Gut Microbiota, Microbial Metabolites, and Inflammation in Cardiac Surgery: Implications for Clinical Outcomes—A Narrative Review
Abstract
1. Introduction
2. Gut Microbiota and Inflammation
Bacterial Species and Metabolites Implicated in CVDs
3. Inflammation Before and After Cardiac Surgery
4. Microbial Metabolites in Cardiac Surgery: Mechanisms of Inflammation Modulation
5. Gut Barrier Dysfunction Biomarkers
6. Literature Search Strategy
7. Summary of Studies Investigating Links Between Gut Microbiota, Cardiac Surgery, and Inflammation in Humans and Animals
8. Discussion
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
BA | Bile acid |
CABG | Coronary artery bypass grafting |
CAD | Coronary artery disease |
CLDN | Claudin |
CPB | Cardiopulmonary bypass |
CRP | C-reactive protein |
CVDs | Cardiovascular diseases |
DHCA | Deep hypothermic circulatory arrest |
eNOS | Endothelial nitric oxide synthase |
FFAR2 | Free fatty acid receptor 2 |
FFAR3 | Free fatty acid receptor 3 |
FMO3 | Flavin-monooxygenase 3 |
FXR | Farnesoid X receptor |
GLP-1 | Glucagon-like peptide 1 |
hs-CRP | High-sensitivity C-reactive protein |
hs-TnT | High-sensitivity troponin T |
I-FABP | Intestinal fatty acid binding protein |
IL | Interleukin |
IP3 | Inositol 1,4,5-trisphosphate |
LBP | LPS-binding protein |
LPS | Lipopolysaccharide |
MAPK | Mitogen-activated protein kinase |
MYD88 | Myeloid differentiation primary response gene 88 |
NADPH | Nicotinamide adenine dinucleotide phosphate |
NF-κB | Nuclear factor kappa-B |
NLR/NLRP3 | NOD-like receptors/pyrin domain-containing protein 3 |
NOD1/2 | Nucleotide-binding oligomerization domain-containing proteins 1 and 2 |
OCLN | Occludin |
PAGIn | Phenylacetylglutamine |
PAMPs | Pathogen-associated molecular patterns |
PCT | Procalcitonin |
POAF | Postoperative atrial fibrillation |
PYY | Peptide YY |
ROS | Reactive oxygen species |
sCD14 | Soluble cluster of differentiation 14 |
SCFAs | Short-chain fatty acids |
SIRS | Systemic inflammatory response syndrome |
S1PR2 | Sphingosine-1-phosphate receptor 2 |
TGR5 | Takeda G protein-coupled receptor 5 |
TJPs | Tight junction proteins |
TLRs | Toll-like receptors |
TMA | Trimethylamine |
TMAO | Trimethylamine N-oxide |
TLR-4 | Toll-like receptor-4 |
TNF-α | Tumor necrosis factor-alpha |
ZO-1 | Zonulin |
25(OH)D | 25-hydroxyvitamin D |
References
- Rivera, K.; Gonzalez, L.; Bravo, L.; Manjarres, L.; Andia, M.E. The Gut-Heart Axis: Molecular Perspectives and Implications for Myocardial Infarction. Int. J. Mol. Sci. 2024, 25, 12465. [Google Scholar] [CrossRef]
- Zaher, A.; Elsaygh, J.; Peterson, S.J.; Weisberg, I.S.; Parikh, M.A.; Frishman, W.H. The Interplay of Microbiome Dysbiosis and Cardiovascular Disease. Cardiol. Rev. 2024. [Google Scholar] [CrossRef]
- Singh, P.; Meenatchi, R.; Ahmed, Z.H.T.; Thacharodi, A.; Rohinth, M.; Kumar, R.R.; Varthan, H.M.K.; Hassan, S. Implications of the gut microbiome in cardiovascular diseases: Association of gut microbiome with cardiovascular diseases, therapeutic interventions and multi-omics approach for precision medicine. Med. Microecol. 2024, 19, 100096. [Google Scholar] [CrossRef]
- Spari, D.; Zwicky, S.N.; Yilmaz, B.; Salm, L.; Candinas, D.; Beldi, G. Intestinal dysbiosis as an intraoperative predictor of septic complications: Evidence from human surgical cohorts and preclinical models of peritoneal sepsis. Sci. Rep. 2023, 13, 1. [Google Scholar] [CrossRef]
