Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,331)

Search Parameters:
Keywords = N metabolites

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 6853 KiB  
Article
Metabolomic and Molecular Mechanisms of Glycerol Supplementation in Regulating the Reproductive Function of Kazakh Ewes in the Non-Breeding Season
by Ying Nan, Baihui Jiang, Xingdong Qi, Cuifang Ye, Mengting Xie and Zongsheng Zhao
Animals 2025, 15(15), 2291; https://doi.org/10.3390/ani15152291 - 5 Aug 2025
Abstract
The activation mechanism of the reproductive axis in Kazakh ewes during the non-breeding season was explored by supplementation with glycerol complex (7% glycerol + tyrosine + vitamin B9). The experiment divided 50 ewes into five groups (n = 10). After 90 days [...] Read more.
The activation mechanism of the reproductive axis in Kazakh ewes during the non-breeding season was explored by supplementation with glycerol complex (7% glycerol + tyrosine + vitamin B9). The experiment divided 50 ewes into five groups (n = 10). After 90 days of intervention, it was found that significant changes in serum DL-carnitine, N-methyl-lysine and other differential metabolites were observed in the GLY-Tyr-B9 group (p < 0.05, “p < 0.05” means significant difference, “p < 0.01” means “highly significant difference”). The bile acid metabolic pathway was specifically activated (p < 0.01). The group had a 50% estrus rate, ovaries contained 3–5 immature follicles, and HE staining showed intact granulosa cell structure. Serum E2/P4 fluctuated cyclically (p < 0.01), FSH/LH pulse frequency increased (p < 0.01), peak Glu/INS appeared on day 60 (p < 0.05), and LEP was negatively correlated with body fat percentage (p < 0.01). Molecular mechanisms revealed: upregulation of hypothalamic kiss-1/GPR54 expression (p < 0.01) drove GnRH pulses; ovarian CYP11A1/LHR/VEGF synergistically promoted follicular development (p < 0.05); the HSL of subcutaneous fat was significantly increased (p < 0.05), suggesting involvement of lipolytic supply. Glycerol activates the reproductive axis through a dual pathway—L-carnitine-mediated elevation of mitochondrial β-oxidation efficacy synergizes with kisspeptin/GPR54 signalling enhancement to re-establish HPO axis rhythms. This study reveals the central role of metabolic reprogramming in regulating seasonal reproduction in ruminants. Full article
(This article belongs to the Section Small Ruminants)
Show Figures

Figure 1

18 pages, 2357 KiB  
Article
Nitrogen Fertilizer Reduction in Rice–Eel Co-Culture System Improves the Soil Microbial Diversity and Its Functional Stability
by Mengqian Ma, Weiguang Lv, Yu Huang, Juanqin Zhang, Shuangxi Li, Naling Bai, Haiyun Zhang, Xianpu Zhu, Chenglong Xu and Hanlin Zhang
Plants 2025, 14(15), 2425; https://doi.org/10.3390/plants14152425 - 5 Aug 2025
Abstract
The ecological rice–eel co-culture system is not only beneficial for enhancing productivity and sustainability in agriculture but also plays a crucial role in promoting environmental health. In the present study, based on the long-term positioning trial of the rice–eel co-culture system that began [...] Read more.
The ecological rice–eel co-culture system is not only beneficial for enhancing productivity and sustainability in agriculture but also plays a crucial role in promoting environmental health. In the present study, based on the long-term positioning trial of the rice–eel co-culture system that began in 2016 and was sampled in 2023, the effects of reduced nitrogen fertilizer application on soil physico-chemical properties and the bacterial community were investigated. Treatments included a conventional regular fertilization treatment (RT), rice–eel co-culture system regular fertilization (IT), and nitrogen-reduction 10%, 30%, and 50% fertilization treatments (IT90, IT70, and IT50). Our research demonstrated the following: (1) Compared to RT, IT significantly increased soil water-stable macroaggregates (R0.25), mean weight diameter (MWD), geometric mean diameter (GMD), and available phosphorus content, with the increases of 15.66%, 25.49%, 36.00%, and 18.42%, respectively. Among the nitrogen-reduction fertilization treatments, IT90 showed the most significant effect. Compared to IT, IT90 significantly increased R0.25, MWD, GMD, and available nitrogen content, with increases of 4.4%, 7.81%, 8.82%, and 28.89%, respectively. (2) Compared to RT, at the phylum level, the diversity of Chloroflexi was significantly increased under IT and IT50, and the diversity of Gemmatimonadota was significantly increased under IT90, IT70, and IT50. The diversity of Acidobacteriota was significantly higher in IT90 and IT70 compared to IT. It was shown that the rice–eel co-culture system and nitrogen fertilizer reduction could effectively improve the degradation capacity of organic matter and promote soil nitrogen cycling. In addition, redundancy analysis (RDA) identified total phosphorus, total nitrogen, and available nitrogen (p = 0.007) as the three most important environmental factors driving changes in the bacterial community. (3) The functional prediction analysis of soil microbiota showed that, compared to RT, the diversity of pathways related to biosynthesis (carbohydrate biosynthesis and cell structure biosynthesis) and metabolism (L-glutamate and L-glutamine biosynthesis) was significantly higher under IT70, IT90, IT, and IT50 (in descending order). However, the diversity of pathways associated with degradation/utilization/assimilation (secondary metabolite degradation and amine and polyamine degradation) was significantly lower under all the rice–eel co-culture treatments. In conclusion, the rice–eel co-culture system improved soil physicochemical properties and the soil microbial environment compared with conventional planting, and the best soil improvement was achieved with 10% less N fertilizer application. Full article
(This article belongs to the Special Issue Chemical Properties of Soils and its Impact on Plant Growth)
Show Figures

