Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (5,067)

Search Parameters:
Keywords = MMPs

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 2191 KB  
Article
Cordyceps militaris Enhances Wound Repair Through Regulation of HIF-1α, TGF-β1, and SIRT1/Nrf2/HO-1 Signaling in Diabetic Skin
by Tzu-Kai Lin, Chia-Lun Tsai, Bruce Chi-Kang Tsai, Chia-Hua Kuo, Tsung-Jung Ho, Dennis Jine-Yuan Hsieh, Wei-Wen Kuo, Chih-Yang Huang and Pei-Ying Lee
Life 2026, 16(1), 117; https://doi.org/10.3390/life16010117 - 13 Jan 2026
Abstract
Chronic diabetic wounds are characterized by persistent inflammation, impaired angiogenesis, oxidative stress, and defective tissue remodeling, leading to delayed healing. Cordyceps militaris, a medicinal fungus with known anti-inflammatory and antioxidant properties, has shown therapeutic potential in metabolic disorders; however, its role in [...] Read more.
Chronic diabetic wounds are characterized by persistent inflammation, impaired angiogenesis, oxidative stress, and defective tissue remodeling, leading to delayed healing. Cordyceps militaris, a medicinal fungus with known anti-inflammatory and antioxidant properties, has shown therapeutic potential in metabolic disorders; however, its role in diabetic wound repair remains unclear. In this study, we evaluated the wound-healing effects of an aqueous extract of C. militaris using in vitro keratinocyte models and a streptozotocin-induced diabetic mouse model. C. militaris treatment significantly accelerated wound closure, improved epidermal regeneration, and enhanced skin barrier integrity. Mechanistically, C. militaris restored HIF-1α and TGF-β1 expression, promoted cell proliferation and fibroblast activation, and increased the expression of matrix metalloproteinases MMP-1 and MMP-2, indicating enhanced extracellular matrix remodeling. In parallel, excessive inflammatory responses were attenuated, as evidenced by reduced IL-6 and TNF-α levels, along with activation of SIRT1/Nrf2/HO-1 antioxidant signaling pathways. Collectively, these findings demonstrate that C. militaris promotes a balanced wound-healing microenvironment and represents a promising natural therapeutic candidate for the treatment of diabetic wounds. Full article
(This article belongs to the Special Issue The Role of Natural Products in Disease Treatment)
22 pages, 7430 KB  
Article
Inhibition of Breast Cancer Bone Metastasis by LRP5-Overexpressing Osteocytes via the LIMA1/MYO5B Signaling Axis
by Yaning Chen, Zicheng Wang, Yu Sun, Xinshi Li, Yuji Wang and Shengzhi Liu
Int. J. Mol. Sci. 2026, 27(2), 777; https://doi.org/10.3390/ijms27020777 - 13 Jan 2026
Abstract
Bone metastasis in breast cancer remains a major therapeutic challenge because current osteoclast-targeted therapies do not fully disrupt the tumor–bone vicious cycle. Osteocytes, the most abundant bone cells, are increasingly recognized as key regulators of bone–tumor crosstalk. Previous work has shown that osteocyte-specific [...] Read more.
Bone metastasis in breast cancer remains a major therapeutic challenge because current osteoclast-targeted therapies do not fully disrupt the tumor–bone vicious cycle. Osteocytes, the most abundant bone cells, are increasingly recognized as key regulators of bone–tumor crosstalk. Previous work has shown that osteocyte-specific overexpression of the Wnt co-receptor LRP5 inhibits breast cancer-induced osteolysis and generates conditioned medium (CM) with tumor-suppressive activity. Proteomic analysis identified LIM domain and actin-binding protein 1 (LIMA1) as a central mediator that interacts with Myosin Vb (MYO5B), suggesting the role of the LIMA1/MYO5B regulatory axis. This study demonstrates that CM derived from LRP5-overexpressing osteocytes suppresses EO771 breast cancer cell proliferation, migration, and invasion, and downregulates tumor-promoting proteins, including MMP9, Snail, IL-6, and TGF-β1, while upregulating the apoptosis-related protein cleaved caspase-3. These effects were largely reversed by knockdown of LIMA1 or MYO5B. In syngeneic mouse models of mammary tumors and bone metastasis, systemic administration of LRP5-overexpressing osteocyte-derived CM reduced tumor burden and osteolytic bone destruction, whereas genetic knockdown of LIMA1 in osteocytes or MYO5B in tumor cells abrogated these protective effects. Collectively, these findings indicate that LRP5 activation in osteocytes engages the LIMA1/MYO5B signaling axis that inhibits breast cancer progression and osteolysis, disrupts tumor–stromal interactions, and restores bone–tumor homeostasis, thereby providing a potential therapeutic strategy to break the vicious cycle of bone metastasis in breast cancer. Full article
(This article belongs to the Section Molecular Oncology)
Show Figures