- Viikinkoski, E.; Aittokallio, J.; Lehto, J.; Ollila, H.; Relander, A.; Vasankari, T.; Jalkanen, J.; Gunn, J.; Jalkanen, S.; Airaksinen, J.; et al. Prolonged Systemic Inflammatory Response Syndrome After Cardiac Surgery. J. Cardiothorac. Vasc. Anesth. 2024, 38, 709–716. [Google Scholar] [CrossRef]
- Kawamura, T.; Wakusawa, R.; Okada, K.; Inadat, S. Elevation of cytokines during open heart surgery with cardiopulmonary bypass: Participation of interleukin 8 and 6 in reperfusion injury. Can. J. Anaesth. 1993, 40, 1016–1021. [Google Scholar] [CrossRef]
- McBride, W.T.; Armstrong, M.A.; Crockard, A.D.; McMurray, T.J.; Rea, J.M. Cytokine balance and immunosuppressive changes at cardiac surgery: Contrasting response between patients and isolated CPB circuits. Br. J. Anaesth. 1995, 75, 724–733. [Google Scholar] [CrossRef]
- Squiccimarro, E.; Stasi, A.; Lorusso, R.; Paparella, D. Narrative review of the systemic inflammatory reaction to cardiac surgery and cardiopulmonary bypass. Artif. Organs 2022, 46, 568–577. [Google Scholar] [CrossRef]
- Dabbagh, A.; Rajaei, S.; Monfared, A.B.; Keramatinia, A.A.; Omidi, K. Cardiopulmonary bypass, inflammation and how to defy it: Focus on pharmacological interventions. Iran. J. Pharm. Res. 2012, 11, 705–714. [Google Scholar]
- Zukowska, A.; Zukowski, M. Surgical Site Infection in Cardiac Surgery. J. Clin. Med. 2022, 2022, 6991. [Google Scholar] [CrossRef]
- Aljure, O.D.; Fabbro, M. Cardiopulmonary Bypass and Inflammation: The Hidden Enemy. J. Cardiothorac. Vasc. Anesth. 2019, 33, 346–347. [Google Scholar] [CrossRef]
- Rahman, M.M.; Islam, F.; Or-Rashid, M.H.; Mamun, A.A.; Rahaman, M.S.; Islam, M.M.; Meem, A.F.K.; Sutradhar, P.R.; Mitra, S.; Mimi, A.A.; et al. The Gut Microbiota (Microbiome) in Cardiovascular Disease and Its Therapeutic Regulation. Front. Cell. Infect. Microbiol. 2022, 12, 903570. [Google Scholar] [CrossRef]
- Wang, W.; Zhu, L.J.; Leng, Y.Q.; Wang, Y.W.; Shi, T.; Wang, W.Z.; Sun, J.C. Inflammatory Response: A Crucial Way for Gut Microbes to Regulate Cardiovascular Diseases. Nutrients 2023, 15, 607. [Google Scholar] [CrossRef]
- Liu, Z.; Li, J.; Liu, H.; Tang, Y.; Zhan, Q.; Lai, W.; Ao, L.; Meng, X.; Ren, H.; Xu, D.; et al. The intestinal microbiota associated with cardiac valve calcification differs from that of coronary artery disease. Atherosclerosis 2019, 284, 121–128. [Google Scholar] [CrossRef]
- Masenga, S.K.; Hamooya, B.; Hangoma, J.; Hayumbu, V.; Ertuglu, L.A.; Ishimwe, J.; Rahman, S.; Saleem, M.; Laffer, C.L.; Elijovich, F.; et al. Recent advances in modulation of cardiovascular diseases by the gut microbiota. J. Hum. Hypertens. 2022, 36, 952–959. [Google Scholar] [CrossRef]
- Nesci, A.; Carnuccio, C.; Ruggieri, V.; D’Alessandro, A.; Di Giorgio, A.; Santoro, L.; Gasbarrini, A.; Santoliquido, A.; Ponziani, F.R. Gut Microbiota and Cardiovascular Disease: Evidence on the Metabolic and Inflammatory Background of a Complex Relationship. Int. J. Mol. Sci. 2023, 24, 9087. [Google Scholar] [CrossRef]
- Chambers, E.S.; Preston, T.; Frost, G.; Morrison, D.J. Role of Gut Microbiota-Generated Short-Chain Fatty Acids in Metabolic and Cardiovascular Health. Curr. Nutr. Rep. 2018, 7, 198–206. [Google Scholar] [CrossRef]
- Palm, C.L.; Nijholt, K.T.; Bakker, B.M.; Westenbrink, B.D. Short-Chain Fatty Acids in the Metabolism of Heart Failure—Rethinking the Fat Stigma. Front. Cardiovasc. Med. 2022, 9, 915102. [Google Scholar] [CrossRef]
