Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (118)

Search Parameters:
Keywords = NMC cathode

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 2688 KiB  
Article
Eco-Friendly Leaching of Spent Lithium-Ion Battery Black Mass Using a Ternary Deep Eutectic Solvent System Based on Choline Chloride, Glycolic Acid, and Ascorbic Acid
by Furkan Nazlı, Işıl Hasdemir, Emircan Uysal, Halide Nur Dursun, Utku Orçun Gezici, Duygu Yesiltepe Özçelik, Fırat Burat and Sebahattin Gürmen
Minerals 2025, 15(8), 782; https://doi.org/10.3390/min15080782 - 25 Jul 2025
Viewed by 323
Abstract
Lithium-ion batteries (LiBs) are utilized in numerous applications due to advancements in technology, and the recovery of end-of-life (EoL) LiBs is imperative for environmental and economic reasons. Pyrometallurgical and hydrometallurgical methods have been used in the recovery of metals such as Li, Co, [...] Read more.
Lithium-ion batteries (LiBs) are utilized in numerous applications due to advancements in technology, and the recovery of end-of-life (EoL) LiBs is imperative for environmental and economic reasons. Pyrometallurgical and hydrometallurgical methods have been used in the recovery of metals such as Li, Co, and Ni in the EoL LiBs. Hydrometallurgical methods, which have been demonstrated to exhibit higher recovery efficiency and reduced energy consumption, have garnered increased attention in recent research. Inorganic acids, including HCl, HNO3, and H2SO4, as well as organic acids such as acetic acid and citric acid, are employed in the hydrometallurgical recovery of these metals. It is imperative to acknowledge the environmental hazards posed by these acids. Consequently, solvometallurgical processes, which involve the use of organic solvents with minimal or no water, are gaining increasing attention as alternative or complementary techniques to conventional hydrometallurgical processes. In the context of solvent systems that have been examined for a range of solvometallurgical methods, deep eutectic solvents (DESs) have garnered particular interest due to their low toxicity, biodegradable nature, tunable properties, and efficient metal recovery potential. In this study, the leaching process of black mass containing graphite, LCO, NMC, and LMO was carried out in a short time using the ternary DES system. The ternary DES system consists of choline chloride (ChCl), glycolic acid (GLY), and ascorbic acid (AA). As a result of the leaching process of cathode powders in the black mass without any pre-enrichment process, Li, Co, Ni, and Mn elements passed into solution with an efficiency of over 95% at 60 °C and within 1 h. Moreover, the kinetics of the leaching process was investigated, and Density Functional Theory (DFT) calculations were used to explain the leaching mechanism. Full article
Show Figures

Figure 1

15 pages, 4358 KiB  
Article
Nickel-Rich Cathodes for Solid-State Lithium Batteries: Comparative Study Between PVA and PIB Binders
by José M. Pinheiro, Beatriz Moura Gomes, Manuela C. Baptista and M. Helena Braga
Molecules 2025, 30(14), 2974; https://doi.org/10.3390/molecules30142974 - 15 Jul 2025
Viewed by 343
Abstract
The growing demand for high-energy, safe, and sustainable lithium-ion batteries has increased interest in nickel-rich cathode materials and solid-state electrolytes. This study presents a scalable wet-processing method for fabricating composite cathodes for all-solid-state batteries. The cathodes studied herein are high-nickel LiNi0.90Mn [...] Read more.
The growing demand for high-energy, safe, and sustainable lithium-ion batteries has increased interest in nickel-rich cathode materials and solid-state electrolytes. This study presents a scalable wet-processing method for fabricating composite cathodes for all-solid-state batteries. The cathodes studied herein are high-nickel LiNi0.90Mn0.05Co0.05O2, NMC955, the sulfide-based electrolyte Li6PS5Cl, and alternative binders—polyvinyl alcohol (PVA) and polyisobutylene (PIB)—dispersed in toluene, a non-polar solvent compatible with the electrolyte. After fabrication, the cathodes were characterized using SEM/EDX, sheet resistance, and Hall effect measurements. Electrochemical tests were additionally performed in all-solid-state battery half-cells comprising the synthesized cathodes, lithium metal anodes, and Li6PS5Cl as the separator and electrolyte. The results show that both PIB and PVA formulations yielded conductive cathodes with stable microstructures and uniform particle distribution. Electrochemical characterization exposed that the PVA-based cathode outperformed the PIB-based counterpart, achieving the theoretical capacity of 192 mAh·g−1 even at 1C, whereas the PIB cathode reached a maximum capacity of 145 mAh.g−1 at C/40. Post-mortem analysis confirmed the structural integrity of the cathodes. These findings demonstrate the viability of NMC955 as a high-capacity cathode material compatible with solid-state systems. Full article
Show Figures

