Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (334)

Search Parameters:
Keywords = Mg-SiC composite

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 4328 KiB  
Article
High-Throughput Study on Nanoindentation Deformation of Al-Mg-Si Alloys
by Tong Shen, Guanglong Xu, Fuwen Chen, Shuaishuai Zhu and Yuwen Cui
Materials 2025, 18(15), 3663; https://doi.org/10.3390/ma18153663 - 4 Aug 2025
Abstract
Al-Mg-Si (6XXX) series aluminum alloys are widely applied in aerospace and transportation industries. However, exploring how varying compositions affect alloy properties and deformation mechanisms is often time-consuming and labor-intensive due to the complexity of the multicomponent composition space and the diversity of processing [...] Read more.
Al-Mg-Si (6XXX) series aluminum alloys are widely applied in aerospace and transportation industries. However, exploring how varying compositions affect alloy properties and deformation mechanisms is often time-consuming and labor-intensive due to the complexity of the multicomponent composition space and the diversity of processing and heat treatments. This study, inspired by the Materials Genome Initiative, employs high-throughput experimentation—specifically the kinetic diffusion multiple (KDM) method—to systematically investigate how the pop-in effect, indentation size effect (ISE), and creep behavior vary with the composition of Al-Mg-Si alloys at room temperature. To this end, a 6016/Al-3Si/Al-1.2Mg/Al KDM material was designed and fabricated. After diffusion annealing at 530 °C for 72 h, two junction areas were formed with compositional and microstructural gradients extending over more than one thousand micrometers. Subsequent solution treatment (530 °C for 30 min) and artificial aging (185 °C for 20 min) were applied to simulate industrial processing conditions. Comprehensive characterization using electron probe microanalysis (EPMA), nanoindentation with continuous stiffness measurement (CSM), and nanoindentation creep tests across these gradient regions revealed key insights. The results show that increasing Mg and Si content progressively suppresses the pop-in effect. When the alloy composition exceeds 1.0 wt.%, the pop-in events are nearly eliminated due to strong interactions between solute atoms and mobile dislocations. In addition, adjustments in the ISE enabled rapid evaluation of the strengthening contributions from Mg and Si in the microscale compositional array, demonstrating that the optimum strengthening occurs when the Mg-to-Si atomic ratio is approximately 1 under a fixed total alloy content. Furthermore, analysis of the creep stress exponent and activation volume indicated that dislocation motion is the dominant creep mechanism. Overall, this enhanced KDM method proves to be an effective conceptual tool for accelerating the study of composition–deformation relationships in Al-Mg-Si alloys. Full article
Show Figures

Graphical abstract

19 pages, 3999 KiB  
Article
Recovery of Precious Metals from High-MgO-Content Pt-Pd Concentrates Using a Pyrometallurgical Smelting Process
by Chunxi Zhang, Lingsong Wang, Jiachun Zhao, Chao Wang, Yu Zheng and Haigang Dong
Minerals 2025, 15(8), 818; https://doi.org/10.3390/min15080818 (registering DOI) - 1 Aug 2025
Viewed by 119
Abstract
The Jinbaoshan Pt-Pd deposit is China’s largest independent PGM deposit. However, the deposit has not been utilized until now because of the low grade of precious metals, the complex mineral composition, and, notably, the presence of precious metals in the microgranular material disseminated [...] Read more.
The Jinbaoshan Pt-Pd deposit is China’s largest independent PGM deposit. However, the deposit has not been utilized until now because of the low grade of precious metals, the complex mineral composition, and, notably, the presence of precious metals in the microgranular material disseminated to other minerals. Its high MgO content, in particular, is regarded as a challenge for efficiently recovering precious metals via mature pyrometallurgical methods. In this research, the feasibility of a smelting process to recover precious metals from Jinbaoshan Pt-Pd concentrates at a conventional smelting temperature (1350 °C) with the addition of iron ore as a metal collector and SiO2 and CaO as fluxes was verified on the basis of thermodynamic slag design and experimental analyses. Under the optimal conditions of 100 g of the Pt-Pd concentrates, 32.5 g of SiO2, 7.5 g of CaO, and 30 g of iron ore at 1350 °C for 1 h, the extraction efficiencies of Au, Pt, and Pd were 94.66%, 96.75%, and 97.28%, respectively. This strategy enables the rapid collection of PGMs from Jinbaoshan Pt-Pd concentrates at the conventional temperature within a short time and minimizes the use of fluxes and collectors, contributing to energy and cost conservation. Full article
Show Figures