- Bowman, J.D.; Surani, S.; Horseman, M.A. Endotoxin, Toll-like Receptor-4, and Atherosclerotic Heart Disease. Curr. Cardiol. Rev. 2017, 13, 86–93. [Google Scholar] [CrossRef]
- Dicks, L.M.T. Cardiovascular Disease May Be Triggered by Gut Microbiota, Microbial Metabolites, Gut Wall Reactions, and Inflammation. Int. J. Mol. Sci. 2024, 25, 10634. [Google Scholar] [CrossRef]
- Al Bander, Z.; Nitert, M.D.; Mousa, A.; Naderpoor, N. The Gut Microbiota and Inflammation: An Overview. Int. J. Environ. Res. Public Health 2020, 17, 7618. [Google Scholar] [CrossRef]
- Zhu, W.; Gregory, J.C.; Org, E.; Buffa, J.A.; Gupta, N.; Wang, Z.; Li, L.; Fu, X.; Wu, Y.; Mehrabian, M.; et al. Gut Microbial Metabolite TMAO Enhances Platelet Hyperreactivity and Thrombosis Risk. Cell 2016, 165, 111–124. [Google Scholar] [CrossRef]
- Liu, Y.; Du, Z.; Lu, Y.; Ma, Y.; Yang, Y.; Osmanaj, F.; Zhang, Y.; Guo, X.; Qin, Y.; Yang, X.; et al. Gut microbiota metabolism disturbance is associated with postoperative atrial fibrillation after coronary artery bypass grafting. Npj Cardiovasc. Health 2024, 1, 5. [Google Scholar] [CrossRef]
- Zhu, Y.; Dwidar, M.; Nemet, I.; Buffa, J.A.; Sangwan, N.; Li, X.S.; Anderson, J.T.; Romano, K.A.; Fu, X.; Funabashi, M.; et al. Two distinct gut microbial pathways contribute to meta-organismal production of phenylacetylglutamine with links to cardiovascular disease. Cell Host Microbe 2023, 31, 18–32.e9. [Google Scholar] [CrossRef]
- Kazemian, N.; Mahmoudi, M.; Halperin, F.; Wu, J.C.; Pakpour, S. Gut microbiota and cardiovascular disease: Opportunities and challenges. Microbiome 2020, 8, 1–17. [Google Scholar] [CrossRef]
- Kenny, D.J.; Plichta, D.R.; Shungin, D.; Koppel, N.; Hall, A.B.; Fu, B.; Vasan, R.S.; Shaw, S.Y.; Vlamakis, H.; Balskus, E.P.; et al. Cholesterol Metabolism by Uncultured Human Gut Bacteria Influences Host Cholesterol Level. Cell Host Microbe 2020, 28, 245–257.e6. [Google Scholar] [CrossRef]
- Zakkar, M.; Ascione, R.; James, A.F.; Angelini, G.D.; Suleiman, M.S. Inflammation, oxidative stress and postoperative atrial fibrillation in cardiac surgery. Pharmacol. Ther. 2015, 154, 13–20. [Google Scholar] [CrossRef]
- Di Vincenzo, F.; Del Gaudio, A.; Petito, V.; Lopetuso, L.R.; Scaldaferri, F. Gut microbiota, intestinal permeability, and systemic inflammation: A narrative review. Intern. Emerg. Med. 2024, 19, 275–293. [Google Scholar] [CrossRef]
- Tang, W.H.W.; Li, X.S.; Wu, Y.; Wang, Z.; Khaw, K.T.; Wareham, N.J.; Nieuwdorp, M.; Boekholdt, S.M.; Hazen, S.L. Plasma trimethylamine N-oxide (TMAO) levels predict future risk of coronary artery disease in apparently healthy individuals in the EPIC-Norfolk prospective population study. Am. Heart J. 2021, 236, 80–86. [Google Scholar] [CrossRef]
- Banerjee, D.; Feng, J.; Sellke, F.W. Strategies to attenuate maladaptive inflammatory response associated with cardiopulmonary bypass. Front Surg. 2024, 11, 1224068. [Google Scholar] [CrossRef]
- Castillo, R.L.; Farías, J.; Sandoval, C.; González-Candia, A.; Figueroa, E.; Quezada, M.; Cruz, G.; Llanos, P.; Jorquera, G.; Kostin, S. Role of NLRP3 Inflammasome in Heart Failure Patients Undergoing Cardiac Surgery as a Potential Determinant of Postoperative Atrial Fibrillation and Remodeling: Is SGLT2 Cotransporter Inhibition an Alternative for Cardioprotection? Antioxidants 2024, 13, 1388. [Google Scholar] [CrossRef]
