 ± 0.003 eV |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Simfroso, K.; Unabia, R.; Gibas, A.; Mazur, M.; Sokołowski, P.; Candidato, R., Jr. Influence of Fe Ions on the Surface, Microstructural and Optical Properties of Solution Precursor Plasma-Sprayed TiO2 Coatings. Coatings 2025, 15, 870. https://doi.org/10.3390/coatings15080870
Simfroso K, Unabia R, Gibas A, Mazur M, Sokołowski P, Candidato R Jr. Influence of Fe Ions on the Surface, Microstructural and Optical Properties of Solution Precursor Plasma-Sprayed TiO2 Coatings. Coatings. 2025; 15(8):870. https://doi.org/10.3390/coatings15080870
Chicago/Turabian StyleSimfroso, Key, Romnick Unabia, Anna Gibas, Michał Mazur, Paweł Sokołowski, and Rolando Candidato, Jr. 2025. "Influence of Fe Ions on the Surface, Microstructural and Optical Properties of Solution Precursor Plasma-Sprayed TiO2 Coatings" Coatings 15, no. 8: 870. https://doi.org/10.3390/coatings15080870
APA StyleSimfroso, K., Unabia, R., Gibas, A., Mazur, M., Sokołowski, P., & Candidato, R., Jr. (2025). Influence of Fe Ions on the Surface, Microstructural and Optical Properties of Solution Precursor Plasma-Sprayed TiO2 Coatings. Coatings, 15(8), 870. https://doi.org/10.3390/coatings15080870