Figure 1

7 pages, 784 KiB  
Communication
Mechanoluminescent-Boosted NiS@g-C3N4/Sr2MgSi2O7:Eu,Dy Heterostructure: An All-Weather Photocatalyst for Water Purification
by Yuchen Huang, Jiamin Wu, Honglei Li, Dehao Liu, Qingzhe Zhang and Kai Li
Processes 2025, 13(8), 2416; https://doi.org/10.3390/pr13082416 - 30 Jul 2025
Viewed by 245
Abstract
The vast majority of photocatalysts find it difficult to consistently and stably exhibit high performance due to the variability of sunlight intensity within a day, as well as the high energy consumption of artificial light sources. In this study, mechanoluminescent Sr2MgSi [...] Read more.
The vast majority of photocatalysts find it difficult to consistently and stably exhibit high performance due to the variability of sunlight intensity within a day, as well as the high energy consumption of artificial light sources. In this study, mechanoluminescent Sr2MgSi2O7:Eu,Dy phosphors is combined with NiS@g-C3N4 composite to construct a ternary heterogeneous photocatalytic system, denoted as NCS. In addition to the enhanced separation efficiency of photogenerated charge carriers by the formation of a heterojunction, the introduction of Sr2MgSi2O7:Eu,Dy provides an ultra-driving force for the photocatalytic reactions owing to its mechanoluminescence-induced excitation. Results show that the degradation rate of RhB increased significantly in comparison with pristine g-C3N4 and NiS@g-C3N4, indicating the obvious advantages of the ternary system for charge separation and migration. Moreover, the additional photocatalytic activity of NCS under ultrasound stimulation makes it a promising all-weather photocatalyst even in dark environments. This novel strategy opens up new horizons for the synergistic combination of light-driven and ultrasound-driven heterogeneous photocatalytic systems, and it also has important reference significance for the design and application of high-performance photocatalysts. Full article
(This article belongs to the Special Issue Green Photocatalysis for a Sustainable Future)
Show Figures

Figure 1

17 pages, 1308 KiB  
Article
Dual-Functional AgNPs/Magnetic Coal Fly Ash Composite for Wastewater Disinfection and Azo Dye Removal
by Lei Gong, Jiaxin Li, Rui Jin, Menghao Li, Jiajie Peng and Jie Zhu
Molecules 2025, 30(15), 3155; https://doi.org/10.3390/molecules30153155 - 28 Jul 2025
Viewed by 258
Abstract
In this study, we report the development of a novel magnetized coal fly ash-supported nano-silver composite (AgNPs/MCFA) for dual-functional applications in wastewater treatment: the efficient degradation of methyl orange (MO) dye and broad-spectrum antibacterial activity. The composite was synthesized via a facile impregnation–reduction–sintering [...] Read more.
In this study, we report the development of a novel magnetized coal fly ash-supported nano-silver composite (AgNPs/MCFA) for dual-functional applications in wastewater treatment: the efficient degradation of methyl orange (MO) dye and broad-spectrum antibacterial activity. The composite was synthesized via a facile impregnation–reduction–sintering route, utilizing sodium citrate as both a reducing and stabilizing agent. The AgNPs/MCFA composite was systematically characterized through multiple analytical techniques, including Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and vibrating sample magnetometry (VSM). The results confirmed the uniform dispersion of AgNPs (average size: 13.97 nm) on the MCFA matrix, where the formation of chemical bonds (Ag-O-Si) contributed to the enhanced stability of the material. Under optimized conditions (0.5 g·L−1 AgNO3, 250 °C sintering temperature, and 2 h sintering time), AgNPs/MCFA exhibited an exceptional catalytic performance, achieving 99.89% MO degradation within 15 min (pseudo-first-order rate constant ka = 0.3133 min−1) in the presence of NaBH4. The composite also demonstrated potent antibacterial efficacy against Escherichia coli (MIC = 0.5 mg·mL−1) and Staphylococcus aureus (MIC = 2 mg·mL−1), attributed to membrane disruption, intracellular content leakage, and reactive oxygen species generation. Remarkably, AgNPs/MCFA retained >90% catalytic and antibacterial efficiency after five reuse cycles, enabled by its magnetic recoverability. By repurposing industrial waste (coal fly ash) as a low-cost carrier, this work provides a sustainable strategy to mitigate nanoparticle aggregation and environmental risks while enhancing multifunctional performance in water remediation. Full article
Show Figures