Graphical abstract

16 pages, 2466 KB  
Article
Regenerative and Dermal Wound Healing Activities of Bioactive Octapeptide
by Shan Lakmal Edirisinghe, Chamilani Nikapitiya and Mahanama De Zoysa
Cosmetics 2026, 13(1), 16; https://doi.org/10.3390/cosmetics13010016 - 13 Jan 2026
Abstract
Cosmeceutical peptides (CPs), which modulate various biological activities, including skin regeneration and wound healing, have emerged as promising agents in skincare. In this study, we investigated the regenerative and wound healing potential of a short peptide, CP-02 (sequence CDARSDAR), using human dermal fibroblast [...] Read more.
Cosmeceutical peptides (CPs), which modulate various biological activities, including skin regeneration and wound healing, have emerged as promising agents in skincare. In this study, we investigated the regenerative and wound healing potential of a short peptide, CP-02 (sequence CDARSDAR), using human dermal fibroblast cells (HDFs) in vitro and a zebrafish model in vivo. In HDFs, CP-02 treatment at concentrations of 50, 100, and 200 µg/mL significantly accelerated wound closure in a dose-dependent manner (p < 0.05) and upregulated the mRNA expression of CCND1, MYC, FGF2, EFG, and IL-8 at 12 h post-treatment. In amputated zebrafish larvae, exposure to CP-02 (5 µg/mL) for 72 h significantly increased fin regeneration, with a fin area of 3.5 mm2 and fin-fold length of 0.2 mm, compared with those in controls (2 mm2 and 0.07 mm, respectively). Intramuscular administration of CP-02 significantly improved the healing rates in wounded adult zebrafish to 58% and 76% on 12 and 16 days post wounding (dpw), respectively, compared with the vehicle (35% and 44%, respectively). Histological analysis (H&E staining) revealed reduced inflammatory cell infiltration, complete granulation, and re-epithelialization in the CP-02-treated tissues at 12 dpw. Furthermore, mRNA expression levels of tnf-α, il-1β, tgfb1, mmp9, mmp13, and timp2b were elevated in the CP-02 group at 4 dpw, whereas those of pro-fibrotic mediators, including acta2, ctgfb, cdh1, and col9a3 reduced in muscle tissue on 12 dpw. Collectively these findings demonstrate that CP-02 promotes effective, scar-reducing regeneration and wound healing, highlighting its strong potential as a therapeutic peptide for future skincare and cosmeceutical applications. Full article
(This article belongs to the Section Cosmetic Dermatology)
Show Figures

Figure 1

22 pages, 4486 KB  
Article
Astaxanthin as a Natural Photoprotective Agent: In Vitro and In Silico Approach to Explore a Multi-Targeted Compound
by Aida Lahmar, Balkis Abdelaziz, Nahla Gouader, Abir Salek, Imen Waer and Leila Chekir Ghedira
Sci. Pharm. 2026, 94(1), 8; https://doi.org/10.3390/scipharm94010008 - 13 Jan 2026
Abstract
Ultraviolet B radiation is a major cause of skin aging, cellular senescence, and inflammaging, mediated by the excessive production of reactive oxygen species (ROS) and induction of apoptosis. This study evaluated the photo-protective effects of astaxanthin, one of the strongest natural antioxidants, in [...] Read more.
Ultraviolet B radiation is a major cause of skin aging, cellular senescence, and inflammaging, mediated by the excessive production of reactive oxygen species (ROS) and induction of apoptosis. This study evaluated the photo-protective effects of astaxanthin, one of the strongest natural antioxidants, in UVB-treated keratinocytes. The antioxidant capacity of astaxanthin was evaluated using ABTS, DPPH, and NBT/riboflavin/SOD assays. HaCaT cells were exposed to 30 mJ/cm2 of UVB radiation. Photoprotective effects and accumulated ROS were evaluated in UVB-irradiated HaCaT cells by MTT and DCFH-DA assays. Nitric oxide levels were quantified using the Griess reagent. Apoptosis was assessed by dual staining using acridine orange/ethidium bromide, lysosomal integrity by acridine orange uptake, and cell migration by scratch assay. Cell adhesion was assessed on ECM-coated Nunc plates. Finally, we formulated a 0.5% astaxanthin-enriched cream. Astaxanthin mitigated UVB-induced damage by reducing intracellular ROS levels by 3.7-fold, decreasing nitric oxide production to 29.8 ± 7.7% at the highest concentration, and maintaining lysosomal integrity. The carotenoid significantly enhanced cell viability, increasing it from 60.64 ± 8.3% in UV-treated cells to 102.1 ± 3.22% at 40 µM. Moreover, treated cells showed a significant reduction (p < 0.001) in the apoptotic rate (37.7 ± 3.1 vs. 87.7 ± 3.8 in UVB-irradiated cells, as evidenced by reduced chromatin condensation and nuclear fragmentation. Astaxanthin also enhanced tissue repair, as evidenced by increased cell migration and adhesion to several extracellular matrix (ECM) proteins (poly-L-lysine, laminin, fibrinogen, vitronectin and collagen I). In silico molecular docking predicted strong binding affinities between astaxanthin and key cellular targets, including JAK2 (−9.9 kcal/mol, highest affinity), STAT3, FAK, COX-2, NF-k-B, MMP2, and MMP9. The formulated cream demonstrated an in vitro SPF of 7.2 ± 2.5. Astaxanthin acts as a multifunctional photoprotective compound, providing a strong rationale for its incorporation into cosmetic and dermatological formulations, as further supported by the successful formulation and in vitro SPF estimation of an astaxanthin-enriched cream. Full article
Show Figures

