Metabolomic and Molecular Mechanisms of Glycerol Supplementation in Regulating the Reproductive Function of Kazakh Ewes in the Non-Breeding Season
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals, Experimental Design, and Diets
2.2. Sample Preparation and Analyses
2.3. Serum Non-Targeted Metabolomics
2.4. Statistical Analyses
3. Results
3.1. Effect of Glycerol Mixtures on Estrus Rate of Ewes in the Non-Breeding Season
3.2. Regulatory Effects of Glycerol Complexes on Reproductive Hormone Secretion Patterns in Ewes
3.3. Dynamic Regulation of Lipid Metabolism Hormones in Ewes by Glycerol Complex
3.4. Regulatory Effects of Nutritional Interventions on Gene Expression in the Reproductive-Metabolic Axis of Sheep
3.5. Metabolomics QC and PCA
3.6. Metabolomics Multivariate Statistical Analysis
3.7. Differential Metabolite Screening and Functional Analysis
3.8. Functional Analysis and Regulatory Network of Metabolic Pathways
4. Discussion
4.1. Effectiveness of Glycerol Complex in Inducing Estrus in Ewes During the Non-Breeding Season
4.2. Remodeling Effects of Glycerol Complex on Reproductive Hormone Rhythms in Ewes
4.3. Molecular Mechanism of Synergistic Regulation of the Lipid Metabolism-Reproduction Axis in Ewes by Glycerol Complex
4.4. Mechanisms of Glycerol Complex Regulation of the Reproduction-Lipid Metabolism Axis in Ewes
4.5. Serum Metabolomic Profiling and Key Metabolite Resolution
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kiyma, Z.; Alexander, B.M.; Van, K.E.A.; Murdoch, W.J.; Hallford, D.M.; Moss, G.E. Effects of feed restriction on reproductive and metabolic hormones in ewes. J. Anim. Sci. 2004, 82, 2548–2557. [Google Scholar] [CrossRef]
- Ma, L.W.; Hou, S.Z.; Wang, Z.Y.; Zhang, J.X. Effects of Supplementing Concentrate Feeds with Different Energy Levels on Estrus and Conception Rates of Grazing Tibetan Ewes. Jiangsu Agric. Sci. 2015, 43, 123–128. [Google Scholar] [CrossRef]
- Andrade, M.A.M.d.M.; Alves, J.P.M.; Galvão, I.T.O.M.; Cavalcanti, C.M.; Silva, M.R.L.; Conde, A.J.H.; Rondina, D. Glycerin supplementation strategies for three or seven days affects oxidative stress, follicle dynamics and ovulatory response in Morada Nova sheep. Anim. Reprod. 2022, 19, e20200025. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, F.V.; Silva, C.M.G.; Lima, I.M.T.; Silva, A.M.; Rondina, D. Effect of oral drenching of glycerin as a source of pre-mating energetic supplementation on reproductive response in goats. Anim. Reprod. 2015, 12, 890–898. [Google Scholar]
- Tyl, R.W.; Bechtel, D.H. One-generation reproduction study of esterified propoxylated glycerol (EPG) administered in the feed to CD®(Sprague-Dawley) rats. Regul. Toxicol. Pharmacol. 2014, 70, S114–S122. [Google Scholar] [CrossRef] [PubMed]
- Zhu, M.T.; Li, H.; Peng, F.; Yang, H.; Zhao, Z.S. The influence of glycerol on seasonal estrus and serum reproductive hormone levels in sheep. Heilongjiang Anim. Husb. Vet. Med. 2017. [Google Scholar] [CrossRef]