Figure 1

117 pages, 10736 KiB  
Review
Design Principles and Engineering Strategies for Stabilizing Ni-Rich Layered Oxides in Lithium-Ion Batteries
by Alain Mauger and Christian M. Julien
Batteries 2025, 11(7), 254; https://doi.org/10.3390/batteries11070254 - 4 Jul 2025
Viewed by 830
Abstract
Nickel-rich layered oxides such as LiNixMnyCozO2 (NMC), LiNixCoyAlzO2 (NCA), and LiNixMnyCozAl(1–xyz)O2 (NMCA), where x [...] Read more.
Nickel-rich layered oxides such as LiNixMnyCozO2 (NMC), LiNixCoyAlzO2 (NCA), and LiNixMnyCozAl(1–xyz)O2 (NMCA), where x ≥ 0.6, have emerged as key cathode materials in lithium-ion batteries due to their high operating voltage and superior energy density. These materials, characterized by low cobalt content, offer a promising path toward sustainable and cost-effective energy storage solutions. However, their electrochemical performance remains below theoretical expectations, primarily due to challenges related to structural instability, limited thermal safety, and suboptimal cycle life. Intensive research efforts have been devoted to addressing these issues, resulting in substantial performance improvements and enabling the development of next-generation lithium-ion batteries with higher nickel content and reduced cobalt dependency. In this review, we present recent advances in material design and engineering strategies to overcome the problems limiting their electrochemical performance (cation mixing, phase stability, oxygen release, microcracks during cycling). These strategies include synthesis methods to optimize the morphology (size of the particles, core–shell and gradient structures), surface modifications of the Ni-rich particles, and doping. A detailed comparison between these strategies and the synergetic effects of their combination is presented. We also highlight the synergistic role of compatible lithium salts and electrolytes in achieving state-of-the-art nickel-rich lithium-ion batteries. Full article
(This article belongs to the Special Issue Batteries: 10th Anniversary)
Show Figures

Graphical abstract

11 pages, 2369 KiB  
Article
The Effect of a Carbon Fiber Layer Between the Cathode and the Current Collector on Battery Cell Performance
by Jaswinder Sharma, Runming Tao, Georgios Polizos, Ruhul Amin, Yue Feng, Junbin Choi, M. Shahriar and Jianlin Li
Fibers 2025, 13(7), 85; https://doi.org/10.3390/fib13070085 - 27 Jun 2025
Viewed by 342
Abstract
Contact resistance between the cathode active material (CAM) and the Al current collector can be reduced by applying carbon coatings to the Al current collector surface. However, this process requires an additional step of carbon layer coating on the current collector, which increases [...] Read more.
Contact resistance between the cathode active material (CAM) and the Al current collector can be reduced by applying carbon coatings to the Al current collector surface. However, this process requires an additional step of carbon layer coating on the current collector, which increases both manufacturing costs and processing time. In the present work, an interlayer of continuous unsized carbon fibers aligned in one direction (CF interlayer), is introduced between the Al current collector and the NMC811 cathode during cathode deposition on the Al current collector. This single-step approach eliminates the need for the additional carbon layer coating on the current collector. Additionally, this approach removes the use of toxic solvents and insulative polymers used for making the carbon coating. The CF interlayer improves the rate capability at higher C-rates. The CF interlayer lowers the contact resistance between the cathode particles and the current collector while improving the activation energy of charge transfer. The peel test showed that the CF interlayer does not affect the adhesion strength of the cathode layer with the current collector. Full article
Show Figures