Figure 1

20 pages, 3474 KB  
Article
A Marine Anticancer Cinnamyloxyl Derivative with Unique Binding Sites at Carbonic Anhydrase IX (CAIX) Inhibits Adenocarcinomic A549 Cells
by Shailaja Vommi Lakshmipathy, Christina Vijayaraghavan Sathyanathan, Mohanapriya Dandapani Chinambedu, Mohanraj Gopikrishnan, Abhinand Ponneri Adithavarman, Sadras Panchatcharam Thyagarajan and Mary Elizabeth Gnanambal Krishnan
Pharmaceuticals 2026, 19(1), 132; https://doi.org/10.3390/ph19010132 - 12 Jan 2026
Abstract
Background: Many inhibitors have been discovered to target hypoxia-induced carbonic anhydrase IX (CAIX) due to its critical role in lung cancers. This study discovers a novel compound, 3-(E-3,4-dihydroxycinnamaoyloxyl)-2-hydroxypropyl-9Z,12Z-octadeca-9,12-dienoate, which is produced by the seagrass Cymodocea serrulata and has binding sites at CAIX that [...] Read more.
Background: Many inhibitors have been discovered to target hypoxia-induced carbonic anhydrase IX (CAIX) due to its critical role in lung cancers. This study discovers a novel compound, 3-(E-3,4-dihydroxycinnamaoyloxyl)-2-hydroxypropyl-9Z,12Z-octadeca-9,12-dienoate, which is produced by the seagrass Cymodocea serrulata and has binding sites at CAIX that are distinct from those of current inhibitors. Methods: Compound and reference drug treatment for cell lines; Cell viability: MTT; Staining: Ao/PI/DAPI; MMP shifts and cell cycle: FACS; Gene and protein expression of CAIX, BAX, BAD: qPCR and Western blotting. Results: The compound binds to the CAIX protein, raises extracellular pH, and kills A549 cells [IC50: 11.61 µM], producing results that are lower than those of the reference drug doxorubicin [13.7 µM]. The substance depolarised the electrical potential of the mitochondrial membrane, caused S-phase arrest, and fragmented DNA. Additionally, it downregulated CAIX by 0.9 times while increasing apoptotic mRNA, BAX and BAD by 5.2 and 3.08 times, respectively, as demonstrated by qPCR. Between 0 and 24 h, the untreated hypoxic cells had a ΔpHe of 0.15, but the compound-treated cells had a ΔpHe of 0.6 indicative of intracellular acidosis. MD simulations verify the stability of the CAIX–C1 complex for more than 100 ns, and in silico studies show a strong binding affinity of the molecule to CAIX [−7.55 kcal/mol]. Conclusions: This implies that the amount of extracellular alkalosis was increased by the combination of treatment and hypoxia induction. As a result, when the cells were deprived of O2, the compound provided less defense against ROS. The compound binds to the glutamine and alanine amino acids at positions 242 and 392, respectively, at the central Zn atom of CAIX, which sets it apart from conventional sulphonamide CAIX inhibitors. This naturally occurring compound may be a potent CAIX inhibitor with newer binding sites, which could help treat hypoxic lung cancers. Full article
(This article belongs to the Special Issue Identification and Extraction of Bioactive Compounds from Marine Life)
Show Figures