- Letelier, C.; Mallo, F.; Encinas, T.; Ros, J.; Gonzalez-Bulnes, A. Glucogenic supply increases ovulation rate by modifying follicle recruitment and subsequent development of preovulatory follicles without effects on ghrelin secretion. Reproduction 2008, 136, 65–72. [Google Scholar] [CrossRef]
- Meza-Herrera, C.A.; Ross, T.; Hallford, D.; Hawkins, D.; Gonzalez-Bulnes, A. Effects of body condition and protein supplementation on LH secretion and luteal function in sheep. Reprod. Domest. Anim. 2010, 42, 461–465. [Google Scholar] [CrossRef]
- Liefers, S.C.; Veerkamp, R.F.; Pas, M.F.W.T.; Delavaud, C.; Chilliard, Y.; Lende, T.V.D. Leptin concentrations in relation to energy balance, milk yield, intake, live weight, and estrus in dairy cows. J. Dairy Sci. 2003, 86, 799–807. [Google Scholar] [CrossRef]
- Moschos, S.; Chan, J.L.; Mantzoros, C.S. Leptin and reproduction: A review. Fertil. Steril. 2002, 77, 433–444. [Google Scholar] [CrossRef]
- Yang, H.; Liu, X.; Hu, G.; Xie, Y.; Lin, S.; Zhao, Z.; Chen, J. Identification and analysis of microRNAs-mRNAs pairs associated with nutritional status in seasonal sheep. Biochem. Biophys. Res. Commun. 2018, 499, 321–327. [Google Scholar] [CrossRef]
- Lin, S. Screening of Micrornas and Functional Verification of Target Genes Related to Estrus in Non-Breeding Seasons Induced by Nutrition in Sheep. Master's Thesis, Shihezi University, Shihezi, China, 2015. [Google Scholar]
- Yizengaw, L. Review on estrus synchronization and its application in cattle. Int. J. Adv. Res. Biol. Sci. 2017, 4, 67–76. [Google Scholar] [CrossRef]
- Rettmer, I.; Goodband, R.; Stevenson, J.; Davis, D.; Tokach, M.; Rozeboom, D.; Pettigrew, J.E.; Johnston, L.J.; Rust, J.W.; Chester-Jones, H. Failure of dietary amino acid supplementation at weaning to influence reproductive traits of sows. J. Anim. Sci. 1993, 71, 2511–2515. [Google Scholar] [CrossRef]
- Jia, Y.; Liu, Y.; Wang, P.; Liu, Z.; Zhang, R.; Chu, M.; Zhao, A. NTRK2 Promotes Sheep Granulosa Cells Proliferation and Reproductive Hormone Secretion and Activates the PI3K/AKT Pathway. Animals 2024, 14, 1465. [Google Scholar] [CrossRef]
- Abu, A.A.; El-Gohary, E.S.; Abdel-Samee, A.M. Productive and reproductive performance of goats as affected by l-tyrosine supplement. 1-Sexual activity and reproductive performance. Egypt. J. Sheep Goats Sci. 2011, 6, 1–10. [Google Scholar]
- Hong, J. Effects of Dietary Arginine, Lysine, and Energy Levels on Physiological Responses and Reproductive Performance in Sows and Growth of Their Progeny. Ph.D. Dissertation, Seoul National University Graduate School, Seoul, Republic of Korea, 2018. [Google Scholar]
- Council, N.R. Nutrient Requirements of Small Ruminants; The National Academies Press: Washington, DC, USA, 2007. [Google Scholar] [CrossRef]
