Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (23,808)

Search Parameters:
Keywords = Maintenance 4.0

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 1893 KiB  
Article
Native Flora and Potential Natural Vegetation References for Effective Forest Restoration in Italian Urban Systems
by Carlo Blasi, Giulia Capotorti, Eva Del Vico, Sandro Bonacquisti and Laura Zavattero
Plants 2025, 14(15), 2396; https://doi.org/10.3390/plants14152396 (registering DOI) - 2 Aug 2025
Abstract
The ongoing decade of UN restoration matches with the European goal of bringing nature back into our lives, including in urban systems, and Nature Restoration Regulation. Within such a framework, this work is aimed at highlighting the ecological rationale and strategic value of [...] Read more.
The ongoing decade of UN restoration matches with the European goal of bringing nature back into our lives, including in urban systems, and Nature Restoration Regulation. Within such a framework, this work is aimed at highlighting the ecological rationale and strategic value of an NRRP measure devoted to forest restoration in Italian Metropolitan Cities, and at assessing respective preliminary results. Therefore, the measure’s overarching goal (not to create urban parks or gardens, but activate forest recovery), geographic extent and scope (over 4000 ha and more than 4 million planted trees and shrubs across the country), plantation model (mandatory use of native species consistent with local potential vegetation, density of 1000 seedlings per ha, use of at least four tree and four shrub species in each project, with a minimum proportion of 70% for trees, certified provenance for reproductive material), and compulsory management activities (maintenance and replacement of any dead plants for at least five years), are herein shown and explained under an ecological perspective. Current implementation outcomes were thus assessed in terms of coherence and expected biodiversity benefits, especially with respect to ecological and biogeographic consistency of planted forests, representativity in relation to national and European plant diversity, biogeographic interest and conservation concern of adopted plants, and potential contribution to the EU Habitats Directive. Compliance with international strategic goals and normative rules, along with recognizable advantages of the measure and limitations to be solved, are finally discussed. In conclusion, the forestation model proposed for the Italian Metropolitan Cities proved to be fully applicable in its ecological rationale, with expected benefits in terms of biodiversity support plainly met, and even exceeded, at the current stage of implementation, especially in terms of the contribution to protected habitats. These promising preliminary results allow the model to be recognized at the international level as a good practice that may help achieve protection targets and sustainable development goals within and beyond urban systems. Full article
21 pages, 875 KiB  
Article
Comprehensive Analysis of Neural Network Inference on Embedded Systems: Response Time, Calibration, and Model Optimisation
by Patrick Huber, Ulrich Göhner, Mario Trapp, Jonathan Zender and Rabea Lichtenberg
Sensors 2025, 25(15), 4769; https://doi.org/10.3390/s25154769 (registering DOI) - 2 Aug 2025
Abstract
The response time of Artificial Neural Network (ANN) inference is critical in embedded systems processing sensor data close to the source. This is particularly important in applications such as predictive maintenance, which rely on timely state change predictions. This study enables estimation of [...] Read more.
The response time of Artificial Neural Network (ANN) inference is critical in embedded systems processing sensor data close to the source. This is particularly important in applications such as predictive maintenance, which rely on timely state change predictions. This study enables estimation of model response times based on the underlying platform, highlighting the importance of benchmarking generic ANN applications on edge devices. We analyze the impact of network parameters, activation functions, and single- versus multi-threading on response times. Additionally, potential hardware-related influences, such as clock rate variances, are discussed. The results underline the complexity of task partitioning and scheduling strategies, stressing the need for precise parameter coordination to optimise performance across platforms. This study shows that cutting-edge frameworks do not necessarily perform the required operations automatically for all configurations, which may negatively impact performance. This paper further investigates the influence of network structure on model calibration, quantified using the Expected Calibration Error (ECE), and the limits of potential optimisation opportunities. It also examines the effects of model conversion to Tensorflow Lite (TFLite), highlighting the necessity of considering both performance and calibration when deploying models on embedded systems. Full article
(This article belongs to the Section Fault Diagnosis & Sensors)
Show Figures