Graphical abstract

44 pages, 1586 KB  
Review
Socceromics: A Systematic Review of Omics Technologies to Optimize Performance and Health in Soccer
by Adam Owen, Halil İbrahim Ceylan, Piotr Zmijewski, Carlo Biz, Giovanni Sciarretta, Alessandro Rossin, Pietro Ruggieri, Andrea De Giorgio, Carlo Trompetto, Nicola Luigi Bragazzi and Luca Puce
Int. J. Mol. Sci. 2026, 27(2), 749; https://doi.org/10.3390/ijms27020749 - 12 Jan 2026
Abstract
The integration of omics technologies, including genomics, proteomics, metabolomics, and microbiomics, has transformed sports science, particularly soccer, by providing new opportunities to optimize player performance, reduce injury risk, and enhance recovery. This systematic literature review was conducted in accordance with PRISMA 2020 guidelines [...] Read more.
The integration of omics technologies, including genomics, proteomics, metabolomics, and microbiomics, has transformed sports science, particularly soccer, by providing new opportunities to optimize player performance, reduce injury risk, and enhance recovery. This systematic literature review was conducted in accordance with PRISMA 2020 guidelines and structured using the PICOS/PECOS framework. Comprehensive searches were performed in PubMed, Scopus, and Web of Science up to August 2025. Eligible studies were peer-reviewed original research involving professional or elite soccer players that applied at least one omics approach to outcomes related to performance, health, recovery, or injury prevention. Reviews, conference abstracts, editorials, and studies not involving soccer or omics technologies were excluded. A total of 139 studies met the inclusion criteria. Across the included studies, a total of 19,449 participants were analyzed. Genomic investigations identified numerous single-nucleotide polymorphisms (SNPs) spanning key biological pathways. Cardiovascular and vascular genes (e.g., ACE, AGT, NOS3, VEGF, ADRA2A, ADRB1–3) were associated with endurance, cardiovascular regulation, and recovery. Genes related to muscle structure, metabolism, and hypertrophy (e.g., ACTN3, CKM, MLCK, TRIM63, TTN-AS1, HIF1A, MSTN, MCT1, AMPD1) were linked to sprint performance, metabolic efficiency, and muscle injury susceptibility. Neurotransmission-related genes (BDNF, COMT, DRD1–3, DBH, SLC6A4, HTR2A, APOE) influenced motivation, fatigue, cognitive performance, and brain injury recovery. Connective tissue and extracellular matrix genes (COL1A1, COL1A2, COL2A1, COL5A1, COL12A1, COL22A1, ELN, EMILIN1, TNC, MMP3, GEFT, LIF, HGF) were implicated in ligament, tendon, and muscle injury risk. Energy metabolism and mitochondrial function genes (PPARA, PPARG, PPARD, PPARGC1A, UCP1–3, FTO, TFAM) shaped endurance capacity, substrate utilization, and body composition. Oxidative stress and detoxification pathways (GSTM1, GSTP1, GSTT1, NRF2) influenced recovery and resilience, while bone-related variants (VDR, P2RX7, RANK/RANKL/OPG) were associated with bone density and remodeling. Beyond genomics, proteomics identified markers of muscle damage and repair, metabolomics characterized fatigue- and energy-related signatures, and microbiomics revealed links between gut microbial diversity, recovery, and physiological resilience. Evidence from omics research in soccer supports the potential for individualized approaches to training, nutrition, recovery, and injury prevention. By integrating genomics, proteomics, metabolomics, and microbiomics data, clubs and sports practitioners may design precision strategies tailored to each player’s biological profile. Future research should expand on multi-omics integration, explore gene–environment interactions, and improve representation across sexes, age groups, and competitive levels to advance precision sports medicine in soccer. Full article
(This article belongs to the Special Issue Molecular and Physiological Mechanisms of Exercise)
18 pages, 1673 KB  
Article
Comparison of In Vitro Multiple Physiological Activities of Cys–Tyr–Gly–Ser–Arg (CYGSR) Linear and Cyclic Peptides and Analysis Based on Molecular Docking
by Ga-Hyun Kim, Jeong-Eun Bang and Bo-Mi Kim
Biomolecules 2026, 16(1), 126; https://doi.org/10.3390/biom16010126 - 12 Jan 2026
Abstract
Peptide cyclization is a strategy to improve biological stability and functional activity, but direct comparison between linear and cyclic peptides with the same sequence is still limited. In this study, linear (L-CR5) and cyclic (C-CR5) forms were synthesized, and biological functions such as [...] Read more.
Peptide cyclization is a strategy to improve biological stability and functional activity, but direct comparison between linear and cyclic peptides with the same sequence is still limited. In this study, linear (L-CR5) and cyclic (C-CR5) forms were synthesized, and biological functions such as antioxidant, whitening, and anti-wrinkle activity were compared and evaluated. C-CR5 showed about 22.3 times of DPPH radical scavenging activity, which was significantly stronger than L-CR5, and tyrosinase inhibition increased rapidly in C-CR5 to reach inhibition of 95% or more, whereas L-CR5 showed only moderate activity in the same range (about 6.5 times). MMP-1 expression in the evaluation of anti-wrinkle activity did not show a decreasing trend in L-CR5 at all, while C-CR5 showed an anti-wrinkle effect, which was reduced by about 92.8% at 400 μg/mL. As a result of molecular docking analysis, C-CR5 exhibited lower MolDock scores than L-CR5 toward both tyrosinase and MMP-1, indicating a potentially higher binding affinity and improved binding stability. This is expected to be due to reduced structural flexibility and optimized residue directions (especially Tyr and Arg). These results indicate that peptide cyclization is an example of enhanced functional bioactivity of CYGSR and provides a positive case for the structure–activity relationship. Full article
(This article belongs to the Section Chemical Biology)
Show Figures