- Ebling, F.J.P. Photoperiodic regulation of puberty in seasonal species. Mol. Cell Endocrinol. 2010, 324, 95–101. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.N.; Zhang, F.C.; Zhang, J.; Wang, A.J.; Liao, L.W.; Zhang, F.L. Study on the preferred program for inducing estrus in ewes during the non-breeding season. Heilongjiang Anim. Husb. Vet. Med. 1999, 12–13. [Google Scholar] [CrossRef]
- Guerra, D.D.; Bok, R.; Cari, E.L.; Nicholas, C.; Orlicky, D.J.; Johnson, J.; Hurt, K.J. Effect of neuronal nitric oxide synthase serine-1412 phosphorylation on hypothalamic–pituitary–ovarian function and leptin response. Biol. Reprod. 2020, 102, 1281–1289. [Google Scholar] [CrossRef] [PubMed]
- Bruun, T.; Lyderik, K.; Dall, J.; Strathe, A. Effect of feeding sows a combination of extra vitamin B2, vitamin B6, vitamin B12, and folic acid during the first 45 days of gestation on piglet birthweight. Livest. Sci. 2024, 282, 105434. [Google Scholar] [CrossRef]
- Qi, Y.X.; He, L.; Liu, X.F.; Wu, J.H.; Rong, W.H.; Liu, Y.B. Analysis of the Variation patterns of serum FSH and LH concentrations in Bamei Sheep during estrus and their relationship with the number of lambs born. Heilongjiang Anim. Sci. Vet. Med. 2014. [Google Scholar] [CrossRef]
- Tian, Z.W.; Zhao, Z.S.; Lin, S.; Zhai, M.J.; Yu, Y.S.; Lei, X.P. The changing patterns of reproductive hormones in Xinjiang Kazakh sheep during the estrus and hypoestrus periods. Jiangsu Agric. Sci. 2016, 44, 256. [Google Scholar]
- Mondal, M.; Rajkhowa, C.; Prakash, B.S. Relationship of plasma estradiol-17β, total estrogen, and progesterone to estrus behavior in mithun (Bos frontalis) cows. Horm. Behav. 2006, 49, 626–633. [Google Scholar] [CrossRef] [PubMed]
- Sogorescu, E.; Zamfirescu, S.; Anghel, A.H.; Nadolu, D.; Rosoiu, N. Seasonal Variations of Progesterone Level and Characteristics of Breeding Season and Anoestrus Period on Carpathian Goats. J. Anim. Vet. Adv. 2012, 11, 1472–1477. [Google Scholar] [CrossRef]
- Lehman, M.N.; Merkley, C.M.; Coolen, L.M.; Goodman, R.L. Anatomy of the kisspeptin neural network in mammals. Brain Res. 2010, 1364, 90–102. [Google Scholar] [CrossRef]
- Jiang, B.H.; Nan, Y.; Xie, M.T.; Qi, X.D.; Ye, C.F.; Nuerli, A.; Zhao, Z. Effects of glycerol supplementation at different doses on apparent digestibility of nutrients, ruminal environment, and volatile fatty acid absorption in empty ewes. J. Anim. Nutr. 2024, 36, 2541–2550. [Google Scholar] [CrossRef]
- Nielsen, N.I.; Ingvartsen, K.L. Propylene glycol for dairy cows: A review of the metabolism of propylene glycol and its effects on physiological parameters, feed intake, milk production and risk of ketosis. Anim. Feed Sci. Technol. 2004, 115, 191–213. [Google Scholar] [CrossRef]
- Donkin, S.; Koser, S.; White, H.; Doane, P.; Cecava, M. Feeding value of glycerol as a replacement for corn grain in rations fed to lactating dairy cows. J. Dairy Sci. 2009, 92, 5111–5119. [Google Scholar] [CrossRef]
- Scaramuzzi, R.; Brown, H.M.; Dupont, J. Nutritional and metabolic mechanisms in the ovary and their role in mediating the effects of diet on folliculogenesis: A perspective. Reprod. Domest. Anim. 2010, 45, 32–41. [Google Scholar] [CrossRef]