Figure 1

24 pages, 7547 KiB  
Article
Raising pH Reduces Manganese Toxicity in Citrus grandis (L.) Osbeck by Efficient Maintenance of Nutrient Homeostasis to Enhance Photosynthesis and Growth
by Rong-Yu Rao, Wei-Lin Huang, Hui Yang, Qian Shen, Wei-Tao Huang, Fei Lu, Xin Ye, Lin-Tong Yang, Zeng-Rong Huang and Li-Song Chen
Plants 2025, 14(15), 2390; https://doi.org/10.3390/plants14152390 (registering DOI) - 2 Aug 2025
Abstract
Manganese (Mn) excess and low pH often coexist in some citrus orchard soils. Little information is known about the underlying mechanism by which raising pH reduces Mn toxicity in citrus plants. ‘Sour pummelo’ (Citrus grandis (L.) Osbeck) seedlings were treated with 2 [...] Read more.
Manganese (Mn) excess and low pH often coexist in some citrus orchard soils. Little information is known about the underlying mechanism by which raising pH reduces Mn toxicity in citrus plants. ‘Sour pummelo’ (Citrus grandis (L.) Osbeck) seedlings were treated with 2 (Mn2) or 500 (Mn500) μM Mn at a pH of 3 (P3) or 5 (P5) for 25 weeks. Raising pH mitigated Mn500-induced increases in Mn, iron, copper, and zinc concentrations in roots, stems, and leaves, as well as nitrogen, phosphorus, potassium, calcium, magnesium, sulfur, copper, iron, and zinc distributions in roots, but it mitigated Mn500-induced decreases in nitrogen, phosphorus, potassium, calcium, magnesium, sulfur, and boron concentrations in roots, stems, and leaves, as well as nutrient imbalance. Raising pH mitigated Mn500-induced necrotic spots on old leaves, yellowing of young leaves, decreases in seedling growth, leaf chlorophyll concentration, and CO2 assimilation (ACO2), increase in root dry weight (DW)/shoot DW, and alterations of leaf chlorophyll a fluorescence (OJIP) transients and related indexes. Further analysis indicated that raising pH ameliorated Mn500-induced impairment of nutrient homeostasis, leaf thylakoid structure by iron deficiency and competition of Mn with magnesium, and photosynthetic electron transport chain (PETC), thereby reducing Mn500-induced declines in ACO2 and subsequent seedling growth. These results validated the hypothesis that raising pH reduced Mn toxicity in ‘Sour pummelo’ seedlings by (a) reducing Mn uptake, (b) efficient maintenance of nutrient homeostasis under Mn stress, (c) reducing Mn excess-induced impairment of thylakoid structure and PEPC and inhibition of chlorophyll biosynthesis, and (d) increasing ACO2 and subsequent seedling growth under Mn excess. Full article
(This article belongs to the Section Plant Nutrition)
Show Figures

Figure 1

20 pages, 489 KiB  
Article
Development of Preliminary Candidate Surface Guidelines for Air Force-Relevant Dermal Sensitizers Using New Approach Methodologies
by Andrew J. Keebaugh, Megan L. Steele, Argel Islas-Robles, Jakeb Phillips, Allison Hilberer, Kayla Cantrell, Yaroslav G. Chushak, David R. Mattie, Rebecca A. Clewell and Elaine A. Merrill
Toxics 2025, 13(8), 660; https://doi.org/10.3390/toxics13080660 (registering DOI) - 2 Aug 2025
Abstract
Allergic contact dermatitis (ACD) is an immunologic reaction to a dermal chemical exposure that, once triggered in an individual, will result in an allergic response following subsequent encounters with the allergen. Air Force epidemiological consultations have indicated that aircraft structural maintenance workers may [...] Read more.
Allergic contact dermatitis (ACD) is an immunologic reaction to a dermal chemical exposure that, once triggered in an individual, will result in an allergic response following subsequent encounters with the allergen. Air Force epidemiological consultations have indicated that aircraft structural maintenance workers may experience ACD at elevated rates compared to other occupations. We aimed to better understand the utility of non-animal testing methods in characterizing the sensitization potential of chemicals used during Air Force operations by evaluating the skin sensitization hazard of Air Force-relevant chemicals using new approach methodologies (NAMs) in a case study. We also evaluated the use of NAM data to develop preliminary candidate surface guidelines (PCSGs, maximum concentrations of chemicals on workplace surfaces to prevent induction of dermal sensitization) for chemicals identified as sensitizers. NAMs for assessing skin sensitization, including in silico models and experimental assays, were leveraged into an integrated approach to predict sensitization hazard for 19 chemicals. Local lymph node assay effective concentration values were predicted from NAM assay data via previously published quantitative models. The derived values were used to calculate PCSGs, which can be used to compare the presence of these chemicals on work surfaces to better understand the risk of Airmen developing ACD from occupational exposures. Full article
Show Figures