Figure 1

62 pages, 2598 KB  
Review
The Roles of the Membrane-Anchored Glycoprotein RECK in Animal Development, Tumor Suppression, and Beyond
by Makoto Noda, David Alexander and Tomoko Matsuzaki
Life 2026, 16(1), 104; https://doi.org/10.3390/life16010104 - 11 Jan 2026
Viewed by 42
Abstract
RECK was first reported as a transformation suppressor gene in 1998 and gradually gained attention as evidence indicating its reduced expression in a wide variety of human cancers accumulated. RECK encodes a membrane-anchored glycoprotein exhibiting protease inhibitor activity against matrix metalloproteases. Restored expression [...] Read more.
RECK was first reported as a transformation suppressor gene in 1998 and gradually gained attention as evidence indicating its reduced expression in a wide variety of human cancers accumulated. RECK encodes a membrane-anchored glycoprotein exhibiting protease inhibitor activity against matrix metalloproteases. Restored expression of RECK in cancer xenograft models suggests it suppresses tumor growth and/or metastasis. RECK was also found to be essential for mammalian embryogenesis, especially in the maintenance of tissue integrity as well as the development of neural and vascular systems. Due to its functional versatility during animal development, we only recently began to obtain formal experimental evidence that RECK is a bona fide tumor suppressor. In the meantime, mechanisms by which RECK expression is reduced in cancer cells have been explored. Various stimuli that alter RECK expression have also been described. Furthermore, recent findings in the clinic as well as in animal studies indicate the involvement of RECK in disorders other than cancer. The aim of this article is to summarize our current knowledge of RECK and assist future efforts to understand its nature and functions and to develop useful applications. Full article
25 pages, 16151 KB  
Article
Seed Oil of Lycium barbarum L. from Qaidam Basin Prevents and Treats UV-Induced Photodamage in BABL/c Mice Skin by Modulating Skin Microbiome and Amino Acid Metabolism
by Le Han, Yongjing Yang, Benyin Zhang, Yuting Wang, Yiming Ji, Shasha Du and Yongqiang Zou
Int. J. Mol. Sci. 2026, 27(2), 731; https://doi.org/10.3390/ijms27020731 - 11 Jan 2026
Viewed by 38
Abstract
Ultraviolet (UV) radiation is a primary environmental factor responsible for skin photodamage, and exposure to UV rays is strongly linked to a variety of skin diseases. This study examined the prophylactic and therapeutic effects of Seed Oil of Lycium barbarum L. from the [...] Read more.
Ultraviolet (UV) radiation is a primary environmental factor responsible for skin photodamage, and exposure to UV rays is strongly linked to a variety of skin diseases. This study examined the prophylactic and therapeutic effects of Seed Oil of Lycium barbarum L. from the Qaidam basin (QLBSO) in a UV-induced skin photodamage model in BALB/c mice, exploring potential mechanisms by analyzing the skin microbiota and metabolites using 16S rDNA sequencing and metabolomics. The results showed that QLBSO effectively alleviated UV-induced histopathological changes in mouse skin. It also significantly increased the activity of superoxide dismutase (SOD) and catalase (CAT) in UV-damaged skin tissue, while reducing levels of inflammatory cytokines, including interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), and interleukin-1β (IL-1β), as well as matrix metalloproteinases-1 (MMP-1) and MMP-3. Omics analysis revealed that QLBSO successfully restored the balance of the skin microbiota and corrected disruptions in amino acid metabolism caused by UV exposure. Notably, Firmicutes_A and Kineothrix, along with cysteine, cystine, glycine, arginine, proline, and choline, were identified as key microbial species and metabolites responsive to QLBSO’s prophylactic and therapeutic effects. In conclusion, QLBSO likely protects against UV-induced skin photodamage by modulating the skin microbiota and amino acid metabolism, providing a scientific foundation for its potential use in skin health protection. Full article
(This article belongs to the Special Issue Plant Phenolic Accumulation and Application in Human Diseases)
24 pages, 1612 KB  
Review
Biomarkers in Primary Systemic Vasculitides: Narrative Review
by Mario Sestan, Martina Held and Marija Jelusic
Int. J. Mol. Sci. 2026, 27(2), 730; https://doi.org/10.3390/ijms27020730 - 11 Jan 2026
Viewed by 56
Abstract
Vasculitides are a heterogeneous group of disorders characterized by inflammation of blood vessel walls, leading to tissue ischemia and organ injury. Traditional inflammatory markers such as the erythrocyte sedimentation rate (ESR) and C-reactive protein (CRP) are widely used but lack diagnostic specificity. This [...] Read more.
Vasculitides are a heterogeneous group of disorders characterized by inflammation of blood vessel walls, leading to tissue ischemia and organ injury. Traditional inflammatory markers such as the erythrocyte sedimentation rate (ESR) and C-reactive protein (CRP) are widely used but lack diagnostic specificity. This has driven the search for more informative biomarkers across vasculitis subtypes. This review summarizes current evidence for validated and emerging biomarkers in large-, medium-, small-, and variable-vessel vasculitis, as well as single-organ vasculitis. Key analytes reflect systemic inflammation, such as serum amyloid A (SAA) and interleukin-6 (IL-6), as well as endothelial activation, complement pathways, neutrophil and macrophage activation, and organ-specific damage. Promising candidates include pentraxin-3 (PTX3) and matrix metalloproteinase-9 (MMP-9) in large-vessel vasculitis; N-terminal pro-B-type natriuretic peptide (NT-proBNP) and S100 proteins in Kawasaki disease; galactose-deficient immunoglobulin A1 (Gd-IgA1) and urinary angiotensinogen (AGT) in IgA vasculitis; and tissue inhibitor of metalloproteinases-1 (TIMP-1), S100 proteins, complement C3, and PTX3 in antineutrophil cytoplasmic antibody (ANCA)-associated vasculitis. Although these biomarkers provide mechanistic insight, most lack disease-specificity, external validation, or standardized assays. Future progress will require multicenter studies, harmonized testing, and integrated biomarker panels combined with imaging modalities to improve diagnosis, activity assessment, and monitoring. Full article
Show Figures