Graphical abstract

20 pages, 2411 KiB  
Article
Influencing Factors of Hexavalent Chromium Speciation Transformation in Soil from a Northern China Chromium Slag Site
by Shuai Zhu, Junru Chen, Yun Zhu, Baoke Zhang, Jing Jia, Meng Pan, Zhipeng Yang, Jianhua Cao and Yating Shen
Molecules 2025, 30(15), 3076; https://doi.org/10.3390/molecules30153076 - 23 Jul 2025
Viewed by 264
Abstract
Chromium slag sites pose severe environmental risks due to hexavalent chromium (Cr(VI)) contamination, characterized by high mobility and toxicity. This study focused on chromium-contaminated soil from a historical chromium slag site in North China, where long-term accumulation of chromate production residues has led [...] Read more.
Chromium slag sites pose severe environmental risks due to hexavalent chromium (Cr(VI)) contamination, characterized by high mobility and toxicity. This study focused on chromium-contaminated soil from a historical chromium slag site in North China, where long-term accumulation of chromate production residues has led to serious Cr(VI) pollution, with Cr(VI) accounting for 13–22% of total chromium and far exceeding national soil risk control standards. To elucidate Cr(VI) transformation mechanisms and elemental linkages, a combined approach of macro-scale condition experiments and micro-scale analysis was employed. Results showed that acidic conditions (pH < 7) significantly enhanced Cr(VI) reduction efficiency by promoting the conversion of CrO42− to HCrO4/Cr2O72−. Among reducing agents, FeSO4 exhibited the strongest effect (reduction efficiency >30%), followed by citric acid and fulvic acid. Temperature variations (−20 °C to 30 °C) had minimal impact on Cr(VI) transformation in the 45-day experiment, while soil moisture (20–25%) indirectly facilitated Cr(VI) reduction by enhancing the reduction of agent diffusion and microbial activity, though its effect was weaker than chemical interventions. Soil grain-size composition influenced Cr(VI) distribution unevenly: larger particles (>0.2 mm) in BC-35 and BC-36-4 acted as main Cr(VI) reservoirs due to accumulated Fe-Mn oxides, whereas BC-36-3 showed increased Cr(VI) in smaller particles (<0.074 mm). μ-XRF and correlation analysis revealed strong positive correlations between Cr and Ca, Fe, Mn, Ni (Pearson coefficient > 0.7, p < 0.01), attributed to adsorption–reduction coupling on iron-manganese oxide surfaces. In contrast, Cr showed weak correlations with Mg, Al, Si, and K. This study clarifies the complex factors governing Cr(VI) behavior in chromium slag soils, providing a scientific basis for remediation strategies such as pH adjustment (4–6) combined with FeSO4 addition to enhance Cr(VI) reduction efficiency. Full article
Show Figures

Graphical abstract

23 pages, 15083 KiB  
Article
Reactivity of Shale to Supercritical CO2: Insights from Microstructural Characterization and Mineral Phase Evolution in Caney Shales for CCUS Applications
by Loic Bethel Dje and Mileva Radonjic
Materials 2025, 18(14), 3382; https://doi.org/10.3390/ma18143382 - 18 Jul 2025
Viewed by 350
Abstract
Understanding mineral–fluid interactions in shale under supercritical CO2 (scCO2) conditions is relevant for assessing long-term geochemical containment. This study characterizes mineralogical transformations and elemental redistribution in five Caney Shale samples serving as proxies for reservoir (R1, R2, R3) and caprock [...] Read more.
Understanding mineral–fluid interactions in shale under supercritical CO2 (scCO2) conditions is relevant for assessing long-term geochemical containment. This study characterizes mineralogical transformations and elemental redistribution in five Caney Shale samples serving as proxies for reservoir (R1, R2, R3) and caprock (D1, D2) facies, subjected to 30-day static exposure to pure scCO2 at 60 °C and 17.23 MPa (2500 psi), with no brine or impurities introduced. SEM-EDS analyses were conducted before and after exposure, with mineral phases classified into silicates, carbonates, sulfides, and organic matter. Initial compositions were dominated by quartz (38–47 wt.%), illite (16–23 wt.%), carbonates (12–18 wt.%), and organic matter (8–11 wt.%). Post-exposure, carbonate loss ranged from 15 to 40% in reservoir samples and up to 20% in caprock samples. Illite and K-feldspar showed depletion of Fe2+, Mg2+, and K+ at grain edges and cleavages, while pyrite underwent oxidation with Fe redistribution. Organic matter exhibited scCO2-induced surface alteration and apparent sorption effects, most pronounced in R2 and R3. Elemental mapping revealed Ca2+, Mg2+, Fe2+, and Si4+ mobilization near reactive interfaces, though no secondary mineral precipitates formed. Reservoir samples developed localized porosity, whereas caprock samples retained more structural clay integrity. The results advance understanding of mineral reactivity and elemental fluxes in shale-based CO2 sequestration. Full article
(This article belongs to the Special Issue Advances in Rock and Mineral Materials—Second Edition)
Show Figures

