Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,013)

Search Parameters:
Keywords = Multi-Criteria Decision Analysis

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 2992 KiB  
Article
Research on Two-Stage Investment Decision-Making in Park-Level Integrated Energy Projects Considering Multi-Objectives
by Jiaxuan Yu, Wei Sun, Rongwei Ma and Bingkang Li
Processes 2025, 13(8), 2362; https://doi.org/10.3390/pr13082362 - 24 Jul 2025
Abstract
The scientific investment decision of Park-level Integrated Energy System (PIES) projects is of great significance to energy enterprises for improving the efficient utilization of funds, promoting green and low-carbon transformation, and achieving the goal of carbon neutrality. This paper proposed a two-stage investment [...] Read more.
The scientific investment decision of Park-level Integrated Energy System (PIES) projects is of great significance to energy enterprises for improving the efficient utilization of funds, promoting green and low-carbon transformation, and achieving the goal of carbon neutrality. This paper proposed a two-stage investment framework that integrates a multi-objective 0–1 programming model with a multi-criteria decision-making (MCDM) technique to determine the optimal PIES project investment portfolios under the constraint of quota investment. First, a multi-objective (MO) 0–1 programming model was constructed for typical PIES projects in Stage-I, which considers economic and environmental benefits to obtain Pareto frontier solutions, i.e., PIES project portfolios. Second, an evaluation index system from multiple dimensions was established, and a hybrid MCDM technique was adopted to comprehensively evaluate the Pareto frontier solutions in Stage-II. Finally, the proposed model was applied to an empirical case, and the simulation results show that the decision framework can achieve the best overall benefit of PIES project portfolios with maximal economic benefit and minimum carbon emissions. In addition, the robustness analysis was performed by changing the indicator weights to verify the stability of the proposed framework. This research work could provide a theoretical tool for investment decisions regarding PIES projects for energy enterprises. Full article
Show Figures

Figure 1

25 pages, 3903 KiB  
Article
An Integrated Multi-Criteria Decision Method for Remanufacturing Design Considering Carbon Emission and Human Ergonomics
by Changping Hu, Xinfu Lv, Ruotong Wang, Chao Ke, Yingying Zuo, Jie Lu and Ruiying Kuang
Processes 2025, 13(8), 2354; https://doi.org/10.3390/pr13082354 - 24 Jul 2025
Abstract
Remanufacturing design is a green design model that considers remanufacturability during the design process to improve the reuse of components. However, traditional remanufacturing design scheme decision making focuses on the remanufacturability indicator and does not fully consider the carbon emissions of the remanufacturing [...] Read more.
Remanufacturing design is a green design model that considers remanufacturability during the design process to improve the reuse of components. However, traditional remanufacturing design scheme decision making focuses on the remanufacturability indicator and does not fully consider the carbon emissions of the remanufacturing process, which will take away the energy-saving and emission reduction benefits of remanufacturing. In addition, remanufacturing design schemes rarely consider the human ergonomics of the product, which leads to uncomfortable handling of the product by the customer. To reduce the remanufacturing carbon emission and improve customer comfort, it is necessary to select a reasonable design scheme to satisfy the carbon emission reduction and ergonomics demand; therefore, this paper proposes an integrated multi-criteria decision-making method for remanufacturing design that considers the carbon emission and human ergonomics. Firstly, an evaluation system of remanufacturing design schemes is constructed to consider the remanufacturability, cost, carbon emission, and human ergonomics of the product, and the evaluation indicators are quantified by the normalization method and the Kansei engineering (KE) method; meanwhile, the hierarchical analysis method (AHP) and entropy weight method (EW) are used for the calculation of the subjective and objective weights. Then, a multi-attribute decision-making method based on the combination of an assignment approximation of ideal solution ranking (TOPSIS) and gray correlation analysis (GRA) is proposed to complete the design scheme selection. Finally, the feasibility of the scheme is verified by taking a household coffee machine as an example. This method has been implemented as an application using Visual Studio 2022 and Microsoft SQL Server 2022. The research results indicate that this decision-making method can quickly and accurately generate reasonable remanufacturing design schemes. Full article
(This article belongs to the Section Manufacturing Processes and Systems)
Show Figures