Graphical abstract

26 pages, 3010 KiB  
Article
Efficient Ionic Liquid-Based Leaching and Extraction of Metals from NMC Cathodes
by Jasmina Mušović, Danijela Tekić, Ana Jocić, Slađana Marić and Aleksandra Dimitrijević
Processes 2025, 13(6), 1755; https://doi.org/10.3390/pr13061755 - 2 Jun 2025
Viewed by 1004
Abstract
The increasing demand for lithium-ion batteries (LIBs) and their limited lifespan emphasize the urgent need for sustainable recycling strategies. This study investigates the application of tetrabutylphosphonium-based ionic liquids (ILs) as alternative leaching agents for recovering critical metals, Li(I), Co(II), Ni(II), and Mn(II), from [...] Read more.
The increasing demand for lithium-ion batteries (LIBs) and their limited lifespan emphasize the urgent need for sustainable recycling strategies. This study investigates the application of tetrabutylphosphonium-based ionic liquids (ILs) as alternative leaching agents for recovering critical metals, Li(I), Co(II), Ni(II), and Mn(II), from spent NMC cathode materials. Initial screening experiments evaluated the leaching efficiencies of nine tetrabutylphosphonium-based ILs for Co(II), Ni(II), Mn(II), and Li(I), revealing distinct metal dissolution behaviors. Three ILs containing HSO4, EDTA2−, and DTPA3− anions exhibited the highest leaching performance and were selected for further optimization. Key leaching parameters, including IL and acid concentrations, temperature, time, and solid-to-liquid ratio, were systematically adjusted, achieving leaching efficiencies exceeding 90%. Among the tested systems, [TBP][HSO4] enabled near-complete metal dissolution (~100%) even at room temperature. Furthermore, an aqueous biphasic system (ABS) was investigated utilizing [TBP][HSO4] in combination with ammonium sulfate, enabling the complete extraction of all metals into the salt-rich phase while leaving the IL phase metal-free and potentially suitable for reuse, indicating the feasibility of integrating leaching and extraction into a continuous, interconnected process. This approach represents a promising step forward in LIB recycling, highlighting the potential for sustainable and efficient integration of leaching and extraction within established hydrometallurgical frameworks. Full article
Show Figures

Figure 1

15 pages, 2067 KiB  
Article
Innovative Integration of Citric Acid Leaching and Electrodialysis for Selective Lithium Recovery from NMC Cathode Material
by Soukayna Badre-Eddine, Laurence Muhr and Alexandre Chagnes
Metals 2025, 15(6), 598; https://doi.org/10.3390/met15060598 - 27 May 2025
Viewed by 654
Abstract
With the growing demand for metals driven by technological advancements and population growth, recycling lithium-ion batteries has become vital for protecting the environment and recovering valuable materials. Developing sustainable recycling technologies is now more essential than ever. This paper focuses on using electrodialysis [...] Read more.
With the growing demand for metals driven by technological advancements and population growth, recycling lithium-ion batteries has become vital for protecting the environment and recovering valuable materials. Developing sustainable recycling technologies is now more essential than ever. This paper focuses on using electrodialysis to process a leach solution of LiNi0.33Mn0.33Co0.33O2 (NMC 111) cathode materials leached with citric acid. This study demonstrates that the complexing properties of citrate anions contribute to the efficient separation of Li from Ni, Co, and Mn by electrodialysis. This is achieved by promoting the formation of anionic species for Ni, Co, and Mn while maintaining Li in its cationic form. The leach solution was produced under the following optimal experimental conditions to reach a final pH of 5 and high leaching efficiency: a citric acid concentration of 1 mol L−1, a leaching temperature of 45 °C, a leaching time of 5 h, a liquid/solid ratio of 100 g/L, and 8 vol.% H2O2. These conditions resulted in leaching efficiencies of 89.3% for Ni, 95.1% for Co, 77.1% for Mn, and 92.9% for Li. This solution led to the formation of a lithium-rich supernatant and a precipitate. The supernatant was then used as the feed solution for electrodialysis. Pure lithium was successfully separated with a faradic efficiency of 71.4% with a commercial cation-exchange membrane. This strategy enables selective lithium recovery while minimizing membrane fouling during the process. Full article
(This article belongs to the Special Issue Feature Papers in Extractive Metallurgy)
Show Figures