Graphical abstract

13 pages, 2079 KiB  
Article
Preparation and Properties of a Composite Glass Protective Lubricating Coating for the Forging of Ti-6Al-4V Alloy
by Zunqi Xiao, Qiuyue Xie, Bin Zhang, Bing Ren and Shujian Tian
Coatings 2025, 15(7), 792; https://doi.org/10.3390/coatings15070792 - 5 Jul 2025
Viewed by 359
Abstract
A SiO2-Al2O3-B2O3-CaO-MgO-Na2O glass-based protective lubricant coating was developed for Ti-6Al-4V alloy forging, featuring a fully non-toxic formulation. The coating consisted of a composite glass matrix formed by blending two phases with [...] Read more.
A SiO2-Al2O3-B2O3-CaO-MgO-Na2O glass-based protective lubricant coating was developed for Ti-6Al-4V alloy forging, featuring a fully non-toxic formulation. The coating consisted of a composite glass matrix formed by blending two phases with distinct softening temperatures, extending its operational window to 700–950 °C. The composite glass showed initial softening at 700 °C and complete melting at 800 °C, with contact angle measurements confirming superior wettability (θ < 90°) across the forging range (800~950 °C). With an increase in temperature, the surface tension of the composite glass melt decreased, and subsequently, the wettability of the composite glass melt was significantly improved. XRD revealed that the uncoated Ti-6Al-4V formed a 22 μm thick rutile TiO2 scale with a porous structure and interfacial cracks, while the coated sample retained an amorphous glass layer with no TiO2. Cross-sectional SEM showed a crack-free, poreless interface with strong metallurgical bonding, in contrast to the uncoated sample’s spalled oxide layer. EDS showed minimal oxygen diffusion of the glass coating into the substrate. Ring upsetting tests showed that the coating reduced friction from 0.5–0.7 to 0.3 (50–57% decrease). Collectively, the glass protective lubricant coating showed good performance in terms of protection and lubrication. Full article
Show Figures

Figure 1

17 pages, 7952 KiB  
Article
Achyrophanite, (K,Na)3(Fe3+,Ti,Al,Mg)5O2(AsO4)5, a New Mineral with the Novel Structure Type from Fumarolic Exhalations of the Tolbachik Volcano, Kamchatka, Russia
by Igor V. Pekov, Natalia V. Zubkova, Natalia N. Koshlyakova, Dmitry I. Belakovskiy, Marina F. Vigasina, Atali A. Agakhanov, Sergey N. Britvin, Anna G. Turchkova, Evgeny G. Sidorov, Pavel S. Zhegunov and Dmitry Yu. Pushcharovsky
Minerals 2025, 15(7), 706; https://doi.org/10.3390/min15070706 - 2 Jul 2025
Viewed by 292
Abstract
The new mineral achyrophanite (K,Na)3(Fe3+,Ti,Al,Mg)5O2(AsO4)5 was found in high-temperature sublimates of the Arsenatnaya fumarole at the Second scoria cone of the Northern Breakthrough of the Great Tolbachik Fissure Eruption, Tolbachik volcano, Kamchatka, [...] Read more.
The new mineral achyrophanite (K,Na)3(Fe3+,Ti,Al,Mg)5O2(AsO4)5 was found in high-temperature sublimates of the Arsenatnaya fumarole at the Second scoria cone of the Northern Breakthrough of the Great Tolbachik Fissure Eruption, Tolbachik volcano, Kamchatka, Russia. It is associated with aphthitalite-group sulfates, hematite, alluaudite-group arsenates (badalovite, calciojohillerite, johillerite, nickenichite, hatertite, and khrenovite), ozerovaite, pansnerite, arsenatrotitanite, yurmarinite, svabite, tilasite, katiarsite, yurgensonite, As-bearing sanidine, anhydrite, rutile, cassiterite, and pseudobrookite. Achyrophanite occurs as long-prismatic to acicular or, rarer, tabular crystals up to 0.02 × 0.2 × 1.5 mm, which form parallel, radiating, bush-like, or chaotic aggregates up to 3 mm across. It is transparent, straw-yellow to golden yellow, with strong vitreous luster. The mineral is brittle, with (001) perfect cleavage. Dcalc is 3.814 g cm–3. Achyrophanite is optically biaxial (+), α = 1.823(7), β = 1.840(7), γ = 1.895(7) (589 nm), 2V (meas.) = 60(10)°. Chemical composition (wt.%, electron microprobe) is: Na2O 3.68, K2O 9.32, CaO 0.38, MgO 1.37, MnO 0.08, CuO 0.82, ZnO 0.48, Al2O3 2.09, Fe2O3 20.42, SiO2 0.12, TiO2 7.35, P2O5 0.14, V2O5 0.33, As2O5 51.88, SO3 1.04, and total 99.40. The empirical formula calculated based on 22 O apfu is Na1.29K2.15Ca0.07Mg0.34Mn0.01Cu0.11Zn0.06Al0.44Fe3+2.77Ti1.00Si0.02P0.02S0.14V0.04As4.90O22. Achyrophanite is orthorhombic, space group P2221, a = 6.5824(2), b = 13.2488(4), c = 10.7613(3) Å, V = 938.48(5) Å3 and Z = 2. The strongest reflections of the PXRD pattern [d,Å(I)(hkl)] are 5.615(59)(101), 4.174(42)(022), 3.669(31)(130), 3.148(33)(103), 2.852(43)(141), 2.814(100)(042, 202), 2.689(29)(004), and 2.237(28)(152). The crystal structure of achyrophanite (solved from single-crystal XRD data, R = 4.47%) is unique. It is based on the octahedral-tetrahedral M-T-O pseudo-framework (M = Fe3+ with admixed Ti, Al, Mg, Na; T = As5+). Large-cation A sites (A = K, Na) are located in the channels of the pseudo-framework. The achyrophanite structure can be described as stuffed, with the defect heteropolyhedral pseudo-framework derivative of the orthorhombic Fe3+AsO4 archetype. The mineral is named from the Greek άχυρον, straw, and φαίνομαι, to appear, in allusion to its typical straw-yellow color and long prismatic habit of crystals. Full article
Show Figures