- Berlinguer, F.; Gonzalez-Bulnes, A.; Contreras-Solis, I.; Spezzigu, A.; Torres-Rovira, L.; Succu, S.; Naitana, S.; Leoni, G.G. Glucogenic supply increases oocyte developmental competence in sheep. Reprod. Fertil. Dev. 2012, 24, 1055–1062. [Google Scholar] [CrossRef]
- Beretta, E. Long-term suppression of weight gain, adiposity, and serum insulin by central leptin gene therapy in prepubertal rats: Effects on serum ghrelin and appetite-regulating genes. Pediatr. Res. 2002, 52, 189–198. [Google Scholar] [CrossRef]
- Bern, H.A. From fish tail to human brain: Preface. Peptides 2008, 29, 649–650. [Google Scholar] [CrossRef] [PubMed]
- Golshan, M.; Alavi, S.M.H.; Hatef, A.; Kazori, N.; Socha, M.; Milla, S.; Sokołowska-Mikołajczyk, M.; Unniappan, S.; Butts, I.A.E. Impact of absolute food deprivation on the reproductive system in male goldfish exposed to sex steroids. J. Comp. Physiol. B Biochem. Syst. Environ. Physiol. 2024, 194, 411–426. [Google Scholar] [CrossRef] [PubMed]
- Smith, J.T. Sex steroid control of hypothalamic Kiss1 expression in sheep and rodents: Comparative aspects. Peptides 2009, 30, 94–102. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Yu, M.; Liu, L.; Yi, K.; Li, C.; Chen, L.; Sun, Y. Effects of dietary energy level on ovarian expression of mRNA s for luteinizing hormone receptor and follicle-stimulating hormone receptor in prepubertal gilts. Chin. J. Vet. Sci. 2009, 97–105. [Google Scholar]
- Horan, C.J.; Williams, S.A. Oocyte stem cells: Fact or fantasy? Reproduction 2017, 154, R23–R35. [Google Scholar] [CrossRef]
- Gao, L.S.; Wu, J.P.; Song, S.Z.; Li, H.; Lang, X.; Wei, Y.B.; Gong, X.; Liu, L. The influence of different energy levels on serum lipid indices and fat deposition in Altay sheep. Feed Ind. 2020, 41, 14–23. [Google Scholar] [CrossRef]
- Fathi, E.; Farahzadi, R. Application of L-carnitine as nutritional supplement in veterinary medicine. Rom. J. Biochem. 2014, 1, 31–41. [Google Scholar]
- Gerber, L.K.; Aronow, B.J.; Matlib, M.A. Activation of a novel long-chain free fatty acid generation and export system in mitochondria of diabetic rat hearts. Am. J. Physiol. Cell Physiol. 2006, 291, C1198–C1207. [Google Scholar] [CrossRef]
- Crayhon, R. The Carnitine Miracle: The Supernutrient Program That Promotes High Energy, Fat Burning, Heart Health, Brain Wellness and Longevity; Rowman Littlefield: Washington, DC, USA, 2001. [Google Scholar]
- Koohpeyma, F.; Siri, M.; Allahyari, S.; Mahmoodi, M.; Saki, F.; Dastghaib, S. The effects of L-carnitine on renal function and gene expression of caspase-9 and Bcl-2 in monosodium glutamate-induced rats. BMC Nephrol. 2021, 22, 162. [Google Scholar] [CrossRef]
- Samir, H.; Swelum, A.A.; Abdelnaby, E.A.; El-Sherbiny, H.R. Incorporation of L-Carnitine in the OvSynch protocol enhances the morphometrical and hemodynamic parameters of the ovarian structures and uterus in ewes under summer climatic conditions. BMC Vet. Res. 2023, 19, 246. [Google Scholar] [CrossRef]