Figure 1

21 pages, 10626 KiB  
Article
Comparative Metabolomic Analysis Reveals Tissue- and Species-Specific Differences in the Abundance of Dammarane-Type Ginsenosides in Three Panax Species
by Shu He, Ying Gong, Shuangfei Deng, Yaquan Dou, Junmin Wang, Hoang Van Sam, Xingliang Chen, Xiahong He and Rui Shi
Horticulturae 2025, 11(8), 916; https://doi.org/10.3390/horticulturae11080916 (registering DOI) - 5 Aug 2025
Abstract
The genus Panax contains traditional herbs that have been widely used in traditional medicine. The active constituents, collectively known as ginsenosides, are well characterized in the most representative species, P. notoginseng. However, the major bioactive chemical constituents of P. stipuleanatus together with [...] Read more.
The genus Panax contains traditional herbs that have been widely used in traditional medicine. The active constituents, collectively known as ginsenosides, are well characterized in the most representative species, P. notoginseng. However, the major bioactive chemical constituents of P. stipuleanatus together with P. vietnamensis are relatively less studied. In this study, an untargeted metabolomic analysis was performed in P. notoginseng, P. stipuleanatus, and P. vietnamensis using root and leaf organs. Further metabolomic differences in P. stipuleanatus were compared with those of the two most prevalent species. The analysis results revealed tissue-specific qualitative and quantitative metabolic differences in each species. Several differentially accumulated metabolites were enriched in the biosynthesis of secondary metabolites, including the biosynthesis of ginsenosides I. The ginsenosides Rb1, Rf, Rg1, Rh1, Rh8, and notoginsenosides E, M, and N had a higher abundance level in the roots of both P. notoginseng and P. vietnamensis. In P. stipuleanatus, the accumulation of potentially important ginsenosides is mainly found in the leaf. In particular, the dammarane-type ginsenosides Rb3, Rb1, Mx, and F2 as well as the notoginsenosides A, Fe, Fa, Fd, L, and N were identified to have a higher accumulation in the leaf. The strong positive correlation network of different ginsenosides probably enhanced secondary metabolism in each species. The comparative analysis revealed a significant differential accumulation of metabolites in the leaves of both species. The various compounds of dammarane-type ginsenoside, such as Rb1, Rg1, Rg6, Rh8, Rh10, Rh14, and majoroside F2, had a significantly higher concentration level in the leaves of P. stipuleanatus. In addition, several notoginsenoside compounds such as A, R1, Fe, Fd, and Ft1 showed a higher abundance in the leaf. These results show that the abundance level of major ginsenosides is significant in P. stipuleanatus and provides an important platform to improve the ginsenoside quality of Panax species. Full article
(This article belongs to the Section Medicinals, Herbs, and Specialty Crops)
Show Figures