Figure 1

18 pages, 5928 KiB  
Article
The Influence of Direct Aging on TiB2/Al–Si–Mg Composites Fabricated by LPBF: Residual Stress, Mechanical Properties and Microstructure
by Peng Rong, Xin Fang, Yirui Chang, Yong Chen, Dan Huang and Yang Li
Coatings 2025, 15(7), 780; https://doi.org/10.3390/coatings15070780 - 2 Jul 2025
Viewed by 540
Abstract
This study systematically investigates the effects of various direct aging (DA) treatments on the residual stress, mechanical properties, and microstructure of laser powder bed fusion (LPBF) fabricated TiB2/AlSi7Mg composites. The results demonstrate that during aging at 120 °C, the hardness exhibits [...] Read more.
This study systematically investigates the effects of various direct aging (DA) treatments on the residual stress, mechanical properties, and microstructure of laser powder bed fusion (LPBF) fabricated TiB2/AlSi7Mg composites. The results demonstrate that during aging at 120 °C, the hardness exhibits a typical age-hardening behavior. The residual stress relief rate increased to 45.1% after 336 h, although the stress relief rate significantly diminished over time. Increasing the aging temperature effectively enhanced residual stress removal efficiency, with reductions of approximately 40% and 62% observed after aging at 150 °C for 4 h and 190 °C for 8 h, respectively. Regarding mechanical properties, aging at 150 °C for 4 h resulted in an optimal synergy in yield strength (YS = 358 MPa) and elongation (EL = 9.2%), followed by aging at 190 °C for 8 h with YS of 320 MPa and EL of 7.0%. Microstructural analysis revealed that low temperature aging promotes the formation of nanoscale Si precipitates, which enhance strength through the Orowan mechanism. In contrast, high temperature annealing disrupts the metastable cellular structure, leading to the loss of strengthening effects. This work provides fundamental insights for effective residual stress management and performance optimization of LPBF Al–Si–Mg alloys. Full article
(This article belongs to the Special Issue Advanced Surface Technology and Application)
Show Figures