Graphical abstract

22 pages, 2958 KiB  
Article
Accurate Chemistry Identification of Lithium-Ion Batteries Based on Temperature Dynamics with Machine Learning
by Ote Amuta, Jiaqi Yao, Dominik Droese and Julia Kowal
Batteries 2025, 11(6), 208; https://doi.org/10.3390/batteries11060208 - 26 May 2025
Viewed by 681
Abstract
Lithium-ion batteries (LIBs) are widely used in diverse applications, ranging from portable ones to stationary ones. The appropriate handling of the immense amount of spent batteries has, therefore, become significant. Whether recycled or repurposed for second-life applications, knowing their chemistry type can lead [...] Read more.
Lithium-ion batteries (LIBs) are widely used in diverse applications, ranging from portable ones to stationary ones. The appropriate handling of the immense amount of spent batteries has, therefore, become significant. Whether recycled or repurposed for second-life applications, knowing their chemistry type can lead to higher efficiency. In this paper, we propose a novel machine learning-based approach for accurate chemistry identification of the electrode materials in LIBs based on their temperature dynamics under constant current cycling using gated recurrent unit (GRU) networks. Three different chemistry types, namely lithium nickel cobalt aluminium oxide cathode with silicon-doped graphite anode (NCA-GS), nickel cobalt aluminium oxide cathode with graphite anode (NCA-G), and lithium nickel manganese cobalt oxide cathode with graphite anode (NMC-G), were examined under four conditions, 0.2 C charge, 0.2 C discharge, 1 C charge, and 1 C discharge. Experimental results showed that the unique characteristics in the surface temperature measurement during the full charge or discharge of the different chemistry types can accurately carry out the classification task in both experimental setups, where the model is trained on data under different cycling conditions separately and jointly. Furthermore, experimental results show that the proposed approach for chemistry type identification based on temperature dynamics appears to be more universal than voltage characteristics. As the proposed approach has proven to be efficient in the chemistry identification of the electrode materials LIBs in most cases, we believe it can greatly benefit the recycling and second-life application of spent LIBs in real-life applications. Full article
Show Figures

Graphical abstract

15 pages, 3012 KiB  
Article
Efficient Extraction of Lithium, Cobalt, and Nickel from Nickel-Manganese-Cobalt Oxide Cathodes with Cholin Chloride/Pyrogallol-Based Deep Eutectic Solvent
by Aisulu Batkal, Kaster Kamunur, Lyazzat Mussapyrova, Yerzhan Mukanov and Rashid Nadirov
Recycling 2025, 10(3), 88; https://doi.org/10.3390/recycling10030088 - 3 May 2025
Viewed by 887
Abstract
This study explores the use of a deep eutectic solvent (DES) composed of choline chloride and pyrogallol (1:1 molar ratio) for the recovery of lithium, cobalt, and nickel from spent lithium-ion battery cathodes based on LiNi0.33Co0.33Mn0.33O2 [...] Read more.
This study explores the use of a deep eutectic solvent (DES) composed of choline chloride and pyrogallol (1:1 molar ratio) for the recovery of lithium, cobalt, and nickel from spent lithium-ion battery cathodes based on LiNi0.33Co0.33Mn0.33O2 (NMC111). The DES exhibits moderate viscosity, intrinsic redox activity, and strong complexation ability, enabling efficient metal dissolution under mild conditions. The effects of both temperature (50–80 °C) and time (up to 12 h) on leaching efficiency were systematically investigated. Optimal leaching parameters—80 °C, 8 h, and a liquid-to-solid ratio of 50—yielded extraction efficiencies of 92% for Li, 85% for Co, and 88% for Ni. Kinetic modeling indicated pseudo-first-order behavior with activation energies of 26.6, 22.1, and 25.2 kJ/mol for Li, Co, and Ni, respectively. Mechanistic analysis confirmed the dual role of pyrogallol as both reducing agent (facilitating Co3+ to Co2+ conversion) and chelating ligand. Full article
Show Figures