Figure 1

36 pages, 789 KiB  
Systematic Review
A Systematic Literature Review on PHM Strategies for (Hydraulic) Primary Flight Control Actuation Systems
by Leonardo Baldo, Andrea De Martin, Giovanni Jacazio and Massimo Sorli
Actuators 2025, 14(8), 382; https://doi.org/10.3390/act14080382 (registering DOI) - 2 Aug 2025
Abstract
Prognostic and Health Management (PHM) strategies are gaining increasingly more traction in almost every field of engineering, offering stakeholders advanced capabilities in system monitoring, anomaly detection, and predictive maintenance. Primary flight control actuators are safety-critical elements within aircraft flight control systems (FCSs), and [...] Read more.
Prognostic and Health Management (PHM) strategies are gaining increasingly more traction in almost every field of engineering, offering stakeholders advanced capabilities in system monitoring, anomaly detection, and predictive maintenance. Primary flight control actuators are safety-critical elements within aircraft flight control systems (FCSs), and currently, they are mainly based on Electro-Hydraulic Actuators (EHAs) or Electro-Hydrostatic Actuators (EHSAs). Despite the widespread diffusion of PHM methodologies, the application of these technologies for EHAs is still somewhat limited, and the available information is often restricted to the industrial sector. To fill this gap, this paper provides an in-depth analysis of state-of-the-art EHA PHM strategies for aerospace applications, as well as their limitations and further developments through a Systematic Literature Review (SLR). An objective and clear methodology, combined with the use of attractive and informative graphics, guides the reader towards a thorough investigation of the state of the art, as well as the challenges in the field that limit a wider implementation. It is deemed that the information presented in this review will be useful for new researchers and industry engineers as it provides indications for conducting research in this specific and still not very investigated sector. Full article
16 pages, 1176 KiB  
Article
Evaluating the Use of Rice Husk Ash for Soil Stabilisation to Enhance Sustainable Rural Transport Systems in Low-Income Countries
by Ada Farai Shaba, Esdras Ngezahayo, Goodson Masheka and Kajila Samuel Sakuhuka
Sustainability 2025, 17(15), 7022; https://doi.org/10.3390/su17157022 (registering DOI) - 2 Aug 2025
Abstract
Rural roads are critical for connecting isolated communities to essential services such as education and health and administrative services, as well as production and market opportunities in low-income countries. More than 70% of movements of people and goods in Sub-Saharan Africa are heavily [...] Read more.
Rural roads are critical for connecting isolated communities to essential services such as education and health and administrative services, as well as production and market opportunities in low-income countries. More than 70% of movements of people and goods in Sub-Saharan Africa are heavily reliant on rural transport systems, using both motorised but mainly alternative means of transport. However, rural roads often suffer from poor construction due to the use of low-strength, in situ soils and limited financial resources, leading to premature failures and subsequent traffic disruptions with significant economic losses. This study investigates the use of rice husk ash (RHA), a waste byproduct from rice production, as a sustainable supplement to Ordinary Portland Cement (OPC) for soil stabilisation in order to increase durability and sustainability of rural roads, hence limit recurrent maintenance needs and associated transport costs and challenges. To conduct this study, soil samples collected from Mulungushi, Zambia, were treated with combinations of 6–10% OPC and 10–15% RHA by weight. Laboratory tests measured maximum dry density (MDD), optimum moisture content (OMC), and California Bearing Ratio (CBR) values; the main parameters assessed to ensure the quality of road construction soils. Results showed that while the MDD did not change significantly and varied between 1505 kg/m3 and 1519 kg/m3, the OMC increased hugely from 19.6% to as high as 26.2% after treatment with RHA. The CBR value improved significantly, with the 8% OPC + 10% RHA mixture achieving the highest resistance to deformation. These results suggest that RHA can enhance the durability and sustainability of rural roads and hence improve transport systems and subsequently improve socioeconomic factors in rural areas. Full article
Show Figures