Figure 1

27 pages, 7568 KiB  
Article
A Declarative Framework for Production Line Balancing with Disruption-Resilient and Sustainability-Focused Improvements
by Grzegorz Bocewicz, Grzegorz Radzki, Mariusz Piechowski, Małgorzata Jasiulewicz-Kaczmarek and Zbigniew Banaszak
Sustainability 2025, 17(15), 6747; https://doi.org/10.3390/su17156747 - 24 Jul 2025
Abstract
This paper presents a declarative framework for resilient machining line planning, integrating line balancing and disruption handling within a unified, interactive decision-support environment. Building upon earlier constraint-based models, the proposed approach incorporates sustainability-oriented improvements through Pareto-based multi-criteria optimization. The model supports trade-off analysis [...] Read more.
This paper presents a declarative framework for resilient machining line planning, integrating line balancing and disruption handling within a unified, interactive decision-support environment. Building upon earlier constraint-based models, the proposed approach incorporates sustainability-oriented improvements through Pareto-based multi-criteria optimization. The model supports trade-off analysis across cost, energy consumption, tool wear, and schedule continuity, enabling predictive planning and adaptive dispatching under operational uncertainty. By combining proactive balancing with reactive disruption handling in a single declarative formulation, the framework addresses a key gap in the current production engineering methodologies. A case study employing real data and real-world-inspired disruption scenarios demonstrates the effectiveness of the approach. Compared to traditional sequential strategies, the framework yields superior performance in terms of solution diversity, responsiveness, and sustainability alignment, confirming its value for next-generation, resilient manufacturing systems. Full article
(This article belongs to the Special Issue Advancements in Sustainable Manufacturing Systems and Risk Management)
34 pages, 820 KiB  
Article
An Integrated MCDA Framework for Prioritising Emerging Technologies in the Transition from Industry 4.0 to Industry 5.0
by Witold Torbacki
Appl. Sci. 2025, 15(15), 8168; https://doi.org/10.3390/app15158168 - 23 Jul 2025
Abstract
As industrial companies transition from the Industry 4.0 stage to the more human-centric and resilient Industry 5.0 paradigm, there is a growing need for structured assessment tools to prioritize modern technologies. This paper presents an integrated multi-criteria decision analysis (MCDA) approach to support [...] Read more.
As industrial companies transition from the Industry 4.0 stage to the more human-centric and resilient Industry 5.0 paradigm, there is a growing need for structured assessment tools to prioritize modern technologies. This paper presents an integrated multi-criteria decision analysis (MCDA) approach to support the strategic assessment of technologies from three complementary perspectives: economic, organizational, and technological. The proposed model encompasses six key transformation areas and 22 technologies representing both the Industry 4.0 and 5.0 paradigms. A hybrid approach combining the DEMATEL (Decision-Making Trial and Evaluation Laboratory) and PROMETHEE II (Preference Ranking Organization Method for Enrichment Evaluation) methods is used to identify cause–effect relationships between the transformation areas and to construct technology rankings in each of the assessed perspectives. The results indicate that technologies such as the Internet of Things (IoT), cybersecurity, and supporting IT systems play a central role in the transition process. Among the Industry 5.0 technologies, hyper-personalized manufacturing, smart grids and new materials stand out. Moreover, the economic perspective emerges as the dominant assessment dimension for most technologies. The proposed analytical framework offers both theoretical input and practical decision-making support for companies planning their transformation towards Industry 5.0, enabling a stronger alignment between implemented technologies and long-term strategic goals. Full article
(This article belongs to the Special Issue Advanced Technologies for Industry 4.0 and Industry 5.0)
Show Figures