Figure 1

17 pages, 3834 KiB  
Article
Evaluation of the Removal of PVDF Using ToF-SIMS: Comparing Dihydrolevoglucosenone and Pyrolysis as Pretreatments for Cathode Materials of Lithium-Ion Batteries
by Marc Simon Henderson, Aliza Marie Salces, William D. A. Rickard, Denis Fougerouse, Álvaro José Rodríguez Medina, Elsayed A. Oraby, Chau Chun Beh, Martin Rudolph, Anna Vanderbruggen and Jacques Eksteen
Recycling 2025, 10(2), 56; https://doi.org/10.3390/recycling10020056 - 1 Apr 2025
Cited by 1 | Viewed by 1941
Abstract
Effective and environmentally benign removal of polyvinylidene fluoride (PVDF) binders from spent battery electrodes remains a critical hurdle in sustainable recycling, primarily due to issues related to the mitigation of fluorinated compound emissions. This work evaluates PVDF binder removal from cathode active material [...] Read more.
Effective and environmentally benign removal of polyvinylidene fluoride (PVDF) binders from spent battery electrodes remains a critical hurdle in sustainable recycling, primarily due to issues related to the mitigation of fluorinated compound emissions. This work evaluates PVDF binder removal from cathode active material using either a green solvent-based dissolution process or pyrolysis, analyzed by time-of-flight secondary ion mass spectrometry (ToF-SIMS). The solvent pretreatment involved mixing dihydrolevoglucosenone (Cyrene™) with PVDF-coated NMC811 at 100 °C, followed by hot filtration to separate the Cyrene-PVDF solution. Pyrolysis was conducted at 800 °C under an argon atmosphere. Positive ToF-SIMS spectra for Cyrene showed characteristic peaks at ketene (42 m/z) and 1,3-dioxole (86 m/z), along with intense C2H3O+, C3H3O+, C4H7+, and C3H5O+ peaks. The characteristic peaks used to identify PVDF were C3H2F5+ (133 m/z), C3H2F3+ (95 m/z), and C3HF4+ (113 m/z). Both processes resulted in PVDF removal, with pyrolysis demonstrating higher effectiveness. Particle agglomeration was observed in both pretreated NMC811 samples, however agglomeration was more pronounced with Cyrene pretreatment due to PVDF redeposition. Following pyrolysis, PVDF was transformed into a defluorinated carbonaceous material. Full article
(This article belongs to the Special Issue Lithium-Ion and Next-Generation Batteries Recycling)
Show Figures