Figure 1

33 pages, 2015 KiB  
Article
From Development to Regeneration: Insights into Flight Muscle Adaptations from Bat Muscle Cell Lines
by Fengyan Deng, Valentina Peña, Pedro Morales-Sosa, Andrea Bernal-Rivera, Bowen Yang, Shengping Huang, Sonia Ghosh, Maria Katt, Luciana Andrea Castellano, Lucinda Maddera, Zulin Yu, Nicolas Rohner, Chongbei Zhao and Jasmin Camacho
Cells 2025, 14(15), 1190; https://doi.org/10.3390/cells14151190 (registering DOI) - 1 Aug 2025
Abstract
Skeletal muscle regeneration depends on muscle stem cells, which give rise to myoblasts that drive muscle growth, repair, and maintenance. In bats—the only mammals capable of powered flight—these processes must also sustain contractile performance under extreme mechanical and metabolic stress. However, the cellular [...] Read more.
Skeletal muscle regeneration depends on muscle stem cells, which give rise to myoblasts that drive muscle growth, repair, and maintenance. In bats—the only mammals capable of powered flight—these processes must also sustain contractile performance under extreme mechanical and metabolic stress. However, the cellular and molecular mechanisms underlying bat muscle physiology remain largely unknown. To enable mechanistic investigation of these traits, we established the first myoblast cell lines from the pectoralis muscle of Pteronotus mesoamericanus, a highly maneuverable aerial insectivore. Using both spontaneous immortalization and exogenous hTERT/CDK4 gene overexpression, we generated two stable cell lines that retain proliferative capacity and differentiate into contractile myotubes. These cells exhibit frequent spontaneous contractions, suggesting robust functional integrity at the neuromuscular junction. In parallel, we performed transcriptomic and metabolic profiling of native pectoralis tissue in the closely related Pteronotus parnellii to define molecular programs supporting muscle specialization. Gene expression analyses revealed enriched pathways for muscle metabolism, development, and regeneration, highlighting supporting roles in tissue maintenance and repair. Consistent with this profile, the flight muscle is triglyceride-rich, which serves as an important fuel source for energetically demanding processes, including muscle contraction and cellular recovery. Integration of transcriptomic and metabolic data identified three key metabolic modules—glucose utilization, lipid handling, and nutrient signaling—that likely coordinate ATP production and support metabolic flexibility. Together, these complementary tools and datasets provide the first in vitro platform for investigating bat muscle research, enabling direct exploration of muscle regeneration, metabolic resilience, and evolutionary physiology. Full article
19 pages, 2359 KiB  
Article
Research on Concrete Crack Damage Assessment Method Based on Pseudo-Label Semi-Supervised Learning
by Ming Xie, Zhangdong Wang and Li’e Yin
Buildings 2025, 15(15), 2726; https://doi.org/10.3390/buildings15152726 (registering DOI) - 1 Aug 2025
Abstract
To address the inefficiency of traditional concrete crack detection methods and the heavy reliance of supervised learning on extensive labeled data, in this study, an intelligent assessment method of concrete damage based on pseudo-label semi-supervised learning and fractal geometry theory is proposed to [...] Read more.
To address the inefficiency of traditional concrete crack detection methods and the heavy reliance of supervised learning on extensive labeled data, in this study, an intelligent assessment method of concrete damage based on pseudo-label semi-supervised learning and fractal geometry theory is proposed to solve two core tasks: one is binary classification of pixel-level cracks, and the other is multi-category assessment of damage state based on crack morphology. Using three-channel RGB images as input, a dual-path collaborative training framework based on U-Net encoder–decoder architecture is constructed, and a binary segmentation mask of the same size is output to achieve the accurate segmentation of cracks at the pixel level. By constructing a dual-path collaborative training framework and employing a dynamic pseudo-label refinement mechanism, the model achieves an F1-score of 0.883 using only 50% labeled data—a mere 1.3% decrease compared to the fully supervised benchmark DeepCrack (F1 = 0.896)—while reducing manual annotation costs by over 60%. Furthermore, a quantitative correlation model between crack fractal characteristics and structural damage severity is established by combining a U-Net segmentation network with the differential box-counting algorithm. The experimental results demonstrate that under a cyclic loading of 147.6–221.4 kN, the fractal dimension monotonically increases from 1.073 (moderate damage) to 1.189 (failure), with 100% accuracy in damage state identification, closely aligning with the degradation trend of macroscopic mechanical properties. In complex crack scenarios, the model attains a recall rate (Re = 0.882), surpassing U-Net by 13.9%, with significantly enhanced edge reconstruction precision. Compared with the mainstream models, this method effectively alleviates the problem of data annotation dependence through a semi-supervised strategy while maintaining high accuracy. It provides an efficient structural health monitoring solution for engineering practice, which is of great value to promote the application of intelligent detection technology in infrastructure operation and maintenance. Full article
Show Figures