Figure 1

22 pages, 2430 KB  
Article
Estrogen-Induced Hypermethylation Silencing of RPS2 and TMEM177 Inhibits Energy Metabolism and Reduces the Survival of CRC Cells
by Batoul Abi Zamer, Bilal Rah, Wafaa Abumustafa, Zheng-Guo Cui, Mawieh Hamad and Jibran Sualeh Muhammad
Cells 2026, 15(2), 124; https://doi.org/10.3390/cells15020124 - 9 Jan 2026
Viewed by 106
Abstract
Estrogen (E2, 17β estradiol) is recognized for its regulatory role in numerous genes associated with energy metabolism and for its ability to disrupt mitochondrial function in various cancer types. However, the influence of E2 on the metabolism of colorectal cancer (CRC) cells remains [...] Read more.
Estrogen (E2, 17β estradiol) is recognized for its regulatory role in numerous genes associated with energy metabolism and for its ability to disrupt mitochondrial function in various cancer types. However, the influence of E2 on the metabolism of colorectal cancer (CRC) cells remains largely unexplored. In this study, we examined how E2 affects mitochondrial function and energy production in CRC cells, utilizing two distinct CRC cell lines, HCT-116 and SW480. Cell viability, mitochondrial function, and the expression of several genes involved in oxidative phosphorylation (OXPHOS) were assessed in estrogen receptor α (ERα)-expressing and ERα-silenced cells treated with increasing concentrations of E2 for 48 h. Our results indicated that the cytotoxicity of E2 against CRC cells is mediated by the E2/ERα complex, which induces disturbances in mitochondrial function and the OXPHOS pathway. Furthermore, we identified two novel targets, RPS2 and TMEM177, which displayed overexpression, hypomethylation, and a negative association with ERα expression in CRC tissue. E2 treatment in CRC cells reduced the expression of both targets through promoter hypermethylation. Treatment with 5-Aza-2-deoxycytidine increased the expression of RPS2 and TMEM177. This epigenetic effect disrupts the mitochondrial membrane potential (MMP), resulting in decreased activity of the OXPHOS pathway and inhibition of CRC cell growth. Knockdown of RPS2 or TMEM177 in CRC cells resulted in anti-cancer effects and disruption of MMP and OXPHOS. These findings suggest that E2 exerts ERα-dependent epigenetic reprogramming that leads to significant mitochondria-related anti-growth effects in CRC. Full article
20 pages, 2290 KB  
Article
Multi-Platform Detection of MMP-7 in Colorectal Carcinoma
by Ivana Večurkovská, Marek Stupák, Jana Kaťuchová, Veronika Roškovičová, Martin Pavluš, Mária Mareková and Jana Mašlanková
Cancers 2026, 18(2), 214; https://doi.org/10.3390/cancers18020214 - 9 Jan 2026
Viewed by 122
Abstract
Background/Objectives: Matrix metalloproteinase-7 (MMP-7) has been implicated in colorectal cancer (CRC) progression; however, its relationship to disease stage and its suitability as a circulating biomarker remain unclear. This study aimed to determine whether MMP-7 expression and activity differ between benign and malignant colorectal [...] Read more.
Background/Objectives: Matrix metalloproteinase-7 (MMP-7) has been implicated in colorectal cancer (CRC) progression; however, its relationship to disease stage and its suitability as a circulating biomarker remain unclear. This study aimed to determine whether MMP-7 expression and activity differ between benign and malignant colorectal conditions and whether serum MMP-7 levels reflect disease progression. Methods: mRNA MMP-7 expression data and MMP-7 levels have been collected from Gepia, Protein Atlas and UALCAN databases. For the study of patient samples, ELISA, Western blot, and zymography were used. The study included 30 patients with benign findings and 60 patients with colorectal cancer. The Gepia database reported significantly higher MMP-7 levels in patients with CRC. Results: The Protein Atlas and UALCAN highlight a notable difference between benign and malignant colon adenocarcinoma patients. The MMP-7 level in tissue samples from the malignant group, evaluated by Western blot, was approximately 4.5 times higher than in the benign group, and almost 3 times higher in serum samples. Using zymography, patients in the malignant group had MMP-7 activity more than 4x higher than that of patients in the benign group. The ELISA results supported this increase in MMP-7 levels. The average MMP-7 level in the malignant group was 1.2-fold that in benign tissue samples and approximately 3-fold that in serum samples. Notably, significant sex-related differences in serum MMP-7 concentrations were observed, indicating that gender may influence the interpretation of this biomarker. Conclusions: The discordance between stable MMP7 mRNA expression and declining serum MMP-7 protein levels in advanced CRC suggests complex post-transcriptional and post-translational regulation of MMP-7 during disease progression. Although this finding contrasts with much of the existing literature, it should be regarded as novel and hypothesis-generating. These results indicate that serum MMP-7 may reflect early tumor-associated processes rather than late-stage tumor burden, warranting further investigation in larger, stage-stratified and longitudinal cohorts. Full article
(This article belongs to the Section Clinical Research of Cancer)
Show Figures