Figure 1

29 pages, 6449 KiB  
Article
New Approach for Detecting Variability in Industrial Assembly Line Balancing Based on Multi-Criteria Analysis
by Youness Hillali, Mourad Zegrari, Najlae Alfathi and Samir Chafik
Automation 2025, 6(3), 33; https://doi.org/10.3390/automation6030033 - 19 Jul 2025
Viewed by 211
Abstract
This paper focuses on the complex dynamics that concern assembly line balance in the context of mass customization within manufacturing. In fact, the increase in demand for customized products has heightened the complexities associated with achieving optimal efficiency, productivity, product quality, and customer [...] Read more.
This paper focuses on the complex dynamics that concern assembly line balance in the context of mass customization within manufacturing. In fact, the increase in demand for customized products has heightened the complexities associated with achieving optimal efficiency, productivity, product quality, and customer satisfaction. The research proposes a multi-criteria analysis of statistical methods to determine the fluctuation of parameters affecting the state of balance of an assembly line. A 3D matrix model is suggested to analyze the parameters managing the assembly line. This representation is executed using the MATLAB R2024b tool, and a methodology for finding the variability of parameters affecting balance through statistical approaches is proposed. We observed that changes in parameters such as task times, worker efficiency, or material flow led to significant changes in the line’s overall balance. As a result, static balancing becomes inadequate to deal with the complexities introduced by these highly variable parameters. The novelty of this paper consists of the innovative integration of multi-criteria statistical analysis and 3D matrix modeling to detect parameter variability and optimize assembly line balancing. Conventional static approaches are often unable to capture the process-dynamic aspect of modern manufacturing. This work presents a systematic methodology capable of identifying, quantifying, and moderating the variability of key operating parameters. This methodology, carried out using MATLAB-based simulations, is based on principal component analysis (PCA) and correlation analysis to detect critical factors influencing balancing efficiency. By structuring assembly line parameters in a 3D matrix representation, this research gives a holistic, data-based method for improving decision-making in balancing procedures. The research goes beyond theoretical modeling by applying the approach to a real automotive assembly line, validating its effectiveness and demonstrating its practical applicability in industrial conditions. Full article
(This article belongs to the Section Industrial Automation and Process Control)
Show Figures

Figure 1

19 pages, 1167 KiB  
Article
A Reservoir Group Flood Control Operation Decision-Making Risk Analysis Model Considering Indicator and Weight Uncertainties
by Tangsong Luo, Xiaofeng Sun, Hailong Zhou, Yueping Xu and Yu Zhang
Water 2025, 17(14), 2145; https://doi.org/10.3390/w17142145 - 18 Jul 2025
Viewed by 159
Abstract
Reservoir group flood control scheduling decision-making faces multiple uncertainties, such as dynamic fluctuations of evaluation indicators and conflicts in weight assignment. This study proposes a risk analysis model for the decision-making process: capturing the temporal uncertainties of flood control indicators (such as reservoir [...] Read more.
Reservoir group flood control scheduling decision-making faces multiple uncertainties, such as dynamic fluctuations of evaluation indicators and conflicts in weight assignment. This study proposes a risk analysis model for the decision-making process: capturing the temporal uncertainties of flood control indicators (such as reservoir maximum water level and downstream control section flow) through the Long Short-Term Memory (LSTM) network, constructing a feasible weight space including four scenarios (unique fixed value, uniform distribution, etc.), resolving conflicts among the weight results from four methods (Analytic Hierarchy Process (AHP), Entropy Weight, Criteria Importance Through Intercriteria Correlation (CRITIC), Principal Component Analysis (PCA)) using game theory, defining decision-making risk as the probability that the actual safety level fails to reach the evaluation threshold, and quantifying risks based on the First-Order Second-Moment (FOSM) method. Case verification in the cascade reservoirs of the Qiantang River Basin of China shows that the model provides a risk assessment framework integrating multi-source uncertainties for flood control scheduling decisions through probabilistic description of indicator uncertainties (e.g., Zmax1 with μ = 65.3 and σ = 8.5) and definition of weight feasible regions (99% weight distribution covered by the 3σ criterion), filling the methodological gap in risk quantification during the decision-making process in existing research. Full article
(This article belongs to the Special Issue Flood Risk Identification and Management, 2nd Edition)
Show Figures