Figure 1

17 pages, 2459 KiB  
Article
Comparative Life Cycle Assessment of Rubberized Warm-Mix Asphalt Pavements: A Cradle-to-Gate Plus Maintenance Approach
by Ana María Rodríguez-Alloza and Daniel Garraín
Coatings 2025, 15(8), 899; https://doi.org/10.3390/coatings15080899 (registering DOI) - 1 Aug 2025
Abstract
In response to the escalating climate crisis, reducing greenhouse gas emissions (GHG) has become a top priority for both the public and private sectors. The pavement industry plays a key role in this transition, offering innovative technologies that minimize environmental impacts without compromising [...] Read more.
In response to the escalating climate crisis, reducing greenhouse gas emissions (GHG) has become a top priority for both the public and private sectors. The pavement industry plays a key role in this transition, offering innovative technologies that minimize environmental impacts without compromising performance. Among these, the incorporation of recycled tire rubber and warm-mix asphalt (WMA) additives represents a promising strategy to reduce energy consumption and resource depletion in road construction. This study conducts a comparative life cycle assessment (LCA) to evaluate the environmental performance of an asphalt pavement incorporating recycled rubber and a WMA additive—referred to as R-W asphalt—against a conventional hot-mix asphalt (HMA) pavement. The analysis follows the ISO 14040/44 standards, covering material production, transport, construction, and maintenance. Two service-life scenarios are considered: one assuming equivalent durability and another with a five-year extension for the R-W pavement. The results demonstrate environmental impact reductions of up to 57%, with average savings ranging from 32% to 52% across key impact categories such as climate change, land use, and resource use. These benefits are primarily attributed to lower production temperatures and extended maintenance intervals. The findings underscore the potential of R-W asphalt as a cleaner engineering solution aligned with circular economy principles and climate mitigation goals. Full article
(This article belongs to the Special Issue Surface Protection of Pavements: New Perspectives and Applications)
Show Figures