- Gaudino, M.; Di Franco, A.; Rong, L.Q.; Piccini, J.; Mack, M. Postoperative atrial fibrillation: From mechanisms to treatment. Eur. Heart J. 2023, 44, 1020–1039. [Google Scholar] [CrossRef]
- Habes, Q.L.M.; Kant, N.; Beunders, R.; van Groenendael, R.; Gerretsen, J.; Kox, M.; Pickkers, P. Relationships Between Systemic Inflammation, Intestinal Damage and Postoperative Organ Dysfunction in Adults Undergoing Low-Risk Cardiac Surgery. Heart Lung Circ. 2023, 32, 395–404. [Google Scholar] [CrossRef]
- Lau, L.L.; Halliday, M.I.; Lee, B.; Hannon, R.J.; Gardiner, K.R.; Soong, C.V. Intestinal Manipulation During Elective Aortic Aneurysm Surgery Leads to Portal Endotoxaemia and Mucosal Barrier Dysfunction. Eur. J. Vasc. Endovasc. Surg. 2000, 19, 619–624. [Google Scholar] [CrossRef]
- Derikx, J.P.M.; van Waardenburg, D.A.; Thuijls, G.; Willigers, H.M.; Koenraads, M.; van Bijnen, A.A.; Heineman, E.; Poeze, M.; Ambergen, T.; van Ooij, A.; et al. New Insight in Loss of Gut Barrier during Major Non-Abdominal Surgery. PLoS ONE 2008, 3, e3954. [Google Scholar] [CrossRef]
- Kano, H.; Takahashi, H.; Inoue, T.; Tanaka, H.; Okita, Y. Transition of intestinal fatty acid-binding protein on hypothermic circulatory arrest with cardiopulmonary bypass. Perfusion 2017, 32, 200–205. [Google Scholar] [CrossRef]
- Xia, X.; Ni, J.; Yin, S.; Yang, Z.; Jiang, H.; Wang, C.; Peng, J.; Wei, H.; Wang, X. Elevated Systemic and Intestinal Inflammatory Response Are Associated with Gut Microbiome Disorder After Cardiovascular Surgery. Front. Microbiol. 2021, 12, 686648. [Google Scholar] [CrossRef]
- Parada Venegas, D.; De la Fuente, M.K.; Landskron, G.; González, M.J.; Quera, R.; Dijkstra, G.; Harmsen, H.J.M.; Faber, K.N.; Hermoso, M.A. Short Chain Fatty Acids (SCFAs)-Mediated Gut Epithelial and Immune Regulation and Its Relevance for Inflammatory Bowel Diseases. Front. Immunol. 2019, 10, 277. [Google Scholar]
- Schulthess, J.; Pandey, S.; Capitani, M.; Rue-Albrecht, K.C.; Arnold, I.; Franchini, F.; Chomka, A.; Ilott, N.E.; Johnston, D.G.W.; Pires, E.; et al. The Short Chain Fatty Acid Butyrate Imprints an Antimicrobial Program in Macrophages. Immunity 2019, 50, 432–445.e7. [Google Scholar] [CrossRef]
- Li, M.; van Esch, B.C.A.M.; Wagenaar, G.T.M.; Garssen, J.; Folkerts, G.; Henricks, P.A.J. Pro- and anti-inflammatory effects of short chain fatty acids on immune and endothelial cells. Eur. J. Pharmacol. 2018, 831, 52–59. [Google Scholar] [CrossRef]
- Cao, Y.; Chen, J.; Xiao, J.; Hong, Y.; Xu, K.; Zhu, Y. Butyrate: A bridge between intestinal flora and rheumatoid arthritis. Front. Immunol. 2024, 15, 1475529. [Google Scholar] [CrossRef]
- Chan, M.M.; Yang, X.; Wang, H.; Saaoud, F.; Sun, Y.; Fong, D. The Microbial Metabolite Trimethylamine N-Oxide Links Vascular Dysfunctions and the Autoimmune Disease Rheumatoid Arthritis. Nutrients 2019, 11, 1821. [Google Scholar] [CrossRef]
- Sun, X.; Jiao, X.; Ma, Y.; Liu, Y.; Zhang, L.; He, Y.; Chen, Y. Trimethylamine N-oxide induces inflammation and endothelial dysfunction in human umbilical vein endothelial cells via activating ROS-TXNIP-NLRP3 inflammasome. Biochem. Biophys. Res. Commun. 2016, 481, 63–70. [Google Scholar] [CrossRef]
- Chen, I.; Cassaro, S. Physiology, Bile Acids. StatPearls [Internet]. 1 May 2023. Available online: https://www.ncbi.nlm.nih.gov/books/NBK549765/ (accessed on 3 July 2025).