Figure 1

11 pages, 2472 KiB  
Article
Molecular Dynamics Study of the Ni Content-Dependent Mechanical Properties of NMC Cathode Materials
by Ijaz Ul Haq and Seungjun Lee
Crystals 2025, 15(3), 272; https://doi.org/10.3390/cryst15030272 - 15 Mar 2025
Cited by 1 | Viewed by 1131
Abstract
Lithium nickel manganese cobalt oxides (NMCs) are widely used as cathode materials in commercial batteries. Efforts have been made to enhance battery energy density and stability by adjusting the element ratio. Nickel-rich NMC shows promise due to its high capacity; however, its commercial [...] Read more.
Lithium nickel manganese cobalt oxides (NMCs) are widely used as cathode materials in commercial batteries. Efforts have been made to enhance battery energy density and stability by adjusting the element ratio. Nickel-rich NMC shows promise due to its high capacity; however, its commercial viability is hindered by severe capacity fade, primarily caused by poor mechanical stability. To address this, understanding the chemo-mechanical behavior of Ni-rich NMC is crucial. The mechanical failure of Ni-rich NMC materials during battery operation has been widely studied through theoretical approaches to identify possible solutions. The elastic properties are key parameters for structural analysis. However, experimental data on NMC materials are scarce due to the inherent difficulty of measuring the properties of electrode active particles at such a small scale. In this study, we employ molecular dynamics (MDs) simulations to investigate the elastic properties of NMC materials with varying compositions (NMC111, NMC532, NMC622, NMC721, and NMC811). Our results reveal that elasticity increases with nickel content, ranging from 200 GPa for NMC111 to 290 GPa for NMC811. We further analyze the contributing factors to this trend by examining the individual components of the elastic properties. The simulation results provide valuable input parameters for theoretical models and continuum simulations, offering insights into strategies for reducing the mechanical instability of Ni-rich NMC materials. Full article
(This article belongs to the Special Issue Electrode Materials in Lithium-Ion Batteries)
Show Figures

Figure 1

21 pages, 5327 KiB  
Article
A Universal Highly Concentrated Electrolyte for Improved Cycling Stability in Li(Ni1-x-yMnxCoy)O2-NMC-Based Batteries
by Jun Ji Nicholas Lim, Yi Cai and Madhavi Srinivasan
Energies 2025, 18(4), 974; https://doi.org/10.3390/en18040974 - 18 Feb 2025
Viewed by 833
Abstract
While 1 M LiPF6 has been widely adopted as the standard electrolyte in current LIBs, its chemical instability has reduced the battery’s cycling stability by, for instance, accelerating the dissolution of transition metals from electrode materials, particularly in high-voltage cathodes. Lithium bis(fluorosulfonyl)imide [...] Read more.
While 1 M LiPF6 has been widely adopted as the standard electrolyte in current LIBs, its chemical instability has reduced the battery’s cycling stability by, for instance, accelerating the dissolution of transition metals from electrode materials, particularly in high-voltage cathodes. Lithium bis(fluorosulfonyl)imide (LiFSI) has emerged as a promising alternative salt for next-generation high-voltage energy-dense LIB electrolytes. However, despite extensive research, the optimal concentration and formulation of LiFSI remain unresolved, with variations typically tested across different Li(Ni1-x-yMnxCoy)O2 (NMC) series cathodes. Herein, 6:4.5:8.3 LiFSI/EC/DMC (in molar ratio) is proposed as a universal electrolyte for high-voltage NMC series cathodes. The 6:4.5:8.3 LiFSI/EC/DMC electrolyte decomposes to form a uniform cathode–electrolyte interface with abundant inorganic species, resulting in a lower interface resistance. By adopting the 6:4.5:8.3 LiFSI/EC/DMC electrolyte, NMC series Li-ion half-cells are all able to stably cycle up to 200 cycles at a cut-off voltage of 4.4 V. Especially for high Ni content (NMC 811) cathode, the capacity retention was improved from 43.6% to 87.5% when charged to 4.4 V at 1C rate. This work provides a feasible universal electrolyte formulation for developing next-generation high-voltage LIBs. Full article
(This article belongs to the Section D: Energy Storage and Application)
Show Figures