Item | Content, % | Nutrient Content 2 | Content, % |
---|---|---|---|
Ingredients | (MJ/kg) | 10.96 | |
Alfalfa hay | 40 | DM | 83.375 |
Alfalfa silage | 35 | CP | 17.5 |
Corn Stover | 5 | Ash | 8.63 |
Soybean Meal | 7.9 | EE | 2.9 |
Corn | 8.5 | Ca | 0.49 |
NaHCO3 | 1.5 | P | 0.41 |
premix 1 | 1 | NDF | 44.94 |
NaCl | 0.8 | ADF | 35.59 |
Lys | 0.3 | ||
consider | 100 |
Gene | Sequence (5′→3′) | Temperature/°C | Product Length/bp |
---|---|---|---|
GnAQ | F: GGACAGGAGAGAGTGGCAAG R: GGCCGTGAAGATGTTCTGAT | 57 | 112 |
kiss-1 | F: ATGAACGTGCTGCTTTCCT R: TCCGAGCTGCGAGCCTGTG | 58 | 117 |
GPR54 | F: CCTTCACCGCTCTGCTCTAC R: ACCGAGACCTGCTGGATGTA | 58 | 88 |
GnRH | F: CTTAGGTTCTACTGGCTGAT R: TCCTGCTGACTTTCTGTG | 58 | 112 |
CYP11A1 | F: CGAGGGATCCTACCCACAGA R: GTTCTGGAGGGAGGTTGAGC | 55 | 422 |
LHR | F: TGCGGCCTTTAATCGTTCCT R: ATACTACTGGGCCTGGGTGT | 58 | 216 |
VEGF | F: GCACCGTCTTTTTGTCCCTC R: TCTTCCCAAAAGCAGGCCAA | 58 | 103 |
StAR | F: GGCAGAGATGAGCCACACTT R: CCTGTGCCCCTTACCTTGAG | 58 | 584 |
β-actin | F: AGAGCAAGAGAGGCATCC R: TCGTTGTAGAAGGTGTGGT | 50~60 | 108 |
HSL | F: AGCACTACAAACGAACGA R: CTGAATGATCCGCTCAAACT | 58 | 207 |
GAPDH | F: GTCGGAGTGAACGGATTTGG R: CATTGATGACGAGCTTCCCG | 50~60 | 196 |
Group | Ewe in Heat | Non-Estrus Ewes | Estrus Rate | Number of Follicles/mm | Follicle Diameter/mm | Follicle Thickness/mm |
---|---|---|---|---|---|---|
Control | 1 | 9 | 10% | - | - | - |
GLY | 3 | 7 | 30% | 3 ± 1 | 1.8 ± 0.32 | 0.95 ± 0.25 |
GLY-Tyr | 4 | 6 | 40% | 3 ± 2 | 1.9 ± 0.18 | 0.85 ± 0.32 |
GLY-B9 | 3 | 7 | 30% | 3 ± 1 | 2.2 ± 0.27 | 1.01 ± 0.43 |
GLY-Tyr-B9 | 5 | 5 | 50% | 4 ± 2 | 2.4 ± 0.26 | 1.08 ± 0.53 |
Group | Metabolite Name | Formula | RT [min] | m/z | FC | p-Value | VIP | Trend |
---|---|---|---|---|---|---|---|---|
GLY.vs.NC | DL-Carnitine | C7 H15 N O3 | 1.330 | 162.112 | 2.655 | 0.000 | 2.215 | ↑ |
4-Hydroxyisoleucine | C6 H13 N O3 | 1.832 | 148.097 | 1.456 | 0.002 | 1.915 | ↑ | |
Asp-Phe | C13 H16 N2 O5 | 4.852 | 281.113 | 1.751 | 0.003 | 2.131 | ↑ | |
PC O-17:0 | C25 H52 N O7 P | 9.249 | 510.354 | 1.439 | 0.012 | 1.259 | ↑ | |
LPC O-20:5 | C28 H50 N O6 P | 9.301 | 528.344 | 1.741 | 0.012 | 1.393 | ↑ | |
5-Hydroxyindole-2-carboxylic acid | C9 H7 N O3 | 2.834 | 178.050 | 0.663 | 0.016 | 1.654 | ↓ | |
Meperidine-d5 | C15 H16 H5 N O2 | 6.694 | 253.195 | 0.700 | 0.021 | 1.309 | ↓ | |
gamma-Glutamyltyrosine | C14 H18 N2 O6 | 4.940 | 311.123 | 1.594 | 0.024 | 1.558 | ↑ | |
N-Methyllysine | C7 H16 N2 O2 | 1.243 | 161.128 | 2.454 | 0.027 | 1.820 | ↑ | |
Ornithine | C5 H12 N2 O2 | 1.179 | 133.097 | 1.530 | 0.042 | 1.532 | ↑ | |
D-Erythro-sphingosine 1-phosphate | C18 H38 N O5 P | 8.438 | 380.255 | 0.807 | 0.044 | 1.333 | ↓ | |
morpholino(quinolin-6-yl)methanone | C14 H14 N2 O2 | 5.431 | 243.110 | 0.550 | 0.048 | 1.668 | ↓ | |
Ergosterol | C28 H44 O | 7.929 | 397.346 | 2.299 | 0.048 | 1.662 | ↑ | |