Figure 1

17 pages, 1812 KiB  
Article
Systemic Metabolic Alterations Induced by Etodolac in Healthy Individuals
by Rajaa Sebaa, Reem H. AlMalki, Hatouf Sukkarieh, Lina A. Dahabiyeh, Maha Al Mogren, Tawfiq Arafat, Ahmed H. Mujamammi, Essa M. Sabi and Anas M. Abdel Rahman
Pharmaceuticals 2025, 18(8), 1155; https://doi.org/10.3390/ph18081155 - 4 Aug 2025
Viewed by 17
Abstract
Background/Objective: Pharmacological interventions often exert systemic effects beyond their primary targets, underscoring the need for a comprehensive evaluation of their metabolic impact. Etodolac is a nonsteroidal anti-inflammatory drug (NSAID) that alleviates pain, fever, and inflammation by inhibiting cyclooxygenase-2 (COX-2), thereby reducing prostaglandin synthesis. [...] Read more.
Background/Objective: Pharmacological interventions often exert systemic effects beyond their primary targets, underscoring the need for a comprehensive evaluation of their metabolic impact. Etodolac is a nonsteroidal anti-inflammatory drug (NSAID) that alleviates pain, fever, and inflammation by inhibiting cyclooxygenase-2 (COX-2), thereby reducing prostaglandin synthesis. While its pharmacological effects are well known, the broader metabolic impact and potential mechanisms underlying improved clinical outcomes remain underexplored. Untargeted metabolomics, which profiles the metabolome without prior selection, is an emerging tool in clinical pharmacology for elucidating drug-induced metabolic changes. In this study, untargeted metabolomics was applied to investigate metabolic changes following a single oral dose of etodolac in healthy male volunteers. By analyzing serial blood samples over time, we identified endogenous metabolites whose concentrations were positively or inversely associated with the drug’s plasma levels. This approach provides a window into both therapeutic pathways and potential off-target effects, offering a promising strategy for early-stage drug evaluation and multi-target discovery using minimal human exposure. Methods: Thirty healthy participants received a 400 mg dose of Etodolac. Plasma samples were collected at five time points: pre-dose, before Cmax, at Cmax, after Cmax, and 36 h post-dose (n = 150). Samples underwent LC/MS-based untargeted metabolomics profiling and pharmacokinetic analysis. A total of 997 metabolites were significantly dysregulated between the pre-dose and Cmax time points, with 875 upregulated and 122 downregulated. Among these, 80 human endogenous metabolites were identified as being influenced by Etodolac. Results: A total of 17 metabolites exhibited time-dependent changes closely aligned with Etodolac’s pharmacokinetic profile, while 27 displayed inverse trends. Conclusions: Etodolac influences various metabolic pathways, including arachidonic acid metabolism, sphingolipid metabolism, and the biosynthesis of unsaturated fatty acids. These selective metabolic alterations complement its COX-2 inhibition and may contribute to its anti-inflammatory effects. This study provides new insights into Etodolac’s metabolic impact under healthy conditions and may inform future therapeutic strategies targeting inflammation. Full article
(This article belongs to the Special Issue Advances in Drug Analysis and Drug Development, 2nd Edition)
Show Figures

Figure 1

22 pages, 3515 KiB  
Article
Biodegradation of Chloroquine by a Fungus from Amazonian Soil, Penicillium guaibinense CBMAI 2758
by Patrícia de Almeida Nóbrega, Samuel Q. Lopes, Lucas S. Sá, Ryan da Silva Ramos, Fabrício H. e Holanda, Inana F. de Araújo, André Luiz M. Porto, Willian G. Birolli and Irlon M. Ferreira
J. Fungi 2025, 11(8), 579; https://doi.org/10.3390/jof11080579 - 4 Aug 2025
Viewed by 171
Abstract
Concern over the presence of pharmaceutical waste in the environment has prompted research into the management of emerging organic micropollutants (EOMs). In response, sustainable technologies have been applied as alternatives to reduce the effects of these contaminants. This study investigated the capacity of [...] Read more.
Concern over the presence of pharmaceutical waste in the environment has prompted research into the management of emerging organic micropollutants (EOMs). In response, sustainable technologies have been applied as alternatives to reduce the effects of these contaminants. This study investigated the capacity of filamentous fungi isolated from iron mine soil in the Amazon region to biodegrade the drug chloroquine diphosphate. An initial screening assessed the growth of four fungal strains on solid media containing chloroquine diphosphate: Trichoderma pseudoasperelloides CBMAI 2752, Penicillium rolfsii CBMAI 2753, Talaromyces verruculosus CBMAI 2754, and Penicillium sp. cf. guaibinense CBMAI 2758. Among them, Penicillium sp. cf. guaibinense CBMAI 2758 was selected for further testing in liquid media. A Box–Behnken factorial design was applied with three variables, pH (5, 7, and 9), incubation time (5, 10, and 15 days), and chloroquine diphosphate concentration (50, 75, and 100 mg·L−1), totaling 15 experiments. The samples were analyzed by gas chromatography–mass spectrometry (GC-MS). The most effective conditions for chloroquine biodegradation were pH 7, 100 mg·L−1 concentration, and 10 days of incubation. Four metabolites were identified: one resulting from N-deethylation M1 (N4-(7-chloroquinolin-4-yl)-N1-ethylpentane-1,4-diamine), two from carbon–carbon bond cleavage M2 (7-chloro-N-ethylquinolin-4-amine) and M3 (N1,N1-diethylpentane-1,4-diamine), and one from aromatic deamination M4 (N1-ethylbutane-1,4-diamine) by enzymatic reactions. The toxicity analysis showed that the products obtained from the biodegradation of chloroquine were less toxic than the commercial formulation of this compound. These findings highlight the biotechnological potential of Amazonian fungi for drug biodegradation and decontamination. Full article
(This article belongs to the Special Issue Fungal Biotechnology and Application 3.0)
Show Figures