Figure 1

13 pages, 2235 KiB  
Article
Comparative Analysis of Synthesis Routes and Aluminum Doping Effects on Nickel-Manganese-Cobalt Type Cathode Material
by Yu-Sheng Chen, Elena Tchernychova, Samo Hočevar, Robert Dominko and Władysław Wieczorek
Batteries 2025, 11(2), 72; https://doi.org/10.3390/batteries11020072 - 10 Feb 2025
Cited by 1 | Viewed by 1558
Abstract
This study presents a comprehensive analysis of the synthesis techniques and the effects of aluminum doping on nickel-manganese-cobalt (NMC) 811 cathode materials. Our research focuses on the comparison of two different synthesis methods. Hydroxide co-precipitation is followed by solid-state calcination for polycrystalline (PC) [...] Read more.
This study presents a comprehensive analysis of the synthesis techniques and the effects of aluminum doping on nickel-manganese-cobalt (NMC) 811 cathode materials. Our research focuses on the comparison of two different synthesis methods. Hydroxide co-precipitation is followed by solid-state calcination for polycrystalline (PC) cathodes and molten salt calcination for single-crystalline (SC) cathodes. In addition, the study systematically integrates aluminum dopants at different stages of these processes. This study aims to examine how various doping methods affect the structural characteristics, morphological features, and electrochemical performance of NMC cathodes.This investigation employs a thorough characterization approach, utilizing techniques such as X-ray diffraction (XRD), various microscopy methods, and galvanostatic cycling tests, our results illustrate the complexity of the synthesis parameters that influence the capacity retention and performance of the samples produced. Full article
Show Figures

Figure 1

24 pages, 5157 KiB  
Article
Ceramic-Rich Composite Separators for High-Voltage Solid-State Batteries
by Kevin Vattappara, Martin Finsterbusch, Dina Fattakhova-Rohlfing, Idoia Urdampilleta and Andriy Kvasha
Batteries 2025, 11(2), 42; https://doi.org/10.3390/batteries11020042 - 21 Jan 2025
Viewed by 2029
Abstract
Composite solid electrolytes are gaining interest regarding their use in Li-metal solid-state batteries. Although high ceramic content improves the electrochemical stability of ceramic-rich composite separators (C-SCE), the polymeric matrix also plays a vital role. In the first generation of C-SCE separators with a [...] Read more.
Composite solid electrolytes are gaining interest regarding their use in Li-metal solid-state batteries. Although high ceramic content improves the electrochemical stability of ceramic-rich composite separators (C-SCE), the polymeric matrix also plays a vital role. In the first generation of C-SCE separators with a PEO-based matrix, the addition of 90–95 wt% of Li6.45Al0.05La3Zr1.6Ta0.4O12 (LLZO) does not make C-SCE stable for cell cycling with high-voltage (HV) cathodes. For the next iteration, the objective was to find an HV-stable polymeric matrix for C-SCEs. Herein, we report results on optimizing C-SCE separators with different ceramics and polymers which can craft the system towards better stability with NMC622-based composite cathodes. Both LLZO and Li1.3Al0.3Ti1.7(PO4)3 (LATP) were utilized as ceramic components in C-SCE separators. Poly(diallyldimethylammonium) bis(trifluoromethanesulfonyl)imide (PDDA-TFSI) and poly (vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) were used as polymers in the “polymer/LiTFSI/plasticizer”-based matrix. The initial phase of the selection criteria for the separator matrix involved assessing mechanical stability and ionic conductivity. Two optimized separator formulations were then tested for their electrochemical stability with both Li metal and HV composite cathodes. The results showed that Li/NMC622 cells with LP70_PVDF_HFP and LZ70_PDDA-TFSI separators exhibited more stable cycling performance compared to those with LZ90_PEO300k-based separators. Full article
Show Figures