Tyr-GLY.vs.NC | Homoarginine | C7 H16 N4 O2 | 1.310 | 189.134 | 13.440 | 0.004 | 2.145 | ↑ |
Ergosterol | C28 H44 O | 7.929 | 397.346 | 2.975 | 0.004 | 2.029 | ↑ | |
3-(4-hydroxy-3-methoxyphenyl)propanoic acid | C10 H12 O4 | 5.587 | 219.063 | 0.643 | 0.004 | 2.192 | ↓ | |
Asp-Phe | C13 H16 N2 O5 | 4.852 | 281.113 | 1.522 | 0.005 | 1.428 | ↑ | |
N2-Acetyl-L-ornithine | C7 H14 N2 O3 | 1.415 | 175.108 | 0.627 | 0.007 | 1.631 | ↓ | |
DL-Carnitine | C7 H15 N O3 | 1.330 | 162.112 | 2.802 | 0.012 | 2.058 | ↑ | |
PC 17:0_17:0 | C42 H84 N O8 P | 11.127 | 762.595 | 0.490 | 0.027 | 1.680 | ↓ | |
Arachidonoyl amide | C20 H33 N O | 8.730 | 304.263 | 2.575 | 0.027 | 1.658 | ↑ | |
L-Homocitrulline | C7 H15 N3 O3 | 1.414 | 190.118 | 3.535 | 0.027 | 1.795 | ↑ | |
DL-Arginine | C6 H14 N4 O2 | 1.280 | 175.119 | 0.772 | 0.029 | 1.408 | ↓ | |
Vitamin A | C20 H30 O | 8.739 | 304.263 | 2.796 | 0.032 | 1.663 | ↑ | |
PC 36:2 | C44 H84 N O8 P | 9.883 | 808.581 | 0.447 | 0.034 | 2.037 | ↓ | |
N-Methyllysine | C7 H16 N2 O2 | 1.243 | 161.128 | 2.496 | 0.035 | 1.552 | ↑ | |
Creatinine | C4 H7 N3 O | 1.383 | 114.066 | 1.452 | 0.040 | 1.408 | ↑ | |
D-Erythro-sphingosine 1-phosphate | C18 H38 N O5 P | 8.438 | 380.255 | 0.788 | 0.043 | 1.326 | ↓ | |
B9-GLYvs.NC | N-Methyllysine | C7 H16 N2 O2 | 1.243 | 161.128 | 2.547 | 1.349 | 0.010 | ↑ |
L-Homocitrulline | C7 H15 N3 O3 | 1.414 | 190.118 | 3.367 | 1.751 | 0.011 | ↑ | |
Methyl palmitate | C17 H34 O2 | 6.740 | 288.289 | 2.226 | 1.155 | 0.021 | ↑ | |
N2-Acetyl-L-ornithine | C7 H14 N2 O3 | 1.415 | 175.108 | 0.647 | −0.627 | 0.022 | ↓ | |
1-Methylhistidine | C7 H11 N3 O2 | 1.293 | 170.092 | 1.725 | 0.787 | 0.023 | ↑ | |
2-hydroxy-6-[(8Z,11Z)-pentadeca-8,11,14-trien-1-yl]benzoic acid | C22 H30 O3 | 8.180 | 343.222 | 1.738 | 0.798 | 0.024 | ↑ | |
Glycerophospho-N-palmitoyl ethanolamine | C21 H44 N O7 P | 8.941 | 454.292 | 0.730 | −0.454 | 0.033 | ↓ | |
LPC O-16:1 | C24 H50 N O6 P | 9.533 | 480.344 | 0.714 | −0.486 | 0.042 | ↓ | |
Cystamine | C4 H12 N2 S2 | 1.245 | 153.052 | 0.766 | −0.384 | 0.043 | ↓ | |
16-Heptadecyne-1,2,4-triol | C17 H32 O3 | 7.801 | 307.224 | 1.358 | 0.441 | 0.043 | ↑ | |
Deoxycytidine | C9 H13 N3 O4 | 1.409 | 250.079 | 0.593 | −0.754 | 0.043 | ↓ | |
Cytosine | C4 H5 N3 O | 1.880 | 112.051 | 0.577 | −0.793 | 0.043 | ↓ | |
Lysopc 20:4 | C28 H50 N O7 P | 8.979 | 544.340 | 0.574 | −0.800 | 0.045 | ↓ | |
B9-Tyr-GLYvs.NC | DL-Carnitine | C7 H15 N O3 | 1.330 | 162.112 | 2.356 | 1.236 | 0.000 | ↑ |
N-Formylkynurenine | C11 H12 N2 O4 | 4.888 | 237.087 | 2.744 | 1.456 | 0.000 | ↑ | |
PC O-38:5 | C46 H84 N O7 P | 11.299 | 794.604 | 0.501 | −0.998 | 0.001 | ↓ | |
N-Stearoyl taurine | C20 H41 N O4 S | 11.437 | 392.282 | 0.631 | −0.664 | 0.002 | ↓ | |
Asp-Phe | C13 H16 N2 O5 | 4.852 | 281.113 | 1.507 | 0.591 | 0.003 | ↑ | |
Choline | C5 H13 N O | 1.314 | 104.107 | 0.723 | −0.468 | 0.005 | ↓ | |
gamma-Glutamyltyrosine | C14 H18 N2 O6 | 4.940 | 311.123 | 1.946 | 0.961 | 0.006 | ↑ | |