Figure 1

24 pages, 13038 KiB  
Article
Simulation and Analysis of Electric Thermal Coupling for Corrosion Damage of Metro Traction Motor Bearings
by Haisheng Yang, Zhanwang Shi, Xuelan Wang, Jiahang Zhang, Run Zhang and Hengdi Wang
Machines 2025, 13(8), 680; https://doi.org/10.3390/machines13080680 (registering DOI) - 1 Aug 2025
Abstract
With the electrification of generator sets, electric locomotives, new energy vehicles, and other industries, AC motors subject bearings to an electric field environment, leading to galvanic corrosion due to the use of variable frequency power supply drives. The phenomenon of bearing discharge breakdown [...] Read more.
With the electrification of generator sets, electric locomotives, new energy vehicles, and other industries, AC motors subject bearings to an electric field environment, leading to galvanic corrosion due to the use of variable frequency power supply drives. The phenomenon of bearing discharge breakdown in subway traction motors is a critical issue in understanding the relationship between shaft current strength and the extent of bearing damage. This paper analyzes the mechanism of impulse discharge that leads to galvanic corrosion damage in bearings at a microscopic level and conducts electric thermal coupling simulations of the traction motor bearing discharge breakdown process. It examines the temperature rise associated with lubricant film discharge breakdown during the dynamic operation of the bearing and investigates how breakdown channel parameters and operational conditions affect the temperature rise in the micro-region of bearing lubrication. Ultimately, the results of the electric thermal coupling simulation are validated through experimental tests. This study revealed that in an electric field environment, the load-bearing area of the outer ring experiences significantly more severe corrosion damage than the inner ring, whereas non-bearing areas remain unaffected by electrolytic corrosion. When the inner ring reaches a speed of 4500_rpm, the maximum widths of electrolytic corrosion pits for the outer and inner rings are measured at 89 um and 51 um, respectively. Additionally, the highest recorded temperatures for the breakdown channels in the outer and inner rings are 932 °C and 802 °C, respectively. Furthermore, as the inner ring speed increases, both the width of the electrolytic corrosion pits and the temperature of the breakdown channels rise. Specifically, at inner ring speeds of 2500_rpm, 3500_rpm, and 4500_rpm, the widths of the electrolytic pits in the outer ring raceway load zone were measured at 34 um, 56 um, and 89 um, respectively. The highest temperatures of the lubrication film breakdown channels were recorded as 612 °C, 788 °C, and 932 °C, respectively. This study provides a theoretical basis and data support for the protective and maintenance practices of traction motor bearings. Full article
(This article belongs to the Section Electrical Machines and Drives)
Show Figures