Graphical abstract

22 pages, 2692 KiB  
Article
Differences in the Profile of Aromatic Metabolites in the Corresponding Blood Serum and Cerebrospinal Fluid Samples of Patients with Secondary Bacterial Meningitis
by Alisa K. Pautova, Peter A. Meinarovich, Vladislav E. Zakharchenko, Pavel D. Sobolev, Natalia A. Burnakova and Natalia V. Beloborodova
Metabolites 2025, 15(8), 527; https://doi.org/10.3390/metabo15080527 - 3 Aug 2025
Viewed by 119
Abstract
Background: Secondary (nosocomial) bacterial meningitis remains a serious problem in patients with severe brain damage. The aim of this study was to assess the differences in the aromatic metabolites of tryptophan, phenylalanine, and tyrosine, in serum and cerebrospinal fluid (CSF) samples collected simultaneously [...] Read more.
Background: Secondary (nosocomial) bacterial meningitis remains a serious problem in patients with severe brain damage. The aim of this study was to assess the differences in the aromatic metabolites of tryptophan, phenylalanine, and tyrosine, in serum and cerebrospinal fluid (CSF) samples collected simultaneously from patients with long-term sequelae of severe brain damage with suspected secondary bacterial meningitis. Methods: Group I included 16 paired serum and CSF samples from patients (N = 11) without secondary bacterial meningitis; group II included 13 paired serum and CSF samples from patients (N = 4) with secondary bacterial meningitis. Results: The median concentrations of serum 5-hydroxyindole-3-acetic, CSF 4-hydroxyphenyllactic (p-HPhLA), CSF 4-hydroxyphenylacetic, CSF phenyllactic, and indole-3-lactic acids in serum and CSF were statistically higher in group II compared to group I (p-value ≤ 0.03), while 4-hydroxyphenylpropionic and indole-3-acetic in serum were lower in group II compared to group I (p-value = 0.04). In group I, p-HPhLA serum concentrations were greater than or equal to its CSF concentrations in 14 paired samples; in group II, p-HPhLA concentrations in serum were lower than in CSF in all paired samples. Conclusions: The obtained results demonstrate the differences in the profile of aromatic metabolites in serum and CSF and may confirm the hypothesis of the p-HPhLA microbial origin in the CSF of patients with secondary bacterial meningitis. Full article
Show Figures

Graphical abstract

22 pages, 1641 KiB  
Article
Site-Specific Trafficking of Lipid and Polar Metabolites in Adipose and Muscle Tissue Reveals the Impact of Bariatric Surgery-Induced Weight Loss: A 6-Month Follow-Up Study
by Aidan Joblin-Mills, Zhanxuan E. Wu, Garth J. S. Cooper, Ivana R. Sequeira-Bisson, Jennifer L. Miles-Chan, Anne-Thea McGill, Sally D. Poppitt and Karl Fraser
Metabolites 2025, 15(8), 525; https://doi.org/10.3390/metabo15080525 - 2 Aug 2025
Viewed by 233
Abstract
Background: The causation of type 2 diabetes remains under debate, but evidence supports both abdominal lipid and ectopic lipid overspill into tissues including muscle as key. How these depots differentially alter cardiometabolic profile and change during body weight and fat loss is not [...] Read more.
Background: The causation of type 2 diabetes remains under debate, but evidence supports both abdominal lipid and ectopic lipid overspill into tissues including muscle as key. How these depots differentially alter cardiometabolic profile and change during body weight and fat loss is not known. Methods: Women with obesity scheduled to undergo bariatric surgery were assessed at baseline (BL, n = 28) and at 6-month follow-up (6m_FU, n = 26) after weight loss. Fasting plasma (Pla), subcutaneous thigh adipose (STA), subcutaneous abdominal adipose, (SAA), and thigh vastus lateralis muscle (VLM) samples were collected at BL through surgery and at 6m_FU using needle biopsy. An untargeted liquid chromatography mass spectrometry metabolomics platform was used. Pla and tissue-specific lipid and polar metabolite profiles were modelled as changes from BL and 6m_FU. Results: There was significant body weight (−24.5 kg) loss at 6m_FU (p < 0.05). BL vs. 6m_FU tissue metabolomics profiles showed the largest difference in lipid profiles in SAA tissue in response to surgery. Conversely, polar metabolites were more susceptible to change in STA and VLM. In Pla samples, both lipid and polar metabolite profiles showed significant differences between timepoints. Jaccard–Tanimoto coefficient t-tests identified a sub-group of gut microbiome and dietary-derived omega-3-fatty-acid-containing lipid species and core energy metabolism and adipose catabolism-associated polar metabolites that are trafficked between sample types in response to bariatric surgery. Conclusions: In this first report on channelling of lipids and polar metabolites to alternative tissues in bariatric-induced weight loss, adaptive shuttling of small molecules was identified, further promoting adipose processing and highlighting the dynamic and coordinated nature of post-surgical metabolic regulation. Full article
Show Figures