Figure 1

17 pages, 1931 KiB  
Article
Lithium Tracer Diffusion in LixCoO2 and LixNi1/3Mn1/3Co1/3O2 (x = 1, 0.9, 0.65)-Sintered Bulk Cathode Materials for Lithium-Ion Batteries
by Erwin Hüger, Daniel Uxa and Harald Schmidt
Batteries 2025, 11(2), 40; https://doi.org/10.3390/batteries11020040 - 21 Jan 2025
Viewed by 1210
Abstract
The knowledge of Li diffusivities in electrode materials of Li-ion batteries (LIBs) is essential for a fundamental understanding of charging/discharging times, maximum capacities, stress formation and possible side reactions. The literature indicates that Li diffusion in the cathode material Li(Ni,Mn,Co)O2 strongly increases [...] Read more.
The knowledge of Li diffusivities in electrode materials of Li-ion batteries (LIBs) is essential for a fundamental understanding of charging/discharging times, maximum capacities, stress formation and possible side reactions. The literature indicates that Li diffusion in the cathode material Li(Ni,Mn,Co)O2 strongly increases during electrochemical delithiation. Such an increased Li diffusivity will be advantageous for performance if it is present already in the initial state after synthesis. In order to understand the influence of a varying initial Li content on Li diffusion, we performed Li tracer diffusion experiments on LixCoO2 (LCO) and LixNi1/3Mn1/3Co1/3O2 (NMC, x = 1, 0.9, 0.65) cathode materials. The measurements were performed on polycrystalline sintered bulk materials, free of additives and binders, in order to study the intrinsic properties. The variation of Li content was achieved using reactive solid-state synthesis using pressed Li2CO3, NiO, Co3O4 and/or MnO2 powders and high temperature sintering at 800 °C. XRD analyses showed that the resultant bulk samples exhibit the layered LCO or NMC phases with a low amount of cation intermixing. Moreover, the presence of additional NiO and Co3O4 phases was detected in NMC with a pronounced nominal Li deficiency of x = 0.65. As a tracer source, a 6Li tracer layer with the same chemical composition was deposited using ion beam sputtering. Secondary ion mass spectrometry in depth profile mode was used for isotopic analysis. The diffusivities followed the Arrhenius law with an activation enthalpy of about 0.8 eV and were nearly identical within error for all samples investigated in the temperature range up to 500 °C. For a diffusion mechanism based on structural Li vacancies, the results indicated that varying the Li content does not result in a change in the vacancy concentration. Consequently, the design and use of a cathode initially made of a Li-deficient material will not improve the kinetics of battery performance. The possible reasons for this unexpected result are discussed. Full article
Show Figures

Figure 1

19 pages, 2503 KiB  
Article
Optimizing Recycling Processes for Mixed LFP/NMC Lithium-Ion Batteries: A Comparative Study of Acid-Excess and Acid-Deficient Leaching
by Pierric Hubert, Angelina Noclain, Safi Jradi and Alexandre Chagnes
Metals 2025, 15(1), 74; https://doi.org/10.3390/met15010074 - 16 Jan 2025
Cited by 1 | Viewed by 1805
Abstract
This study explores the optimization of hydrometallurgical processes for recycling lithium-ion batteries (LIBs) containing a mixture of lithium iron phosphate (LFP) and nickel–manganese–cobalt (NMC) cathodes. Two approaches were investigated: acid-excess leaching and acid-deficient leaching with residue recirculation. A design of experiments (DoE) framework [...] Read more.
This study explores the optimization of hydrometallurgical processes for recycling lithium-ion batteries (LIBs) containing a mixture of lithium iron phosphate (LFP) and nickel–manganese–cobalt (NMC) cathodes. Two approaches were investigated: acid-excess leaching and acid-deficient leaching with residue recirculation. A design of experiments (DoE) framework was applied to assess the impact of key parameters, including sulfuric acid and hydrogen peroxide concentrations, as well as solid-to-liquid (S/L) ratios, on the dissolution yields of target metals (Ni, Mn, Co, and Li). Acid-excess leaching achieved nearly complete dissolution of target metals but required additional purification steps to remove impurities. Acid-deficient leaching with a 60% recirculation of leaching residue improved dissolution yields by up to 12.5%, reduced reagent consumption, and minimized operational complexity. The study also evaluated separation strategies for manganese and cobalt through solvent extraction. Results indicate that while acid-excess leaching offers higher yields, acid-deficient leaching with residue recirculation is more cost-effective and environmentally friendly. These findings provide valuable insights for developing sustainable LIB recycling technologies. Full article
(This article belongs to the Special Issue Metal Extraction/Refining and Product Development)
Show Figures

Figure 1

Back to TopTop