Figure 1

29 pages, 12910 KiB  
Article
Co-Creation, Co-Construction, and Co-Governance in Community Renewal: A Case Study of Civic Participation and Sustainable Mechanisms
by Yitong Shen, Ran Tan and Suhui Zhang
Land 2025, 14(8), 1577; https://doi.org/10.3390/land14081577 (registering DOI) - 1 Aug 2025
Abstract
This study focuses on Shanghai, a pioneer city in China’s community renewal practices. In recent years, community renewal driven by civic participation has become a prominent research topic, leading to the emergence of numerous exemplary cases in Shanghai. However, field investigations revealed that [...] Read more.
This study focuses on Shanghai, a pioneer city in China’s community renewal practices. In recent years, community renewal driven by civic participation has become a prominent research topic, leading to the emergence of numerous exemplary cases in Shanghai. However, field investigations revealed that many projects have experienced varying degrees of physical deterioration and a decline in spatial vitality due to insufficient maintenance, reflecting unsustainable outcomes. In response, this study examines a bottom-up community renewal project led by the research team, aiming to explore how broad civic participation can promote sustainable community renewal. A multidisciplinary approach incorporating perspectives from ecology, the humanities, economics, and sociology was used to guide citizen participation, while participatory observation methods recorded emotional shifts and maintenance behavior throughout the process. The results showed that civic participatory actions under the guidance of sustainability principles effectively enhanced citizens’ sense of community identity and responsibility, thereby facilitating the sustainable upkeep and operation of community spaces. However, the study also found that bottom-up efforts alone are insufficient. Sustainable community renewal also requires top-down policy support and institutional safeguards. At the end, the paper concludes by summarizing the practical outcomes and proposing strategies and mechanisms for broader application, aiming to provide a reference for related practices and research. Full article
(This article belongs to the Special Issue Planning for Sustainable Urban and Land Development, Second Edition)
24 pages, 14731 KiB  
Article
Hybrid Laser Cleaning of Carbon Deposits on N52B30 Engine Piston Crowns: Multi-Objective Optimization via Response Surface Methodology
by Yishun Su, Liang Wang, Zhehe Yao, Qunli Zhang, Zhijun Chen, Jiawei Duan, Tingqing Ye and Jianhua Yao
Materials 2025, 18(15), 3626; https://doi.org/10.3390/ma18153626 (registering DOI) - 1 Aug 2025
Abstract
Carbon deposits on the crown of engine pistons can markedly reduce combustion efficiency and shorten service life. Conventional cleaning techniques often fail to simultaneously ensure a high carbon removal efficiency and maintain optimal surface integrity. To enable efficient and precise carbon removal, this [...] Read more.
Carbon deposits on the crown of engine pistons can markedly reduce combustion efficiency and shorten service life. Conventional cleaning techniques often fail to simultaneously ensure a high carbon removal efficiency and maintain optimal surface integrity. To enable efficient and precise carbon removal, this study proposes the application of hybrid laser cleaning—combining continuous-wave (CW) and pulsed lasers—to piston carbon deposit removal, and employs response surface methodology (RSM) for multi-objective process optimization. Using the N52B30 engine piston as the experimental substrate, this study systematically investigates the combined effects of key process parameters—including CW laser power, pulsed laser power, cleaning speed, and pulse repetition frequency—on surface roughness (Sa) and carbon residue rate (RC). Plackett–Burman design was employed to identify significant factors, the method of the steepest ascent was utilized to approximate the optimal region, and a quadratic regression model was constructed using Box–Behnken response surface methodology. The results reveal that the Y-direction cleaning speed and pulsed laser power exert the most pronounced influence on surface roughness (F-values of 112.58 and 34.85, respectively), whereas CW laser power has the strongest effect on the carbon residue rate (F-value of 57.74). The optimized process parameters are as follows: CW laser power set at 625.8 W, pulsed laser power at 250.08 W, Y-direction cleaning speed of 15.00 mm/s, and pulse repetition frequency of 31.54 kHz. Under these conditions, the surface roughness (Sa) is reduced to 0.947 μm, and the carbon residue rate (RC) is lowered to 3.67%, thereby satisfying the service performance requirements for engine pistons. This study offers technical insights into the precise control of the hybrid laser cleaning process and its practical application in engine maintenance and the remanufacturing of end-of-life components. Full article
Show Figures

Figure 1

23 pages, 10936 KiB  
Article
Towards Autonomous Coordination of Two I-AUVs in Submarine Pipeline Assembly
by Salvador López-Barajas, Alejandro Solis, Raúl Marín-Prades and Pedro J. Sanz
J. Mar. Sci. Eng. 2025, 13(8), 1490; https://doi.org/10.3390/jmse13081490 (registering DOI) - 1 Aug 2025
Abstract
Inspection, maintenance, and repair (IMR) operations on underwater infrastructure remain costly and time-intensive because fully teleoperated remote operated vehicle s(ROVs) lack the range and dexterity necessary for precise cooperative underwater manipulation, and the alternative of using professional divers is ruled out due to [...] Read more.
Inspection, maintenance, and repair (IMR) operations on underwater infrastructure remain costly and time-intensive because fully teleoperated remote operated vehicle s(ROVs) lack the range and dexterity necessary for precise cooperative underwater manipulation, and the alternative of using professional divers is ruled out due to the risk involved. This work presents and experimentally validates an autonomous, dual-I-AUV (Intervention–Autonomous Underwater Vehicle) system capable of assembling rigid pipeline segments through coordinated actions in a confined underwater workspace. The first I-AUV is a Girona 500 (4-DoF vehicle motion, pitch and roll stable) fitted with multiple payload cameras and a 6-DoF Reach Bravo 7 arm, giving the vehicle 10 total DoF. The second I-AUV is a BlueROV2 Heavy equipped with a Reach Alpha 5 arm, likewise yielding 10 DoF. The workflow comprises (i) detection and grasping of a coupler pipe section, (ii) synchronized teleoperation to an assembly start pose, and (iii) assembly using a kinematic controller that exploits the Girona 500’s full 10 DoF, while the BlueROV2 holds position and orientation to stabilize the workspace. Validation took place in a 12 m × 8 m × 5 m water tank. Results show that the paired I-AUVs can autonomously perform precision pipeline assembly in real water conditions, representing a significant step toward fully automated subsea construction and maintenance. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