Figure 1

22 pages, 1718 KiB  
Review
A Review on Risk and Reliability Analysis in Photovoltaic Power Generation
by Ahmad Zaki Abdul Karim, Mohamad Shaiful Osman and Mohd. Khairil Rahmat
Energies 2025, 18(14), 3790; https://doi.org/10.3390/en18143790 - 17 Jul 2025
Viewed by 198
Abstract
Precise evaluation of risk and reliability is crucial for decision making and predicting the outcome of investment in a photovoltaic power system (PVPS) due to its intermittent source. This paper explores different methodologies for risk evaluation and reliability assessment, which can be categorized [...] Read more.
Precise evaluation of risk and reliability is crucial for decision making and predicting the outcome of investment in a photovoltaic power system (PVPS) due to its intermittent source. This paper explores different methodologies for risk evaluation and reliability assessment, which can be categorized into qualitative, quantitative, and hybrid qualitative and quantitative (HQQ) approaches. Qualitative methods include failure mode analysis, graphical analysis, and hazard analysis, while quantitative methods include analytical methods, stochastic methods, Bayes’ theorem, reliability optimization, multi-criteria analysis, and data utilization. HQQ methodology combines table-based and visual analysis methods. Currently, reliability assessment techniques such as mean time between failures (MTBF), system average interruption frequency index (SAIFI), and system average interruption duration index (SAIDI) are commonly used to predict PVPS performance. However, alternative methods such as economical metrics like the levelized cost of energy (LCOE) and net present value (NPV) can also be used. Therefore, a risk and reliability approach should be applied together to improve the accuracy of predicting significant aspects in the photovoltaic industry. Full article
(This article belongs to the Section B: Energy and Environment)
Show Figures

Figure 1

22 pages, 791 KiB  
Article
Turkiye’s Carbon Emission Profile: A Global Analysis with the MEREC-PROMETHEE Hybrid Method
by İrem Pelit and İlker İbrahim Avşar
Sustainability 2025, 17(14), 6527; https://doi.org/10.3390/su17146527 - 16 Jul 2025
Viewed by 291
Abstract
This study conducts a comparative evaluation of Turkiye’s carbon emission profile from both sectoral and global perspectives. Utilizing 2022 data from 76 countries, it applies two widely recognized multi-criteria decision-making (MCDM) methods: MEREC, for determining objective weights of criteria, and PROMETHEE II, for [...] Read more.
This study conducts a comparative evaluation of Turkiye’s carbon emission profile from both sectoral and global perspectives. Utilizing 2022 data from 76 countries, it applies two widely recognized multi-criteria decision-making (MCDM) methods: MEREC, for determining objective weights of criteria, and PROMETHEE II, for ranking countries based on these criteria. All data used in the analysis were obtained from the World Bank, a globally recognized and credible statistical source. The study evaluates seven criteria, including carbon emissions from the energy, transport, industry, and residential sectors, along with GDP-related indicators. The results indicate that Turkiye’s carbon emissions, particularly from industry, transport, and energy, are substantially higher than the global average. Moreover, countries with higher levels of industrialization generally rank lower in environmental performance, highlighting a direct relationship between industrial activity and increased carbon emissions. According to PROMETHEE II rankings, Turkiye falls into the lower-middle tier among the assessed countries. In light of these findings, the study suggests that Turkiye should implement targeted, sector-specific policy measures to reduce emissions. The research aims to provide policymakers with a structured, data-driven framework that aligns with the country’s broader sustainable development goals. MEREC was selected for its ability to produce unbiased criterion weights, while PROMETHEE II was chosen for its capacity to deliver clear and meaningful comparative rankings, making both methods highly suitable for evaluating environmental performance. This study also offers a broader analysis of how selected countries compare in terms of their carbon emissions. As carbon emissions remain one of the most pressing environmental challenges in the context of global warming and climate change, ranking countries based on emission levels serves both to support scientific inquiry and to increase international awareness. By relying on recent 2022 data, the study offers a timely snapshot of the global carbon emission landscape. Alongside its contribution to public awareness, the findings are expected to support policymakers in developing effective environmental strategies. Ultimately, this research contributes to the academic literature and lays a foundation for more sustainable environmental policy development. Full article
Show Figures