Figure 1

41 pages, 12089 KB  
Article
Polydopamine-Coated Surfaces Promote Adhesion, Migration, Proliferation, Chemoresistance, Stemness, and Epithelial–Mesenchymal Transition of Human Prostate Cancer Cell Lines In Vitro via Integrin α2β1–FAK–JNK Signaling
by Won Hoon Song, Ji-Eun Kim, Lata Rajbongshi, Su-Rin Lee, Yuna Kim, Seon Yeong Hwang, Sae-Ock Oh, Byoung Soo Kim, Dongjun Lee and Sik Yoon
Int. J. Mol. Sci. 2026, 27(2), 655; https://doi.org/10.3390/ijms27020655 - 8 Jan 2026
Viewed by 162
Abstract
Polydopamine (PDA) surface coatings are widely used in biomedical engineering to enhance cell–substrate interactions; however, their effects on cancer-cell behavior remain unclear. In this study, we investigated how PDA-coated two-dimensional (2D) culture surfaces influence oncogenic traits of human prostate cancer (PC) cells in [...] Read more.
Polydopamine (PDA) surface coatings are widely used in biomedical engineering to enhance cell–substrate interactions; however, their effects on cancer-cell behavior remain unclear. In this study, we investigated how PDA-coated two-dimensional (2D) culture surfaces influence oncogenic traits of human prostate cancer (PC) cells in vitro. Using LNCaP, DU145, and PC3 cell lines, we found that PDA-coated substrates markedly increased the adhesion, migration, invasion, proliferation, and colony formation in a dose- and time-dependent manner. PDA exposure also induced epithelial–mesenchymal transition (EMT), upregulated cancer stem cell markers (CD44, CD117, CD133, Sox2, Oct4, and Nanog), and elevated expression of metastasis- and chemoresistance-associated molecules (MMP-2, MMP-9, MDR1, and MRP1). Mechanistically, PDA coatings enhanced integrin α2β1-associated cell adhesion, accompanied by increased focal adhesion kinase (FAK) phosphorylation and downstream activation of JNK signaling. Pharmacological inhibition of integrin α2β1 (BTT-3033), FAK (PF573228) and JNK (SP600125) effectively abrogated PDA-induced malignant phenotypes and restored chemosensitivity to cabazitaxel, cisplatin, docetaxel, curcumin, and enzalutamide. Collectively, these findings identify PDA-coated surfaces as a simple, efficient, and reductionist in vitro platform for studying adhesion-mediated signaling and phenotypic plasticity in PC cells, while acknowledging that further validation in three-dimensional (3D) and patient-derived models will be required to establish in vivo relevance. Full article
(This article belongs to the Special Issue Breakthroughs in Anti-Cancer Agents Discovery)
Show Figures