- Larabi, A.B.; Masson, H.L.P.; Bäumler, A.J. Bile acids as modulators of gut microbiota composition and function. Gut Microbes 2023, 15, 2172671. [Google Scholar] [CrossRef]
- Hylemon, P.B.; Su, L.; Zheng, P.; Bajaj, J.S.; Zhou, H. Bile Acids, Gut Microbiome and the Road to Fatty Liver Disease. In Comprehensive Physiology; Wiley: Hoboken, NJ, USA, 2021; pp. 2719–2730. [Google Scholar]
- Lewis, C.V.; Taylor, W.R. Intestinal barrier dysfunction as a therapeutic target for cardiovascular disease. Am. J. Physiol.-Heart Circ. Physiol. 2020, 319, H1227–H1233. [Google Scholar] [CrossRef]
- Chernevskaya, E.; Zuev, E.; Odintsova, V.; Meglei, A.; Beloborodova, N. Gut Microbiota as Early Predictor of Infectious Complications before Cardiac Surgery: A Prospective Pilot Study. J. Pers. Med. 2021, 11, 1113. [Google Scholar] [CrossRef]
- Luedde, M.; Winkler, T.; Heinsen, F.; Rühlemann, M.C.; Spehlmann, M.E.; Bajrovic, A.; Lieb, W.; Franke, A.; Ott, S.J.; Frey, N. Heart failure is associated with depletion of core intestinal microbiota. ESC Heart Fail. 2017, 4, 282–290. [Google Scholar] [CrossRef]
- Sun, W.; Du, D.; Fu, T.; Han, Y.; Li, P.; Ju, H. Alterations of the Gut Microbiota in Patients with Severe Chronic Heart Failure. Front Microbiol. 2022, 12, 813289. [Google Scholar] [CrossRef]
- Maekawa, M.; Yoshitani, K.; Yahagi, M.; Asahara, T.; Shishido, Y.; Fukushima, S.; Tadokoro, N.; Fujita, T.; Ohnishi, Y. Association between postoperative changes in the gut microbiota and pseudopsia after cardiac surgery: Prospective observational study. BMC Surg. 2020, 20, 247. [Google Scholar] [CrossRef]
- Wang, Y.; He, Y.; Li, R.; Jiang, H.; Tao, D.; Zhao, K.; Yin, Z.; Zhang, J.; Wang, H. Gut Microbiota in Patients with Postoperative Atrial Fibrillation Undergoing Off-Pump Coronary Bypass Graft Surgery. J. Clin. Med. 2023, 12, 1493. [Google Scholar] [CrossRef]
- Sukik, A.; Alalwani, J.; Ganji, V. Vitamin D Gut Microbiota, and Cardiometabolic Diseases—A Possible Three-Way Axis. Int. J. Mol. Sci. 2023, 24, 940. [Google Scholar] [CrossRef]
- Gong, J.; He, L.; Zou, Q.; Zhao, Y.; Zhang, B.; Xia, R.; Chen, B.; Cao, M.; Gong, W.; Lin, L.; et al. Association of serum 25-hydroxyvitamin D (25(OH)D) levels with the gut microbiota and metabolites in postmenopausal women in China. Microb. Cell Fact. 2022, 21, 137. [Google Scholar] [CrossRef]
- Salomon, J.D.; Qiu, H.; Feng, D.; Owens, J.; Khailova, L.; Osorio Lujan, S.; Iguidbashian, J.; Chhonker, Y.S.; Murry, D.J.; Riethoven, J.J.; et al. Piglet cardiopulmonary bypass induces intestinal dysbiosis and barrier dysfunction associated with systemic inflammation. Dis. Model Mech. 2023, 16, 049742. [Google Scholar] [CrossRef]
- Bellerba, F.; Muzio, V.; Gnagnarella, P.; Facciotti, F.; Chiocca, S.; Bossi, P.; Cortinovis, D.; Chiaradonna, F.; Serrano, D.; Raimondi, S.; et al. The Association between Vitamin D and Gut Microbiota: A Systematic Review of Human Studies. Nutrients 2021, 13, 3378. [Google Scholar] [CrossRef]