Graphical abstract

23 pages, 2079 KiB  
Article
Offshore Energy Island for Sustainable Water Desalination—Case Study of KSA
by Muhnad Almasoudi, Hassan Hemida and Soroosh Sharifi
Sustainability 2025, 17(14), 6498; https://doi.org/10.3390/su17146498 - 16 Jul 2025
Viewed by 277
Abstract
This study identifies the optimal location for an offshore energy island to supply sustainable power to desalination plants along the Red Sea coast. As demand for clean energy in water production grows, integrating renewables into desalination systems becomes increasingly essential. A decision-making framework [...] Read more.
This study identifies the optimal location for an offshore energy island to supply sustainable power to desalination plants along the Red Sea coast. As demand for clean energy in water production grows, integrating renewables into desalination systems becomes increasingly essential. A decision-making framework was developed to assess site feasibility based on renewable energy potential (solar, wind, and wave), marine traffic, site suitability, planned developments, and proximity to desalination facilities. Data was sourced from platforms such as Windguru and RETScreen, and spatial analysis was conducted using Inverse Distance Weighting (IDW) and Multi-Criteria Decision Analysis (MCDA). Results indicate that the central Red Sea region offers the most favorable conditions, combining high renewable resource availability with existing infrastructure. The estimated regional desalination energy demand of 2.1 million kW can be met using available renewable sources. Integrating these sources is expected to reduce local CO2 emissions by up to 43.17% and global desalination-related emissions by 9.5%. Spatial constraints for offshore installations were also identified, with land-based solar energy proposed as a complementary solution. The study underscores the need for further research into wave energy potential in the Red Sea, due to limited real-time data and the absence of a dedicated wave energy atlas. Full article
Show Figures

Figure 1

21 pages, 448 KiB  
Article
Enhancing Urban Resilience: Integrating Actions for Resilience (A4R) and Multi-Criteria Decision Analysis (MCDA) for Sustainable Urban Development and Proactive Hazard Mitigation
by Goran Janaćković, Žarko Vranjanac and Dejan Vasović
Sustainability 2025, 17(14), 6408; https://doi.org/10.3390/su17146408 - 13 Jul 2025
Viewed by 322
Abstract
Hazards stemming from extreme natural events have exhibited heightened prominence in recent years. The natural hazard management process adopts a comprehensive approach that encompasses all stakeholders involved in the disaster management cycle. “Actions for Resilience” (A4R) represents a standardised concept derived from ISO/TR [...] Read more.
Hazards stemming from extreme natural events have exhibited heightened prominence in recent years. The natural hazard management process adopts a comprehensive approach that encompasses all stakeholders involved in the disaster management cycle. “Actions for Resilience” (A4R) represents a standardised concept derived from ISO/TR 22370:2020 that integrates principles from various scientific disciplines to enhance resilience in systems, whether they are socio-ecological systems, communities, or organisations. A4R emphasises proactive measures and interventions aimed at fostering resilience rather than merely reacting to crises or disruptions. It recognises that resilience is a multifaceted concept influenced by various factors, including social, economic, environmental, and institutional dimensions. Central to A4R is the understanding of complex system dynamics. Also, A4R involves rigorous risk assessment to identify potential threats and vulnerabilities within a system, as well as to build adaptive capacity within systems. A4R advocates for the development of resilience metrics and monitoring systems to assess the effectiveness of interventions and track changes in resilience over time. These metrics may include indicators related to social cohesion, ecosystem health, economic stability, and public infrastructure resilience. In this context, the study aims to apply the proposed hierarchy of factors and group decision-making using fuzzy numbers to identify strategic priorities for improving the urban resilience of the pilot area. The identified priority factors are then analysed across different scenarios, and corresponding actions are described in detail. Full article
(This article belongs to the Section Sustainable Urban and Rural Development)
Show Figures