Figure 1

25 pages, 10827 KiB  
Article
Integrated Transcriptomic and Metabolomic Analysis Reveals Nitrogen-Mediated Delay of Premature Leaf Senescence in Red Raspberry Leaves
by Qiang Huo, Feiyang Chang, Peng Jia, Ziqian Fu, Jiaqi Zhao, Yiwen Gao, Haoan Luan, Ying Wang, Qinglong Dong, Guohui Qi and Xuemei Zhang
Plants 2025, 14(15), 2388; https://doi.org/10.3390/plants14152388 - 2 Aug 2025
Viewed by 245
Abstract
The premature senescence of red raspberry leaves severely affects plant growth. In this study, the double-season red raspberry cultivar ‘Polka’ was used, with N150 (0.10 g N·kg−1) selected as the treatment group (T150) and N0 (0 g N·kg−1 [...] Read more.
The premature senescence of red raspberry leaves severely affects plant growth. In this study, the double-season red raspberry cultivar ‘Polka’ was used, with N150 (0.10 g N·kg−1) selected as the treatment group (T150) and N0 (0 g N·kg−1) set as the control (CK). This study systematically investigated the mechanism of premature senescence in red raspberry leaves under different nitrogen application levels by measuring physiological parameters and conducting a combined multi-omics analysis of transcriptomics and metabolomics. Results showed that T150 plants had 8.34 cm greater height and 1.45 cm greater ground diameter than CK. The chlorophyll, carotenoid, soluble protein, and sugar contents in all leaf parts of T150 were significantly higher than those in CK, whereas soluble starch contents were lower. Malondialdehyde (MDA) content and superoxide anion (O2) generation rate in the lower leaves of T150 were significantly lower than those in CK. Superoxide sismutase (SOD) and peroxidase (POD) activities in the middle and lower functional leaves of T150 were higher than in CK, while catalase (CAT) activity was lower. Transcriptomic analysis identified 4350 significantly differentially expressed genes, including 2062 upregulated and 2288 downregulated genes. Metabolomic analysis identified 135 differential metabolites, out of which 60 were upregulated and 75 were downregulated. Integrated transcriptomic and metabolomic analysis showed enrichment in the phenylpropanoid biosynthesis (ko00940) and flavonoid biosynthesis (ko00941) pathways, with the former acting as an upstream pathway of the latter. A premature senescence pathway was established, and two key metabolites were identified: chlorogenic acid content decreased, and naringenin chalcone content increased in early senescent leaves, suggesting their pivotal roles in the early senescence of red raspberry leaves. Modulating chlorogenic acid and naringenin chalcone levels could delay premature senescence. Optimizing fertilization strategies may thus reduce senescence risk and enhance the productivity, profitability, and sustainability of the red raspberry industry. Full article
(This article belongs to the Special Issue Horticultural Plant Physiology and Molecular Biology)
Show Figures

Figure 1

30 pages, 1428 KiB  
Review
The Oral–Gut Microbiota Axis Across the Lifespan: New Insights on a Forgotten Interaction
by Domenico Azzolino, Margherita Carnevale-Schianca, Luigi Santacroce, Marica Colella, Alessia Felicetti, Leonardo Terranova, Roberto Carlos Castrejón-Pérez, Franklin Garcia-Godoy, Tiziano Lucchi and Pier Carmine Passarelli
Nutrients 2025, 17(15), 2538; https://doi.org/10.3390/nu17152538 - 1 Aug 2025
Viewed by 178
Abstract
The oral–gut microbiota axis is a relatively new field of research. Although most studies have focused separately on the oral and gut microbiota, emerging evidence has highlighted that the two microbiota are interconnected and may influence each other through various mechanisms shaping systemic [...] Read more.
The oral–gut microbiota axis is a relatively new field of research. Although most studies have focused separately on the oral and gut microbiota, emerging evidence has highlighted that the two microbiota are interconnected and may influence each other through various mechanisms shaping systemic health. The aim of this review is therefore to provide an overview of the interactions between oral and gut microbiota, and the influence of diet and related metabolites on this axis. Pathogenic oral bacteria, such as Porphyromonas gingivalis and Fusobacterium nucleatum, can migrate to the gut through the enteral route, particularly in individuals with weakened gastrointestinal defenses or conditions like gastroesophageal reflux disease, contributing to disorders like inflammatory bowel disease and colorectal cancer. Bile acids, altered by gut microbes, also play a significant role in modulating these microbiota interactions and inflammatory responses. Oral bacteria can also spread via the bloodstream, promoting systemic inflammation and worsening some conditions like cardiovascular disease. Translocation of microorganisms can also take place from the gut to the oral cavity through fecal–oral transmission, especially within poor sanitary conditions. Some metabolites including short-chain fatty acids, trimethylamine N-oxide, indole and its derivatives, bile acids, and lipopolysaccharides produced by both oral and gut microbes seem to play central roles in mediating oral–gut interactions. The complex interplay between oral and gut microbiota underscores their crucial role in maintaining systemic health and highlights the potential consequences of dysbiosis at both the oral and gastrointestinal level. Some dietary patterns and nutritional compounds including probiotics and prebiotics seem to exert beneficial effects both on oral and gut microbiota eubiosis. A better understanding of these microbial interactions could therefore pave the way for the prevention and management of systemic conditions, improving overall health outcomes. Full article
(This article belongs to the Special Issue Exploring the Lifespan Dynamics of Oral–Gut Microbiota Interactions)
Show Figures