Graphical abstract

23 pages, 12059 KiB  
Article
Powders Synthesized from Water Solutions of Sodium Silicate and Calcium and/or Magnesium Chlorides
by Tatiana V. Safronova, Alexandra S. Sultanovskaya, Sergei A. Savelev, Tatiana B. Shatalova, Yaroslav Y. Filippov, Olga V. Boytsova, Vadim B. Platonov, Tatiana V. Filippova, Albina M. Murashko, Xinyan Feng and Muslim R. Akhmedov
Compounds 2025, 5(2), 22; https://doi.org/10.3390/compounds5020022 - 16 Jun 2025
Viewed by 432
Abstract
Powders with phase composition including quasi-amorphous phases and calcium carbonate CaCO3 in the form of calcite or aragonite and sodium halite NaCl as a reaction by-product were synthesized from 0.5M aqua solutions of sodium silicate and 0.5M aqua solutions of calcium and/or [...] Read more.
Powders with phase composition including quasi-amorphous phases and calcium carbonate CaCO3 in the form of calcite or aragonite and sodium halite NaCl as a reaction by-product were synthesized from 0.5M aqua solutions of sodium silicate and 0.5M aqua solutions of calcium and/or magnesium chlorides. Starting solutions were taken in quantities which could provide precipitation of hydrated calcium and/or magnesium silicates with molar ratios Ca/Si = 1 (CaSi), Mg/Si = 1 (MgSi) or (Ca+Mg)/Si = 1 (CaMgSi). Hydrated calcium and/or magnesium silicates, hydrated silica, magnesium carbonate, hydrated magnesium carbonate or hydrated magnesium silicate containing carbonate ions are suspected as components of quasi-amorphous phases presented in synthesized powders. Heat treatment of synthesized powders at 400, 600, 800 °C and pressed preceramic samples at 900, 1000, 1100 and 1200 °C were used for investigation of thermal evolution of the phase composition and microstructure of powders and ceramic samples. Mass loss of powder samples under investigation during heat treatment was provided due to evacuation of H2O (m/z = 18), CO2 (m/z = 44) and NaCl at temperatures above its melting point. After sintering at 1100 °C, the phase composition of ceramic samples included wollastonite CaSiO3 (CaSi_1100); enstatite MgSiO3, clinoenstatite MgSiO3 and forsterite Mg2SiO4 (MgSi_1100); and diopside CaMgSi2O6 (CaMgSi_1100). After sintering at 1200 °C, the phase composition of ceramics CaSi_1200 included pseudo-wollastonite CaSiO3. After heat treatment at 1300 °C, the phase composition of MgSi_1300 powder included preferably protoenstatite MgSiO3. The phase composition of all samples after heat treatment belongs to the oxide system CaO–MgO–SiO2. Ceramic materials in this system are of interest for use in different areas, including refractories, construction materials and biomaterials. Powders prepared in the present investigation, both via precipitation and via heat treatment, can be used for the creation of materials with specific properties and in model experiments as lunar regolith simulants. Full article
Show Figures

Figure 1

19 pages, 1473 KiB  
Article
Differential Impact of SiO2 Foliar Application on Lettuce Response to Temperature, Salinity, and Drought Stress
by Ivan Simko, Rebecca Zhao and Hui Peng
Plants 2025, 14(12), 1845; https://doi.org/10.3390/plants14121845 - 16 Jun 2025
Viewed by 691
Abstract
Silicon dioxide (SiO2) foliar application offers a promising strategy for enhancing lettuce (Lactuca sativa L.) resilience under temperature extremes, salinity, and drought stress. This study investigated the effects of SiO2 treatment on three lettuce cultivars exposed to varying temperature, [...] Read more.
Silicon dioxide (SiO2) foliar application offers a promising strategy for enhancing lettuce (Lactuca sativa L.) resilience under temperature extremes, salinity, and drought stress. This study investigated the effects of SiO2 treatment on three lettuce cultivars exposed to varying temperature, salinity, and drought conditions in a controlled growth chamber environment. Silicon treatment (3.66 mM) significantly enhanced plant biomass under suboptimal (15 °C), optimal (20 °C), and salinity stress conditions. Notably, the SiO2 effect was most positive under severe salinity stress (100 mM NaCl), where its application increased plant weight together with chlorophyll and anthocyanin content. When increasing SiO2 concentrations from 0 to 29.30 mM were tested, optimal results to alleviate severe salinity stress were consistently observed at 3.66 mM, with peak performance in fresh weight, plant diameter, chlorophyll, and anthocyanin content. Higher SiO2 concentrations progressively diminished these beneficial effects, with 29.30 mM treatment leading to reduced growth and increased leaf chlorosis. Comprehensive mineral composition analysis revealed complex interactions between silicon treatment and elemental profiles at 100 mM salinity stress. At 3.66 mM SiO2, plants accumulated the highest levels of both K (20,406 mg/kg dry weight, DW) and Na (16,185 mg/kg DW) while maintaining the highest K/Na ratio (1.26). This suggests that Si enhances cellular ion compartmentalization rather than exclusion mechanisms, allowing plants to manage higher total ion content better while minimizing cytoplasmic damage. Drought stress conditions unexpectedly revealed negative impacts from 3.66 mM SiO2 application, with decreased plant fresh weight at moderate (50% soil water content, SWC) and severe (30% SWC) water limitations, though results were statistically significant only under severe drought stress. The study highlights silicon’s potential as a stress mitigation agent, particularly under salinity stress, while emphasizing the need for concentration-specific and stress-specific approaches. These findings suggest that foliar SiO2 application could be a valuable tool for enhancing lettuce crop productivity under both optimal and challenging environmental conditions, with future research warranting field validation and full market maturity assessments. Full article
(This article belongs to the Special Issue The Role of Exogenous Silicon in Plant Response to Abiotic Stress)
Show Figures