Figure 1

24 pages, 5886 KiB  
Article
GIS-Driven Multi-Criteria Assessment of Rural Settlement Patterns and Attributes in Rwanda’s Western Highlands (Central Africa)
by Athanase Niyogakiza and Qibo Liu
Sustainability 2025, 17(14), 6406; https://doi.org/10.3390/su17146406 - 13 Jul 2025
Viewed by 353
Abstract
This study investigates rural settlement patterns and land suitability in Rwanda’s Western Highlands, a mountainous region highly vulnerable to geohazards like landslides and flooding. Its primary aim is to inform sustainable, climate-resilient development planning in this fragile landscape. We employed high-resolution satellite imagery, [...] Read more.
This study investigates rural settlement patterns and land suitability in Rwanda’s Western Highlands, a mountainous region highly vulnerable to geohazards like landslides and flooding. Its primary aim is to inform sustainable, climate-resilient development planning in this fragile landscape. We employed high-resolution satellite imagery, a Digital Elevation Model (DEM), and comprehensive geospatial datasets to analyze settlement distribution, using Thiessen polygons for influence zones and Kernel Density Estimation (KDE) for spatial clustering. The Analytic Hierarchy Process (AHP) was integrated with the GeoDetector model to objectively weight criteria and analyze settlement pattern drivers, using population density as a proxy for human pressure. The analysis revealed significant spatial heterogeneity in settlement distribution, with both clustered and dispersed forms exhibiting distinct exposure levels to environmental hazards. Natural factors, particularly slope gradient and proximity to rivers, emerged as dominant determinants. Furthermore, significant synergistic interactions were observed between environmental attributes and infrastructure accessibility (roads and urban centers), collectively shaping settlement resilience. This integrative geospatial approach enhances understanding of complex rural settlement dynamics in ecologically sensitive mountainous regions. The empirically grounded insights offer a robust decision-support framework for climate adaptation and disaster risk reduction, contributing to more resilient rural planning strategies in Rwanda and similar Central African highland regions. Full article
Show Figures

Figure 1

11 pages, 615 KiB  
Entry
Partially Ordered Sets in Socio-Economic Data Analysis
by Marco Fattore and Lucio De Capitani
Encyclopedia 2025, 5(3), 100; https://doi.org/10.3390/encyclopedia5030100 - 11 Jul 2025
Viewed by 272
Definition
A partially ordered set (or a poset, for short) is a set endowed with a partial order relation, i.e., with a reflexive, anti-symmetric, and transitive binary relation. As mathematical objects, posets have been intensively studied in the last century, [...] Read more.
A partially ordered set (or a poset, for short) is a set endowed with a partial order relation, i.e., with a reflexive, anti-symmetric, and transitive binary relation. As mathematical objects, posets have been intensively studied in the last century, coming to play essential roles in pure mathematics, logic, and theoretical computer science. More recently, they have been increasingly employed in data analysis, multi-criteria decision-making, and social sciences, particularly for building synthetic indicators and extracting rankings from multidimensional systems of ordinal data. Posets naturally represent systems and phenomena where some elements can be compared and ordered, while others cannot be and are then incomparable. This makes them a powerful data structure to describe collections of units assessed against multidimensional variable systems, preserving the nuanced and multi-faceted nature of the underlying domains. Moreover, poset theory collects the proper mathematical tools to treat ordinal data, fully respecting their non-numerical nature, and to extract information out of order relations, providing the proper setting for the statistical analysis of multidimensional ordinal data. Currently, their use is expanding both to solve open methodological issues in ordinal data analysis and to address evaluation problems in socio-economic sciences, from multidimensional poverty, well-being, or quality-of-life assessment to the measurement of financial literacy, from the construction of knowledge spaces in mathematical psychology and education theory to the measurement of multidimensional ordinal inequality/polarization. Full article
(This article belongs to the Collection Encyclopedia of Social Sciences)
Show Figures

Figure 1

15 pages, 12820 KiB  
Article
MCDM-Based Analysis of Site Suitability for Renewable Energy Community Projects in the Gargano District
by Rosa Agliata, Filippo Busato and Andrea Presciutti
Sustainability 2025, 17(14), 6376; https://doi.org/10.3390/su17146376 - 11 Jul 2025
Viewed by 476
Abstract
The increasing urgency of the energy transition, particularly in ecologically sensitive regions, demands spatially informed planning tools to guide renewable energy development. This study presents a Multi-Criteria Decision-Making (MCDM) approach to assess the suitability of the Gargano district in southern Italy for the [...] Read more.
The increasing urgency of the energy transition, particularly in ecologically sensitive regions, demands spatially informed planning tools to guide renewable energy development. This study presents a Multi-Criteria Decision-Making (MCDM) approach to assess the suitability of the Gargano district in southern Italy for the implementation of Renewable Energy Communities. The analysis combines expert-based weighting and the Weighted Linear Combination method to evaluate seven key criteria grouped into environmental, socioeconomic, and technical dimensions. The resulting suitability scores, calculated at the municipal scale, highlight spatial disparities across the district, revealing that areas with the highest potential for Renewable Energy Community (REC) deployment are largely situated at the boundaries of the Gargano National Park. These zones benefit from stronger infrastructure, higher energy demand, and fewer environmental constraints, particularly with regard to wind energy initiatives. Conversely, municipalities within the park exhibit lower suitability, constrained by strict landscape regulations and lower population density. The findings provide valuable insights for regional planners and policymakers, supporting the adoption of targeted, environmentally compatible strategies for the advancement of citizen-led renewable energy initiatives in complex territorial contexts. Full article
(This article belongs to the Section Energy Sustainability)
Show Figures