- Barker, T.; May, H.T.; Doty, J.R.; Lappe, D.L.; Knowlton, K.U.; Carlquist, J.; Konery, K.; Inglet, S.; Chisum, B.; Galenko, O.; et al. Vitamin D supplementation protects against reductions in plasma 25-hydroxyvitamin D induced by open-heart surgery: Assess-d trial. Physiol. Rep. 2021, 9, e14747. [Google Scholar] [CrossRef]
- Li, Y.; Si, H.; Ma, Y.; Li, S.; Gao, L.; Liu, K.; Liu, X. Vitamin D3 affects the gut microbiota in an LPS-stimulated systemic inflammation mouse model. Microbes Infect. 2023, 25, 105180. [Google Scholar] [CrossRef]
- Zhou, A.; Hyppönen, E. Vitamin D deficiency and C-reactive protein: A bidirectional Mendelian randomization study. Int. J. Epidemiol. 2023, 52, 260–271. [Google Scholar] [CrossRef]
- Yang, F.; Sun, M.; Sun, C.; Li, J.; Yang, X.; Bi, C.; Wang, M.; Pu, L.; Wang, J.; Wang, C.; et al. Associations of c-reactive protein with 25-hydroxyvitamin D in 24 Specific Diseases: A Cross-sectional Study from NHANES. Sci. Rep. 2020, 10, 5883. [Google Scholar] [CrossRef]
- Chen, N.; Wan, Z.; Han, S.F.; Li, B.Y.; Zhang, Z.L.; Qin, L.Q. Effect of Vitamin D Supplementation on the Level of Circulating High-Sensitivity C-Reactive Protein: A Meta-Analysis of Randomized Controlled Trials. Nutrients 2014, 6, 2206–2216. [Google Scholar] [CrossRef]
- Hameed, I.; Malik, S.; Nusrat, K.; Siddiqui, O.M.; Khan, M.O.; Mahmood, S.; Memon, A.; Usman, M.S.; Siddiqi, T.J. Effect of vitamin D on postoperative atrial fibrillation in patients who underwent coronary artery bypass grafting: A systematic review and meta-analysis. J. Cardiol. 2023, 82, 220–224. [Google Scholar] [CrossRef]
- Ansari, S.A.; Dhaliwal, J.S.S.; Ansari, Y.; Ghosh, S.; Khan, T.M.A. The Role of Vitamin D Supplementation Before Coronary Artery Bypass Grafting in Preventing Postoperative Atrial Fibrillation in Patients with Vitamin D Deficiency or Insufficiency: A Systematic Review and Meta-Analysis. Cureus 2023, 15, 36496. [Google Scholar] [CrossRef]
- Mc Loughlin, J.; Hinchion, J. The gut microbiome and cardiac surgery an unusual symphony. Perfusion 2023, 38, 1330–1339. [Google Scholar] [CrossRef]
- Cardiothoracic Interdisciplinary Research Network. Electronic address: CIRNetwork@outlook.com; National Cardiac Benchmarking Collaborative; Public Health England; Cardiothoracic Interdisciplinary Research Network. National survey of variations in practice in the prevention of surgical site infections in adult cardiac surgery, United Kingdom and Republic of Ireland. J. Hosp. Infect. 2020, 106, 812–819. [Google Scholar] [CrossRef]
- Edwards, F.H.; Engelman, R.M.; Houck, P.; Shahian, D.M.; Bridges, C.R. The Society of Thoracic Surgeons Practice Guideline Series: Antibiotic Prophylaxis in Cardiac Surgery, Part I: Duration. Ann. Thorac. Surg. 2006, 81, 397–404. [Google Scholar] [CrossRef]
- Zhang, T.; Wu, X.; Liu, B.; Huang, H.; Zhou, C.; Liang, P. The contribution of probiotics for the double-edge effect of cefazolin on postoperative neurocognitive disorders by rebalancing the gut microbiota. Front. Neurosci. 2023, 17, 1156453. [Google Scholar] [CrossRef]
- Nazzal, L.; Soiefer, L.; Chang, M.; Tamizuddin, F.; Schatoff, D.; Cofer, L.; Aguero-Rosenfeld, M.E.; Matalon, A.; Meijers, B.; Holzman, R.; et al. Effect of Vancomycin on the Gut Microbiome and Plasma Concentrations of Gut-Derived Uremic Solutes. Kidney Int. Rep. 2021, 6, 2122–2133. [Google Scholar] [CrossRef]