Figure 1

14 pages, 31608 KiB  
Article
Primary Metabolic Variations in Maize Plants Affected by Different Levels of Nitrogen Supply
by The Ngoc Phuong Nguyen, Rose Nimoh Serwaa and Jwakyung Sung
Metabolites 2025, 15(8), 519; https://doi.org/10.3390/metabo15080519 - 1 Aug 2025
Viewed by 186
Abstract
Background/Objectives: Nitrogen (N) is an essential macronutrient that strongly influences maize growth and metabolism. While many studies have focused on nitrogen responses during later developmental stages, early-stage physiological and metabolic responses remain less explored. This study investigated the effect of different nitrogen-deficient [...] Read more.
Background/Objectives: Nitrogen (N) is an essential macronutrient that strongly influences maize growth and metabolism. While many studies have focused on nitrogen responses during later developmental stages, early-stage physiological and metabolic responses remain less explored. This study investigated the effect of different nitrogen-deficient levels on maize seedling growth and primary metabolite profiles. Methods: Seedlings were treated with N-modified nutrient solution, which contained 0% to 120% of the standard nitrogen level (8.5 mM). Results: Nitrogen starvation (N0) significantly reduced plant height (by 11–14%), shoot fresh weight (over 30%) compared to the optimal N supply (N100). Total leaf nitrogen content under N0–N20 was less than half of that in N100, whereas moderate N deficiency resulted in moderate reductions in growth and nitrogen content. Metabolite analysis revealed that N deficiency induced the accumulation of soluble sugars and organic acids (up to threefold), while sufficient N promoted the synthesis of amino acids related to nitrogen assimilation and protein biosynthesis. Statistical analyses (PCA and ANOVA) showed that both genotypes (MB and TYC) and tissue type (upper vs. lower leaves) influenced the metabolic response to nitrogen, with MB displaying more consistent shifts and TYC exhibiting greater variability under moderate stress. Conclusions: These findings highlight the sensitivity of maize seedlings to early nitrogen deficiency, with severity influenced by nitrogen level, tissue-specific position, and genotype; thus underscore the close coordination between physiological growth and primary metabolic pathways in response to nitrogen availability. These findings expand current knowledge of nitrogen response mechanisms and offer practical insights for improving nitrogen use efficiency in maize cultivation. Full article
Show Figures

Figure 1

16 pages, 3027 KiB  
Article
Molecular and Morphological Evidence Reveals Four New Neocosmospora Species from Dragon Trees in Yunnan Province, China
by Mei Jia, Qi Fan, Zu-Shun Yang, Yuan-Bing Wang, Xing-Hong Wang and Wen-Bo Zeng
J. Fungi 2025, 11(8), 571; https://doi.org/10.3390/jof11080571 - 31 Jul 2025
Viewed by 288
Abstract
Neocosmospora (Nectriaceae) is a globally distributed fungal genus, traditionally recognized as a group of plant pathogens, with most members known to cause severe plant diseases. However, recent studies have demonstrated that many of these fungi can also colonize plants endophytically, with [...] Read more.
Neocosmospora (Nectriaceae) is a globally distributed fungal genus, traditionally recognized as a group of plant pathogens, with most members known to cause severe plant diseases. However, recent studies have demonstrated that many of these fungi can also colonize plants endophytically, with certain strains capable of promoting plant growth and stimulating the production of secondary metabolites. In this study, 13 strains of Neocosmospora were isolated from the stems and leaves of Dracaena cambodiana and D. lourei in Yunnan Province, China. To clarify the taxonomic placement of these strains, morphological examination and multi-gene (ITS, nrLSU, tef1, rpb1, and rpb2) phylogenetic analyses were performed. Based on morphological and phylogenetic evidence, four new species are introduced and described here: N. hypertrophia, N. kunmingense, N. rugosa, and N. simplicillium. This study expands our understanding of the fungal diversity associated with Dracaena, provides essential data for the taxonomy of Neocosmospora, and serves as a resource for the future development and utilization of Neocosmospora endophytes. Full article
(This article belongs to the Section Fungal Evolution, Biodiversity and Systematics)
Show Figures