Figure 1

13 pages, 2746 KiB  
Article
A Cl-Dominant Analogue of Annite Occurs at the Eastern Edge of the Oktyabrsky Cu-Ni-PGE Deposit, Norilsk, Russia
by Andrei Y. Barkov, Giovanni Orazio Lepore, Luca Bindi, Robert F. Martin, Taras Panikorovskii, Ivan I. Nikulin and Sergey A. Silyanov
Minerals 2025, 15(6), 640; https://doi.org/10.3390/min15060640 - 12 Jun 2025
Viewed by 366
Abstract
A Cl-rich annitic mica is present in zones in taxitic gabbro–dolerite enriched in base metal sulfides in the eastern portion of the Oktyabrsky deposit in the Norilsk complex (Russia). Other Cl-enriched minerals in the assemblage include hastingsite (4.06 wt.% Cl), ferro-hornblende (2.53 wt.%), [...] Read more.
A Cl-rich annitic mica is present in zones in taxitic gabbro–dolerite enriched in base metal sulfides in the eastern portion of the Oktyabrsky deposit in the Norilsk complex (Russia). Other Cl-enriched minerals in the assemblage include hastingsite (4.06 wt.% Cl), ferro-hornblende (2.53 wt.%), and chlorapatite (>6 wt.%). New wavelength-dispersive electron probe analyses reveal compositions with up to 7.75 wt.% Cl, corresponding to the formula K0.742Na0.047Ca0.007)Σ0.796 (Fe2+2.901Mg0.078Mn0.047Ti0.007Cr0.003)Σ3.036 (Si3.190Al0.782)Σ3.972O10 (Cl1.105OH0.854F0.041)Σ2.000 based on 22 negative charges per formula unit, in which OH(calc.) = 2 − (Cl + F). Unfortunately, the grain size of the Cl-dominant mica precluded a single-crystal X-ray diffraction study even though its EBSD pattern confirms its identity as a member of the Mica group. We present results of a refinement of a crystal from the same mineralized sample containing 0.90(6) apfu Cl [R1 = 7.89% for 3720 unique reflections]. The mica is monoclinic, space group C2/m, a 5.3991(4), b 9.3586(6), c 10.2421(10) Å, β 100.873(9)°, V = 508.22(7) Å3, Z = 2. We also describe physical properties and provide a Raman spectrum. Among the mica compositions acquired from the same sample, a high Cl content is correlated with relative enrichment in Si, Mn, and Na and with a depletion in Al, Mg (low Mg#), K, Cr, and Ti. The buildup in Cl in the ore-forming environment is ultimately due to efficient fractional crystallization of the basic magma, with possible contributions from the Devonian metasedimentary sequences that it intruded. Full article
(This article belongs to the Collection New Minerals)
Show Figures

Figure 1

18 pages, 13463 KiB  
Article
Investigating the Characteristics of the Laser Powder Bed Fusion of SiCp/AlSi10Mg Composites: From a Single Track to a Cubic Block
by Ying He, Gang Xue, Haifeng Xiao and Haihong Zhu
Micromachines 2025, 16(6), 697; https://doi.org/10.3390/mi16060697 - 11 Jun 2025
Viewed by 761
Abstract
Laser powder bed fusion (LPBF) of SiCp/AlSi10Mg is promising in many industrial fields. In this paper, the characteristics of a 15 wt.% 1200 mesh SiCp/AlSi10Mg metal matrix composite fabricated by LPBF were investigated systematically, i.e., from a single track to a block. It [...] Read more.
Laser powder bed fusion (LPBF) of SiCp/AlSi10Mg is promising in many industrial fields. In this paper, the characteristics of a 15 wt.% 1200 mesh SiCp/AlSi10Mg metal matrix composite fabricated by LPBF were investigated systematically, i.e., from a single track to a block. It was found that when the laser energy input was high enough, the single track was continuous and not distorted; when the laser energy input was low, the single track was unstable and wrinkled. The densification of the LPBFed composite sample was influenced significantly by the surface morphologies and geometric dimensions of the single tracks. As high as 98.9% relative density was achieved when the optimized processing parameters were used. Because of the good wettability and the interfacial reaction during the process, the interface of SiC and the matrix showed good bonding. Near the interface of SiC and the matrix, needle-shaped phase Al4SiC4 could be found both in the single track and block, and the faceted particle Si was formed in the block because of the interfacial reaction. The microhardness of the LPBFed SiCp/AlSi10Mg composites was much higher than that of the LPBFed unreinforced AlSi10Mg. A coefficient of friction of 0.178 and wear rate of 2.02 × 10−4 mm3/(N⋅m) were achieved for the LPBFed composites. The main wear mechanism was delamination wear, accompanied by abrasive wear. The maximum yield strength and ultimate compressive strength were 566.6 MPa and 764.1 MPa, respectively. The fracture mode of the LPBFed composites is mainly brittle fracture. This study provides a theoretical and technical basis for LPBFed SiCp/AlSi10Mg 3D parts. Full article
Show Figures