19 pages, 440 KiB  
Article
Cost-Benefit Analysis of Diesel vs. Electric Buses in Low-Density Areas: A Case Study City of Jastrebarsko
by Marko Šoštarić, Marijan Jakovljević, Marko Švajda and Juraj Leonard Vertlberg
World Electr. Veh. J. 2025, 16(8), 431; https://doi.org/10.3390/wevj16080431 (registering DOI) - 1 Aug 2025
Abstract
This paper presents a comprehensive analysis comparing the implementation of electric and diesel buses for public transport services in the low-density area of the City of Jastrebarsko in Croatia. It utilizes a multidimensional approach and incorporates direct and indirect costs, such as vehicle [...] Read more.
This paper presents a comprehensive analysis comparing the implementation of electric and diesel buses for public transport services in the low-density area of the City of Jastrebarsko in Croatia. It utilizes a multidimensional approach and incorporates direct and indirect costs, such as vehicle acquisition, operation, charging, maintenance, and environmental impact costs during the lifecycle of the buses. The results show that, despite the higher initial investment in electric buses, these vehicles offer savings, especially when coupled with significantly reduced emissions of pollutants, which decreases indirect costs. However, local contexts differ, leading to a need to revise whether or not a municipality can finance the procurement and operations of such a fleet. The paper utilizes a robust methodological framework, integrating a proposal based on real-world data and demand and combining it with predictive analytics to forecast long-term benefits. The findings of the paper support the introduction of buses as a sustainable solution for Jastrebarsko, which provides insights for public transport planners, urban planners, and policymakers, with a discussion about the specific issues regarding the introduction, procurement, and operations of buses of different propulsion in a low-density area. Full article
(This article belongs to the Special Issue Zero Emission Buses for Public Transport)
Show Figures

Figure 1

32 pages, 3202 KiB  
Article
An Integrated Framework for Urban Water Infrastructure Planning and Management: A Case Study for Gauteng Province, South Africa
by Khathutshelo Godfrey Maumela, Tebello Ntsiki Don Mathaba and Mahalieo Kao
Water 2025, 17(15), 2290; https://doi.org/10.3390/w17152290 (registering DOI) - 1 Aug 2025
Abstract
Effective water infrastructure planning and management is key to sustainable water supply globally. This research assesses water infrastructure planning and management in Gauteng, South Africa, amid growing challenges from rapid urbanisation, high water demand, climate change, and resource scarcity. These challenges threaten the [...] Read more.
Effective water infrastructure planning and management is key to sustainable water supply globally. This research assesses water infrastructure planning and management in Gauteng, South Africa, amid growing challenges from rapid urbanisation, high water demand, climate change, and resource scarcity. These challenges threaten the achievement of Sustainable Development Goals 6 and 11; hence, an integrated approach is required for water sustainability. The study responds to a gap in the literature, which often treats planning and management separately, by adopting an integrated, multi-institutional approach across the water value chain. A mixed-methods triangulation strategy was employed for data collection whereby surveys provided quantitative data, while two sets of structured interviews were conducted: the first round to determine causal relationships among the critical success factors and the second round to validate the proposed framework. The findings reveal a misalignment between infrastructure planning and implementation, contributing to infrastructure backlogs and a short- to medium-term focus. Infrastructure management is further constrained by inadequate system redundancy, leading to ineffective maintenance. External factors such as delayed adoption of 4IR technologies, lack of climate resilient strategies, and fragmented institutional coordination exacerbate these issues. Using Decision-Making Trial and Evaluation Laboratory (DEMATEL) analysis, the study identified Strategic Alignment and a Value-Driven Approach as the most influential critical success factors in water asset management. The research concludes by proposing an integrated water infrastructure and planning framework that supports sustainable water supply. Full article
(This article belongs to the Section Urban Water Management)
Show Figures

Figure 1

Back to TopTop