LPC 19:1-SN1 | C27 H54 N O7 P | 9.797 | 536.370 | 1.788 | 0.838 | 0.007 | ↑ | |
N-Acetylvaline | C7 H13 N O3 | 4.967 | 182.079 | 0.505 | −0.985 | 0.009 | ↓ | |
Methyl palmitate | C17 H34 O2 | 6.740 | 288.289 | 2.126 | 1.088 | 0.012 | ↑ | |
Acetylcholine | C7 H15 N O2 | 1.395 | 146.117 | 1.413 | 0.498 | 0.014 | ↑ | |
Gly-Phe | C11 H14 N2 O3 | 5.234 | 223.107 | 1.956 | 0.968 | 0.014 | ↑ | |
N2-Acetyl-L-ornithine | C7 H14 N2 O3 | 1.415 | 175.108 | 0.615 | −0.702 | 0.018 | ↓ | |
All trans-Retinal | C20 H28 O | 6.453 | 285.221 | 1.674 | 0.743 | 0.038 | ↑ | |
Phenylacetylglycine | C10 H11 N O3 | 5.460 | 194.081 | 1.633 | 0.708 | 0.042 | ↑ | |
Ornithine | C5 H12 N2 O2 | 1.179 | 133.097 | 1.552 | 0.634 | 0.046 | ↑ |
Group | MapID | MapTitle | p-Value | x | y | n | N |
---|---|---|---|---|---|---|---|
GLY.vs.NC | map04022 | cGMP-PKG signaling pathway | 0.07 | 1 | 1 | 6 | 92 |
map04740 | Olfactory transduction | 0.07 | 1 | 1 | 6 | 92 | |
map04744 | Phototransduction | 0.07 | 1 | 1 | 6 | 92 | |
map00100 | Steroid biosynthesis | 0.13 | 1 | 2 | 6 | 92 | |
map01523 | Antifolate resistance | 0.13 | 1 | 2 | 6 | 92 | |
map04742 | Taste transduction | 0.13 | 1 | 2 | 6 | 92 | |
map04917 | Prolactin signaling pathway | 0.13 | 1 | 2 | 6 | 92 | |
map00760 | Nicotinate and nicotinamide metabolism | 0.19 | 1 | 3 | 6 | 92 | |
map01100 | Metabolic pathways | 0.33 | 6 | 69 | 6 | 92 | |
map04913 | Ovarian steroidogenesis | 0.34 | 1 | 6 | 6 | 92 | |
map04977 | Vitamin digestion and absorption | 0.34 | 1 | 6 | 6 | 92 | |
map00230 | Purine metabolism | 0.43 | 1 | 8 | 6 | 92 | |
map00140 | Steroid hormone biosynthesis | 0.58 | 1 | 12 | 6 | 92 | |
Tyr-GLY.vs.NC | map00830 | Retinol metabolism | 0.02 | 2 | 2 | 13 | 92 |
map04977 | Vitamin digestion and absorption | 0.20 | 2 | 6 | 13 | 92 | |
map00100 | Steroid biosynthesis | 0.26 | 1 | 2 | 13 | 92 | |
map00220 | Arginine biosynthesis | 0.37 | 1 | 3 | 13 | 92 | |
map00760 | Nicotinate and nicotinamide metabolism | 0.37 | 1 | 3 | 13 | 92 | |
map00330 | Arginine and proline metabolism | 0.46 | 1 | 4 | 13 | 92 | |
map00590 | Arachidonic acid metabolism | 0.46 | 1 | 4 | 13 | 92 | |
map04726 | Serotonergic synapse | 0.46 | 1 | 4 | 13 | 92 | |
map05215 | Prostate cancer | 0.46 | 1 | 4 | 13 | 92 | |
map01100 | Metabolic pathways | 0.51 | 11 | 69 | 13 | 92 | |
map00360 | Phenylalanine metabolism | 0.54 | 1 | 5 | 13 | 92 | |
map01210 | 2-Oxocarboxylic acid metabolism | 0.54 | 1 | 5 | 13 | 92 | |
map05200 | Pathways in cancer | 0.54 | 1 | 5 | 13 | 92 | |
map00380 | Tryptophan metabolism | 0.63 | 2 | 10 | 13 | 92 | |
map00260 | Glycine, serine and threonine metabolism | 1.00 | 1 | 6 | 13 | 92 | |
map04913 | Ovarian steroidogenesis | 1.00 | 1 | 6 | 13 | 92 | |
B9-GLY.vs.NC | map00240 | Pyrimidine metabolism | 0.00 | 4 | 5 | 8 | 92 |
map01523 | Antifolate resistance | 0.17 | 1 | 2 | 8 | 92 | |
map00220 | Arginine biosynthesis | 0.24 | 1 | 3 | 8 | 92 | |
map01210 | 2-Oxocarboxylic acid metabolism | 0.37 | 1 | 5 | 8 | 92 | |