Figure 1

19 pages, 3801 KiB  
Article
Effect of BaO Content on the Photoluminescence Properties of Mn2+ and Eu2+-Codoped Sr3−xBaxMgSi2O8 Phosphors
by Shu-Han Liao, Fang-Tzu Hsu, Cheng-Fu Yang and Kao-Wei Min
Inorganics 2025, 13(6), 187; https://doi.org/10.3390/inorganics13060187 - 6 Jun 2025
Viewed by 431
Abstract
In this study, Mn2+ and Eu2+-codoped Sr3−xBaxMgSi2O8 (x = 0–1.5) phosphors were synthesized at 1400 °C under a reducing atmosphere composed of 5% H2 and 95% N2 to produce [...] Read more.
In this study, Mn2+ and Eu2+-codoped Sr3−xBaxMgSi2O8 (x = 0–1.5) phosphors were synthesized at 1400 °C under a reducing atmosphere composed of 5% H2 and 95% N2 to produce materials with blue light emission. The resulting powders were characterized using several analytical techniques: X-ray diffraction (XRD) was employed to identify the crystalline phases, scanning electron microscopy (SEM) was used to observe the microstructure, and photoluminescence excitation (PLE) and emission (PL) spectra were measured using a fluorescence spectrophotometer. The results revealed several key findings. XRD analysis showed that the Sr3MgSi2O8 (Sr3−xBaxMgSi2O8) phase coexisted with secondary phases of Sr2SiO4 and Sr2MgSi2O7. SEM observations indicated that the synthesized powders exhibited a distinctive needle-like structure anchored on the surfaces of the particles. The PL and PLE intensities increased sharply as the BaO content increased from x = 0 to x = 0.6, followed by a more gradual increase, reaching a peak at x = 1.2. Additionally, as the value of x increased, the wavelengths corresponding to maximum PL and PLE intensities exhibited a blue shift, moving to shorter wavelengths. Further investigation focused on the excitation behavior by replotting the PLE spectra using energy (eV) as the x-axis. A Gaussian fitting function was applied to deconvolute the excitation bands, enabling an in-depth analysis of how compositional variations influenced the Stokes shift. Full article
(This article belongs to the Section Inorganic Solid-State Chemistry)
Show Figures

Figure 1

24 pages, 3339 KiB  
Article
Mesostructured Silica–Zirconia–Tungstophosphoric Acid Composites as Catalyst in Calcium Channel Blocker Nifedipine Synthesis
by Edna X. Aguilera, Ángel G. Sathicq, Alexis Sosa, Marcelo C. Murguía, José J. Martínez, Luis R. Pizzio and Gustavo P. Romanelli
Catalysts 2025, 15(6), 537; https://doi.org/10.3390/catal15060537 - 28 May 2025
Viewed by 605
Abstract
This work studies the effect of mesostructured silica–zirconia–tungstophosphoric acid (SiO2-ZrO2-TPA) composites used as catalysts in the synthesis of nifedipine by the Hantzsch methodology. The selectivity for nifedipine is determined, along with that of secondary products that may form depending [...] Read more.
This work studies the effect of mesostructured silica–zirconia–tungstophosphoric acid (SiO2-ZrO2-TPA) composites used as catalysts in the synthesis of nifedipine by the Hantzsch methodology. The selectivity for nifedipine is determined, along with that of secondary products that may form depending on the reaction conditions. The materials were synthesized via the sol–gel method and characterized by N2 adsorption–desorption isotherms, infrared spectroscopy (FT-IR), 31P solid-state nuclear magnetic resonance (NMR-MAS), X-ray diffraction (XRD), thermogravimetric analysis (TGA), X-ray photoelectron spectra (XPS), and potentiometric titration. The characterization results from the XPS spectra showed that as the Si/Zr ratio drops, the Si-O-Si signal size decreases, while the Zr-O signal size increases. Characterization by titration indicated that an increase in the total acidity of the material, resulting from support modification with tungstophosphoric acid (H3PW12O40, TPA), enhances the reaction yield. The catalytic activity in the solvent-free Hantzsch reaction was evaluated under thermal heating and microwave irradiation. The experiments conducted at 80 °C achieved a maximum yield of 57% after 4 h of reaction using the Si20Zr80TPA30 catalyst (50 mg), while by microwave heating, the yield significantly improved, reaching 77% in only 1 h of reaction. This catalyst exhibited stability and reusability without significant loss of activity up to the third cycle. Depending on the type of material and the reaction conditions, it is possible to modify the selectivity of the reaction, obtaining a 1,2-dihydropyridine isomeric to nifedipine. Reaction intermediates and other minor secondary products that may be formed in the process were also evaluated. Full article
Show Figures

Graphical abstract

Back to TopTop