Figure 1

21 pages, 955 KiB  
Article
Development of a Sustainability-Oriented KPI Selection Model for Manufacturing Processes
by Kristo Karjust, Marmar Mehrparvar, Sergei Kaganski and Tõnis Raamets
Sustainability 2025, 17(14), 6374; https://doi.org/10.3390/su17146374 - 11 Jul 2025
Viewed by 217
Abstract
Modern manufacturing systems operate in a global and competitive environment, where sustainability has become a critical driver for performance. Performance measurement, as a method for monitoring enterprise processes, plays a central role in aligning operational efficiency with sustainable development goals. Recently, a number [...] Read more.
Modern manufacturing systems operate in a global and competitive environment, where sustainability has become a critical driver for performance. Performance measurement, as a method for monitoring enterprise processes, plays a central role in aligning operational efficiency with sustainable development goals. Recently, a number of different frameworks, systems, and methods have been proposed for small and medium enterprises. Key performance indicators (KPIs) are known to be powerful tools which provide accurate information regarding bottlenecks and weak spots in companies. The purpose of the current study is to develop an advanced KPI selection/prioritization model and apply it in practice. The initial set of KPIs are obtained based on a literature review. The expert’s knowledge, outlier methods, and optimization of the enterprise analysis model (EAM) are utilized for reducing the initial set of KPIs. A fuzzy analytical hierarchy process (AHP) is implemented for prioritization of the criteria. Five different MCDM (multi-criteria decision-making) algorithms are implemented for prioritization of the KPIs. The recently introduced RADAR method is extended to the fuzzy RADAR method, providing a flexible approach for handling uncertainties. An analysis and comparison of the rankings obtained by utilizing five MCDM algorithms is performed. The prioritized KPIs provide valuable input for improving KPIs with the highest impact in particular small and medium-sized enterprises (SMEs) when implementing sustainability-aligned performance metrics. Full article
(This article belongs to the Special Issue Logistics Optimization and Sustainable Operations Management)
Show Figures

Figure 1

18 pages, 3565 KiB  
Article
Restoring Historical Watercourses to Cities: The Cases of Poznań, Milan, and Beijing
by Wojciech Skórzewski, Ling Qi, Mo Zhou and Agata Bonenberg
Sustainability 2025, 17(14), 6325; https://doi.org/10.3390/su17146325 - 10 Jul 2025
Viewed by 262
Abstract
The increasing frequency of extreme weather events, combined with the historic degradation of urban water systems, has prompted cities worldwide to reconsider the role of water in urban planning. This study examines the restoration and integration of historical watercourses into contemporary urban environments [...] Read more.
The increasing frequency of extreme weather events, combined with the historic degradation of urban water systems, has prompted cities worldwide to reconsider the role of water in urban planning. This study examines the restoration and integration of historical watercourses into contemporary urban environments through blue and green infrastructure (BGI). Focusing on three case study cities—Poznań (Poland), Milan (Italy), and Beijing (China)—this research explores both spatial and regulatory conditions for reintroducing surface water into cityscapes. Utilizing historical maps, contemporary land use data, and spatial planning documents, this study applies a GIS-based multi-criteria decision analysis (GIS-MCDA) to assess restoration potential. The selected case studies, including the redesign of Park Rataje in Poznań, canal daylighting projects in Milan, and the multifunctional design of Beijing’s Olympic Forest Park, illustrate diverse approaches to ecological revitalization. The findings emphasize that restoring or recreating urban water systems can enhance urban resilience, ecological connectivity, and the quality of public space. Full article
Show Figures

Figure 1

Back to TopTop