map00260 | Glycine, serine, and threonine metabolism | 0.43 | 1 | 6 | 8 | 92 | |
map00340 | Histidine metabolism | 0.48 | 1 | 7 | 8 | 92 | |
map01230 | Biosynthesis of amino acids | 0.58 | 1 | 9 | 8 | 92 | |
map02010 | ABC transporters | 0.58 | 1 | 9 | 8 | 92 | |
map00380 | Tryptophan metabolism | 1.00 | 1 | 10 | 8 | 92 | |
Tyr-B9-GLY.vs.NC | map01523 | Antifolate resistance | 0.01 | 2 | 2 | 11 | 92 |
map04022 | cGMP-PKG signaling pathway | 0.12 | 1 | 1 | 11 | 92 | |
map04740 | Olfactory transduction | 0.12 | 1 | 1 | 11 | 92 | |
map04744 | Phototransduction | 0.12 | 1 | 1 | 11 | 92 | |
map05230 | Central carbon metabolism in cancer | 0.12 | 1 | 1 | 11 | 92 | |
map00410 | beta-Alanine metabolism | 0.23 | 1 | 2 | 11 | 92 | |
map04742 | Taste transduction | 0.23 | 1 | 2 | 11 | 92 | |
map04917 | Prolactin signaling pathway | 0.23 | 1 | 2 | 11 | 92 | |
map00230 | Purine metabolism | 0.24 | 2 | 8 | 11 | 92 | |
map04974 | Protein digestion and absorption | 0.24 | 2 | 8 | 11 | 92 | |
map01100 | Metabolic pathways | 0.28 | 10 | 69 | 11 | 92 | |
map01230 | Biosynthesis of amino acids | 0.29 | 2 | 9 | 11 | 92 | |
map00220 | Arginine biosynthesis | 0.32 | 1 | 3 | 11 | 92 | |
map00380 | Tryptophan metabolism | 0.34 | 2 | 10 | 11 | 92 | |
map00240 | Pyrimidine metabolism | 0.48 | 1 | 5 | 11 | 92 | |
map00360 | Phenylalanine metabolism | 0.48 | 1 | 5 | 11 | 92 | |
map00400 | Phenylalanine, tyrosine and tryptophan biosynthesis | 0.48 | 1 | 5 | 11 | 92 | |
map01210 | 2-Oxocarboxylic acid metabolism | 0.48 | 1 | 5 | 11 | 92 | |
map04913 | Ovarian steroidogenesis | 0.54 | 1 | 6 | 11 | 92 | |
map00970 | Aminoacyl-tRNA biosynthesis | 1.00 | 1 | 8 | 11 | 92 | |
map04976 | Bile secretion | 1.00 | 1 | 8 | 11 | 92 | |
map00340 | Histidine metabolism | 1.00 | 1 | 7 | 11 | 92 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nan, Y.; Jiang, B.; Qi, X.; Ye, C.; Xie, M.; Zhao, Z. Metabolomic and Molecular Mechanisms of Glycerol Supplementation in Regulating the Reproductive Function of Kazakh Ewes in the Non-Breeding Season. Animals 2025, 15, 2291. https://doi.org/10.3390/ani15152291
Nan Y, Jiang B, Qi X, Ye C, Xie M, Zhao Z. Metabolomic and Molecular Mechanisms of Glycerol Supplementation in Regulating the Reproductive Function of Kazakh Ewes in the Non-Breeding Season. Animals. 2025; 15(15):2291. https://doi.org/10.3390/ani15152291
Chicago/Turabian StyleNan, Ying, Baihui Jiang, Xingdong Qi, Cuifang Ye, Mengting Xie, and Zongsheng Zhao. 2025. "Metabolomic and Molecular Mechanisms of Glycerol Supplementation in Regulating the Reproductive Function of Kazakh Ewes in the Non-Breeding Season" Animals 15, no. 15: 2291. https://doi.org/10.3390/ani15152291
APA StyleNan, Y., Jiang, B., Qi, X., Ye, C., Xie, M., & Zhao, Z. (2025). Metabolomic and Molecular Mechanisms of Glycerol Supplementation in Regulating the Reproductive Function of Kazakh Ewes in the Non-Breeding Season. Animals, 15(15), 2291. https://doi.org/10.3390/ani15152291