- Borsa, B.A.; Sudagidan, M.; Aldag, M.E.; Baris, I.I.; Acar, E.E.; Acuner, C.; Kavruk, M.; Ozalp, V.C. Antibiotic administration in targeted nanoparticles protects the faecal microbiota of mice. RSC Med. Chem. 2021, 12, 380–383. [Google Scholar] [CrossRef]
- Aardema, H.; Lisotto, P.; Kurilshikov, A.; Diepeveen, J.R.J.; Friedrich, A.W.; Sinha, B.; de Smet, A.M.; Harmsen, H. Marked Changes in Gut Microbiota in Cardio-Surgical Intensive Care Patients: A Longitudinal Cohort Study. Front. Cell. Infect. Microbiol. 2020, 9, 467. [Google Scholar] [CrossRef]
- von Bibra, H.; Paulus, W.; St. John Sutton, M. Cardiometabolic Syndrome and Increased Risk of Heart Failure. Curr. Heart Fail. Rep. 2016, 13, 219–229. [Google Scholar] [CrossRef]
- Martins, D.; Silva, C.; Ferreira, A.C.; Dourado, S.; Albuquerque, A.; Saraiva, F.; Batista, A.B.; Castro, P.; Leite-Moreira, A.; Barros, A.S. Unravelling the Gut Microbiome Role in Cardiovascular Disease: A Systematic Review and a Meta-Analysis. Biomolecules 2024, 14, 731. [Google Scholar] [CrossRef]
- Pérez-Reytor, D.; Puebla, C.; Karahanian, E.; García, K. Use of Short-Chain Fatty Acids for the Recovery of the Intestinal Epithelial Barrier Affected by Bacterial Toxins. Front Physiol. 2021, 12, 650313. [Google Scholar] [CrossRef]
- Jing, L.; Zhang, H.; Xiang, Q.; Shen, L.; Guo, X.; Zhai, C.; Hu, H. Targeting Trimethylamine N-Oxide: A New Therapeutic Strategy for Alleviating Atherosclerosis. Front. Cardiovasc. Med. 2022, 9, 864600. [Google Scholar] [CrossRef]
- Han, C. Update on FXR Biology: Promising Therapeutic Target? Int. J. Mol. Sci. 2018, 19, 2069. [Google Scholar] [CrossRef]
- Cerit, L.; Özcem, B.; Cerit, Z.; Duygu, H. Preventive Effect of Preoperative Vitamin D Supplementation on Postoperative Atrial Fibrillation. Braz. J. Cardiovasc. Surg. 2018, 33, 347–352. [Google Scholar] [CrossRef]
- Lobo de Sá, F.D.; Backert, S.; Nattramilarasu, P.K.; Mousavi, S.; Sandle, G.I.; Bereswill, S.; Heimesaat, M.M.; Schulzke, J.D.; Bücker, R. Vitamin D Reverses Disruption of Gut Epithelial Barrier Function Caused by Campylobacter jejuni. Int. J. Mol. Sci. 2021, 22, 8872. [Google Scholar] [CrossRef]
- Paneri, M.; Sevta, P. Dysbiosis of Gut Microbiota in Patients Undergoing Cardiac Surgery. Glob. J. Med. Pharm. Biomed. Update 2022, 17, 13. [Google Scholar] [CrossRef]
- Zhang, Y.; Luo, W.; Zhao, M.; Li, Y.; Wu, X. Advances in understanding the effects of cardiopulmonary bypass on gut microbiota during cardiac surgery. Int. J. Artif. Organs. 2025, 48, 51–63. [Google Scholar] [CrossRef]
Author, Year | Study Design | Key Findings on Gut Microbiota | Metabolic Pathways/Key Metabolites | Inflammatory Biomarkers | Clinical Outcomes |
---|---|---|---|---|---|
Chernevskaya et al., 2021 [48] | Human (N = 72) | - Reduced α-diversity preoperatively in the infectious complications group. - Increased Pseudomonadota postoperatively in infections. | - Lower TMAO in the infectious complications group. | Elevated IL-6 and PCT postoperatively. | Infectious complications are linked to preoperative dysbiosis. |