Figure 1

23 pages, 2527 KiB  
Article
Investigating the Cellular Responses to Combined Nisin and Urolithin B Treatment (7:3) in HKB-11 Lymphoma Cells
by Ahmad K. Al-Khazaleh, Muhammad A. Alsherbiny, Dennis Chang, Gerald Münch and Deep Jyoti Bhuyan
Int. J. Mol. Sci. 2025, 26(15), 7369; https://doi.org/10.3390/ijms26157369 - 30 Jul 2025
Viewed by 225
Abstract
Lymphoma continues to pose a serious challenge to global health, underscoring the urgent need for new therapeutic strategies. Recently, the gut microbiome has been shown to play a potential role in regulating immune responses and influencing cancer progression. However, its molecular mechanisms of [...] Read more.
Lymphoma continues to pose a serious challenge to global health, underscoring the urgent need for new therapeutic strategies. Recently, the gut microbiome has been shown to play a potential role in regulating immune responses and influencing cancer progression. However, its molecular mechanisms of action in lymphoma remain poorly understood. This study investigates the antiproliferative and apoptotic activities of gut microbiota-derived metabolites, specifically nisin (N) and urolithin B (UB), individually and in combination 7:3 (5750 μM), against the human lymphoma cell line HKB-11. Comprehensive evaluations were performed using Alamar Blue viability assays, combination index (CI) analyses, reactive oxygen species (ROS) quantification, flow cytometry for apoptosis detection, and advanced bottom-up proteomics analyses. N and UB exhibited potent antiproliferative activity, with the 7:3 combination demonstrating strong synergistic effects (CI < 1), significantly enhancing apoptosis (p < 0.01) and ROS production (p < 0.0001) compared to the untreated control. Proteomics analyses revealed substantial alterations in proteins crucial to ribosomal biogenesis, mitochondrial function, cell cycle control, and apoptosis regulation, including a marked downregulation of ribosomal proteins (RPS27; Log2FC = −3.47) and UBE2N (Log2FC = −0.60). These findings highlight the potential of N and UB combinations as a novel and practical therapeutic approach for lymphoma treatment, warranting further in vivo exploration and clinical validation. Full article
(This article belongs to the Special Issue Innovative Biological Molecules for Cancer Therapy)
Show Figures

Figure 1

16 pages, 1702 KiB  
Article
Does Salt Form Matter? A Pilot Randomized, Double-Blind, Crossover Pharmacokinetic Comparison of Crystalline and Regular Glucosamine Sulfate in Healthy Volunteers
by Chuck Chang, Afoke Ibi, Yiming Zhang, Min Du, Yoon Seok Roh, Robert O’Brien and Julia Solnier
Nutrients 2025, 17(15), 2491; https://doi.org/10.3390/nu17152491 - 30 Jul 2025
Viewed by 278
Abstract
Background: Crystalline glucosamine sulfate (cGS) claims to be a stabilized form of glucosamine sulfate with a defined crystalline structure intended to enhance chemical stability. It is proposed to offer pharmacokinetic advantages over regular glucosamine sulfate (rGS) which is stabilized with potassium or [...] Read more.
Background: Crystalline glucosamine sulfate (cGS) claims to be a stabilized form of glucosamine sulfate with a defined crystalline structure intended to enhance chemical stability. It is proposed to offer pharmacokinetic advantages over regular glucosamine sulfate (rGS) which is stabilized with potassium or sodium chloride. However, comparative human bioavailability data are limited. Since both forms dissociate in gastric fluid into constituent ions, the impact of cGS formulation on absorption remains uncertain. This pilot study aimed to compare the bioavailability of cGS and rGS using a randomized, double-blind, crossover design. Methods: Ten healthy adults received a single 1500 mg oral dose of either cGS or rGS with a 7-day washout between interventions. Capillary blood samples were collected over 24 h. Glucosamine and its metabolite concentrations were quantified by Liquid Chromatography-High Resolution Mass Spectrometry (LC-HRMS), and pharmacokinetic parameters—including maximum concentration (Cmax), time to reach Cmax (Tmax), and area under the curve (AUC)—were calculated. Results: Mean AUC0–24, Cmax, Tmax, and T½ values for glucosamine and glucosamine-6-sulfate (GlcN-6-S) were comparable between cGS and rGS. Although the AUC0–24 for glucosamine was modestly higher with rGS (18,300 ng·h/mL) than with cGS (12,900 ng·h/mL), the difference was not statistically significant (p = 0.136). GlcN-6-S exposure was also similar between formulations (rGS: 50,700 ng·h/mL; cGS: 50,600 ng·h/mL), with a geometric mean ratio of 1.39, a delayed Tmax (6–8 h) and longer half-life, consistent with its role as a downstream metabolite. N-acetylglucosamine levels remained stable, indicating potential homeostatic regulation. Conclusions: This pilot study found no significant pharmacokinetic advantage of cGS over rGS. These preliminary findings challenge claims of cGS’ pharmacokinetic superiority, although the small sample size limits definitive conclusions. Larger, adequately powered studies are needed to confirm these results. Full article
(This article belongs to the Special Issue Bone-Health-Promoting Bioactive Nutrition)
Show Figures