Graphical abstract

21 pages, 3421 KB  
Article
Bioactive-Rich Piper sarmentosum Aqueous Extract Mitigates Osteoarthritic Pathology by Enhancing Anabolic Activity and Attenuating NO-Driven Catabolism in Human Chondrocytes
by Yi Ting Lee, Mohd Heikal Mohd Yunus, Rizal Abdul Rani, Chiew Yong Ng, Muhammad Dain Yazid, Azizah Ugusman and Jia Xian Law
Biomedicines 2026, 14(1), 128; https://doi.org/10.3390/biomedicines14010128 - 8 Jan 2026
Viewed by 208
Abstract
Background: Osteoarthritis (OA) is a prevalent degenerative joint disease often causing functional disability. Current therapies provide only temporary relief and can cause adverse effects that frequently result in pain and disability. Current pharmacological options offer only temporary symptom relief and may cause adverse [...] Read more.
Background: Osteoarthritis (OA) is a prevalent degenerative joint disease often causing functional disability. Current therapies provide only temporary relief and can cause adverse effects that frequently result in pain and disability. Current pharmacological options offer only temporary symptom relief and may cause adverse effects. Piper sarmentosum (PS), a plant traditionally used for its medicinal properties, has demonstrated antioxidant and anti-inflammatory activities that may counteract OA-related degeneration. This study provides preliminary insight into the therapeutic potential of PS aqueous extract in human OA chondrocytes. Methods: Compounds in the PS aqueous extract were profiled using liquid chromatography–tandem mass spectrometry (LC-MS/MS). Primary human OA chondrocytes (HOCs) were treated with 0.5, 2, and 4 µg/mL of PS aqueous extract for 72 h. Key OA-related parameters were assessed, including anabolic markers (sulfated glycosaminoglycan (sGAG), collagen type II (COL II), aggrecan core protein (ACP), SRY-box transcription factor 9 (SOX9)), catabolic markers (matrix metalloproteinase (MMP) 1, MMP13, cyclooxygenase 2 (COX2)), oxidative stress (nitric oxide (NO) production, inducible NO synthase (iNOS) expression), and inflammatory responses (interleukin (IL) 6). Gene expression was quantified using qPCR, and protein levels were evaluated using the colorimetric method, immunocytochemistry, and Western blot. Results: A total of 101 compounds were identified in the extract, including vitexin, pterostilbene, and glutathione—bioactives known for antioxidant, anti-inflammatory, and chondroprotective functions. PS-treated chondrocytes maintain healthy polygonal morphology. PS aqueous extract significantly enhanced anabolic gene expression (COL2A1, ACP, SOX9) and sGAG production, while concurrently suppressing COX2 expression and NO synthesis. Additionally, PS aqueous extract reduced COX2 and iNOS protein levels, indicating inhibition of the NO signaling pathway. Catabolic activity was attenuated, and inflammatory responses were partially reduced. Conclusions: PS aqueous extract exhibits promising chondroprotective, antioxidant, and anti-inflammatory effects in human OA chondrocytes, largely through the suppression of NO-mediated catabolic signaling. The presence of multiple bioactive compounds supports its mechanistic potential. These findings highlight PS aqueous extract as a potential therapeutic candidate for OA management. Further ex vivo and in vivo studies are warranted to validate its efficacy and clarify its mechanism in joint-tissue environments. Full article
Show Figures

Graphical abstract

24 pages, 18899 KB  
Article
Network Pharmacology of the Phytochemical Content of Sunflower Seed (Helianthus annuus L.) Extract from LC-MS on Wound-Healing Activity and the In Vitro Wound Scratch Assay
by Juthamat Ratha, Tanit Padumanonda, Chawalit Yongram, Pimolwan Siriparu, Suthida Datham, Muhammad Subhan, Chatchavarn Chenboonthai and Ploenthip Puthongking
Plants 2026, 15(2), 187; https://doi.org/10.3390/plants15020187 - 7 Jan 2026
Viewed by 305
Abstract
Sunflower seeds have been reported to be a healthy natural source of polyphenols. This study aimed to explore the mechanisms of potential compounds in sunflower seed extract involved in wound healing; major compounds were investigated through network pharmacology and molecular docking. In an [...] Read more.
Sunflower seeds have been reported to be a healthy natural source of polyphenols. This study aimed to explore the mechanisms of potential compounds in sunflower seed extract involved in wound healing; major compounds were investigated through network pharmacology and molecular docking. In an in vitro wound-healing assay applied using an immortalised human keratinocyte (HaCaT) cell model, 10 µg/mL of the sunflower seed extract promoted cell migration in HaCaT cells and led to complete wound closure after 24 h; at a 1 µg/mL concentration, it led to complete wound closure after 72 h. The sunflower seed extract presented moderate-to-strong antioxidant activity. Liquid chromatography–mass spectrometry and high-performance liquid chromatography were used to identify the major compounds present in the sunflower seed extract. Forty-seven compounds were identified, among which chlorogenic acid was the most abundant phenolic compound. Network pharmacology was used to identify wound-healing-related targets. In total, 252 proteins were linked to the 47 compounds. Cyto-Hubba analysis identified 10 hub proteins with a strong correlation with wound healing. Molecular docking was used to assess the ability of the major compounds in the sunflower seed extract to combat NF-κB1, EGFR, and MMP9. Chlorogenic acid showed higher binding affinity to all targets. Moreover, its pharmacokinetic properties were well distributed in the plasma (VDss = 0.377 log L/kg), and they were not a carcinogen and did not cause skin sensitisation. In conclusion, the findings suggest that the sunflower seed extract is a potential source of bioactive compounds that can enhance wound healing and can be developed to create a transdermal application. Full article
(This article belongs to the Section Phytochemistry)
Show Figures

Figure 1

Back to TopTop