Wang et al., 2023 [52] | Human (N = 134) | - POAF patients: Higher α-diversity, increased Lachnospira, Acinetobacter; decreased Escherichia–Shigella. | - Vitamin D deficiency correlated with dysbiosis. | IL-6, CRP, and hs-TnT were preoperatively measured. | POAF is associated with gut microbiota imbalance. |
Liu et al., 2024 [23] | Human (N = 90) | - POAF patients: Lower diversity, increased Actinomycetota/Bacillota. - Elevated Roseburia, Coprococcus. | - Increased TMAO, BAs, and SCFAs (acetic/propionic acid). | Not directly measured. | Dysbiosis and BA/TMAO are linked to POAF. |
Xia et al., 2021 [37] | Human (N = 67) | - Postoperative decline in Blautia, Faecalibacterium; rise in Enterococcus. - Reduced α-diversity. | - Elevated LPS, sCD14, I-FABP (gut barrier dysfunction). | Increased hs-CRP, PCT, TNF-α, and IL-6 postoperatively. | Gut barrier dysfunction and systemic inflammation. |
Maekawa et al., 2020 [51] | Human (N = 21) | - Postoperative reduction in Clostridium, Lactobacillus; rise in Enterococcus, Staphylococcus. | - Reduced butyric acid (SCFA). | Not measured. | Dysbiosis is linked to leaky gut and translocation. |
Salomon et al., 2023 [55] | Animal (piglets, N = 12) | - Reduced α-diversity post-CPB. - Increased Pseudomonadota. | - Lower SCFAs; elevated FABP2, claudin-2/3 (gut barrier markers). | Elevated IL-1β, IL-6, and TNF-α postoperatively. | CPB-induced dysbiosis and inflammation. |
Target | Strategy | Potential Benefit |
---|---|---|
SCFAs | Prebiotics (fiber), Bifidobacterium probiotics | Restore gut barrier integrity, reduce CRP/IL-6 levels |
TMAO | Limit choline-rich foods (red meat), FMO3 inhibitors | Lower thrombosis risk, prevent POAF |
BAs | FXR agonists (e.g., obeticholic acid) | Attenuate NLRP3 activation, improve endothelial function |
Vitamin D | Preoperative supplementation in deficient patients | Reduce LPS translocation, maintain tight junctions, and decrease POAF incidence |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Misokalou, P.; Kasti, A.N.; Katsas, K.; Angouras, D.C. Gut Microbiota, Microbial Metabolites, and Inflammation in Cardiac Surgery: Implications for Clinical Outcomes—A Narrative Review. Microorganisms 2025, 13, 1748. https://doi.org/10.3390/microorganisms13081748
Misokalou P, Kasti AN, Katsas K, Angouras DC. Gut Microbiota, Microbial Metabolites, and Inflammation in Cardiac Surgery: Implications for Clinical Outcomes—A Narrative Review. Microorganisms. 2025; 13(8):1748. https://doi.org/10.3390/microorganisms13081748
Chicago/Turabian StyleMisokalou, Panagiota, Arezina N. Kasti, Konstantinos Katsas, and Dimitrios C. Angouras. 2025. "Gut Microbiota, Microbial Metabolites, and Inflammation in Cardiac Surgery: Implications for Clinical Outcomes—A Narrative Review" Microorganisms 13, no. 8: 1748. https://doi.org/10.3390/microorganisms13081748
APA StyleMisokalou, P., Kasti, A. N., Katsas, K., & Angouras, D. C. (2025). Gut Microbiota, Microbial Metabolites, and Inflammation in Cardiac Surgery: Implications for Clinical Outcomes—A Narrative Review. Microorganisms, 13(8), 1748. https://doi.org/10.3390/microorganisms13081748