Graphical abstract

24 pages, 1391 KiB  
Article
Nitrogen Fertilization and Glomus Mycorrhizal Inoculation Enhance Growth and Secondary Metabolite Accumulation in Hyssop (Hyssopus officinalis L.)
by Saeid Hazrati, Marzieh Mohammadi, Saeed Mollaei, Mostafa Ebadi, Giuseppe Pignata and Silvana Nicola
Nitrogen 2025, 6(3), 60; https://doi.org/10.3390/nitrogen6030060 - 26 Jul 2025
Viewed by 330
Abstract
Nitrogen (N) availability often limits primary productivity in terrestrial ecosystems, and arbuscular mycorrhizal fungi (AMF) can enhance plant N acquisition. This study investigated the interactive effects of N fertilization and AMF inoculation on N uptake, plant performance and phenolic acid content in Hyssopus [...] Read more.
Nitrogen (N) availability often limits primary productivity in terrestrial ecosystems, and arbuscular mycorrhizal fungi (AMF) can enhance plant N acquisition. This study investigated the interactive effects of N fertilization and AMF inoculation on N uptake, plant performance and phenolic acid content in Hyssopus officinalis L., with the aim of promoting sustainable N management in H. officinalis cultivation. A factorial randomized complete block design was employed to evaluate four AMF inoculation strategies (no inoculation, root inoculation, soil inoculation and combined root–soil inoculation) across three N application rates (0, 0.5 and 1,1 g N pot−1 (7 L)) in a controlled greenhouse environment. Combined root and soil AMF inoculation alongside moderate N fertilization (0.5 mg N pot−1) optimized N use efficiency, maximizing plant biomass and bioactive compound production. Compared to non-inoculated controls, this treatment combination increased N uptake by 30%, phosphorus uptake by 24% and potassium uptake by 22%. AMF colonization increased chlorophyll content and total phenolic compounds under moderate N supply. However, excessive N application (1 g N pot−1) reduced AMF effectiveness and secondary metabolite accumulation. Notably, AMF inoculation without N fertilization yielded the highest levels of anthocyanin and salicylic acid, indicating differential N-dependent regulation of specific biosynthetic pathways. The interaction between AMF and N demonstrated that moderate N fertilization (0.5 g N pot−1) combined with dual inoculation strategies can reduce total N input requirements by 50%, while maintaining optimal plant performance. These findings provide practical insights for developing N-efficient cultivation protocols in medicinal plant production systems, contributing to sustainable agricultural practices that minimize environmental N losses. Full article
Show Figures

Figure 1

18 pages, 605 KiB  
Review
Gut Microbiota, Microbial Metabolites, and Inflammation in Cardiac Surgery: Implications for Clinical Outcomes—A Narrative Review
by Panagiota Misokalou, Arezina N. Kasti, Konstantinos Katsas and Dimitrios C. Angouras
Microorganisms 2025, 13(8), 1748; https://doi.org/10.3390/microorganisms13081748 - 26 Jul 2025
Viewed by 501
Abstract
Cardiac surgery, particularly procedures involving cardiopulmonary bypass (CPB), is associated with a high risk of postoperative complications, including systemic inflammatory response syndrome (SIRS), postoperative atrial fibrillation (POAF), and infection. Growing evidence suggests that the gut–heart axis, through mechanisms involving intestinal barrier integrity and [...] Read more.
Cardiac surgery, particularly procedures involving cardiopulmonary bypass (CPB), is associated with a high risk of postoperative complications, including systemic inflammatory response syndrome (SIRS), postoperative atrial fibrillation (POAF), and infection. Growing evidence suggests that the gut–heart axis, through mechanisms involving intestinal barrier integrity and gut microbiota homeostasis, may influence these outcomes. This review summarizes the relationship between gut microbiota composition and the inflammatory response in patients undergoing cardiac surgery and the extent to which these alterations impact clinical outcomes. The reviewed studies consistently show that cardiac surgery induces notable alterations in microbial diversity and composition during the perioperative period. These changes, indicative of dysbiosis, are characterized by a reduction in health-associated bacteria such as Blautia, Faecalibacterium, and Bifidobacterium and an increase in opportunistic pathogens. Inflammatory biomarkers were frequently elevated postoperatively, even in patients without evident complications. Key microbial metabolites and biomarkers, including short-chain fatty acids (SCFAs), trimethylamine N-oxide (TMAO), and bile acids (BAs), were implicated in modulating inflammation and clinical outcomes. Additionally, vitamin D deficiency emerged as a contributing factor, correlating with increased systemic inflammation and a higher incidence of POAF. The findings suggest that gut microbiota composition prior to surgery may influence the severity of the postoperative inflammatory response and that perioperative modulation of the gut microbiota could represent a novel approach to improving surgical outcomes. However, the relationship between dysbiosis and acute illness in surgical patients is confounded by factors such as antibiotic use and other perioperative interventions. Large-scale, standardized clinical studies are needed to better define these interactions and guide future therapeutic strategies in cardiac surgery. Full article
Show Figures

Graphical abstract

Back to TopTop